Direct strain correlations at the single-atom level in three-dimensional core-shell interface structures

Hyesung Jo, Dae Han Wi, Taegu Lee, Yongmin Kwon, Chaehwa Jeong, Juhyeok Lee, Hionsuck Baik, Alexander J. Pattison, Wolfgang Theis, Colin Ophus, Peter Ercius, Yea-lee Lee, Seunghwa Ryu, Sang Woo Han*, Yongsoo Yang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Downloads (Pure)

Abstract

Nanomaterials with core-shell architectures are prominent examples of strain-engineered materials. The lattice mismatch between the core and shell materials can cause strong interface strain, which affects the surface structures. Therefore, surface functional properties such as catalytic activities can be designed by fine-tuning the misfit strain at the interface. To precisely control the core-shell effect, it is essential to understand how the surface and interface strains are related at the atomic scale. Here, we elucidate the surface-interface strain relations by determining the full 3D atomic structure of Pd@Pt core-shell nanoparticles at the single-atom level via atomic electron tomography. Full 3D displacement fields and strain profiles of core-shell nanoparticles were obtained, which revealed a direct correlation between the surface and interface strain. The strain distributions show a strong shape-dependent anisotropy, whose nature was further corroborated by molecular statics simulations. From the observed surface strains, the surface oxygen reduction reaction activities were predicted. These findings give a deep understanding of structure-property relationships in strain-engineerable core-shell systems, which can lead to direct control over the resulting catalytic properties.
Original languageEnglish
Article number5957
Number of pages13
JournalNature Communications
Volume13
Issue number1
DOIs
Publication statusPublished - 10 Oct 2022

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Direct strain correlations at the single-atom level in three-dimensional core-shell interface structures'. Together they form a unique fingerprint.

Cite this