TY - JOUR
T1 - Dietary supplementation with fish oil modifies the ability of human monocytes to induce an inflammatory response.
AU - Luu, Nguyet-Thin
AU - Madden, J
AU - Calder, PC
AU - Grimble, RF
AU - Shearman, CP
AU - Chan, T
AU - Dastur, N
AU - Howell, WM
AU - Rainger, George
AU - Nash, Gerard
PY - 2007/12/1
Y1 - 2007/12/1
N2 - Monocytes/macrophages are key orchestrators of inflammation and are involved in the pathogenesis of chronic inflammatory disorders, including atherosclerosis. (n-3) Fatty acids, found in fish oil, have been shown to have protective effects in such disorders. To investigate possible modes of action, we used a monocyte:endothelial cell (EC) coculture model to investigate the pro-inflammatory potential of monocytes. Monocytes were isolated from the blood of donors with peripheral arterial disease (PAD) or control donors, before and after a 12-wk supplementation of their diet with fish oil. The monocytes were cultured with human umbilical vein EC (HUVEC) for 24 h, after which the ability of the HUVEC to recruit flowing neutrophils was tested. Monocytes from either group of donors stimulated the EC to support the adhesion and migration of neutrophils. Fish oil supplementation reduced the potency of monocytes from normal subjects, but not those from patients with PAD, to induce recruitment. Concurrent medication may have acted as a complicating factor. On subgroup analysis, only those free of medication showed a significant effect of fish oil. Responses before or after supplementation were not closely linked to patterns of secretion of cytokines by cultured monocytes, tested in parallel monocultures. These results suggest that fish oil can modulate the ability of monocytes to stimulate EC and that this might contribute to their protective effects against chronic inflammatory disorders. Benefits, however, may depend on existing medical status and on other treatments being received.
AB - Monocytes/macrophages are key orchestrators of inflammation and are involved in the pathogenesis of chronic inflammatory disorders, including atherosclerosis. (n-3) Fatty acids, found in fish oil, have been shown to have protective effects in such disorders. To investigate possible modes of action, we used a monocyte:endothelial cell (EC) coculture model to investigate the pro-inflammatory potential of monocytes. Monocytes were isolated from the blood of donors with peripheral arterial disease (PAD) or control donors, before and after a 12-wk supplementation of their diet with fish oil. The monocytes were cultured with human umbilical vein EC (HUVEC) for 24 h, after which the ability of the HUVEC to recruit flowing neutrophils was tested. Monocytes from either group of donors stimulated the EC to support the adhesion and migration of neutrophils. Fish oil supplementation reduced the potency of monocytes from normal subjects, but not those from patients with PAD, to induce recruitment. Concurrent medication may have acted as a complicating factor. On subgroup analysis, only those free of medication showed a significant effect of fish oil. Responses before or after supplementation were not closely linked to patterns of secretion of cytokines by cultured monocytes, tested in parallel monocultures. These results suggest that fish oil can modulate the ability of monocytes to stimulate EC and that this might contribute to their protective effects against chronic inflammatory disorders. Benefits, however, may depend on existing medical status and on other treatments being received.
M3 - Article
C2 - 18029497
VL - 137
SP - 2769
EP - 2774
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 12
ER -