Delocalization in an Open One-Dimensional Chain in an Imaginary Vector Potential

Igor Yurkevich, Igor Lerner

Research output: Contribution to journalArticle

16 Citations (Scopus)


We calculate the moments of transmittance, [T-n], through an open disordered 1D system with an imaginary vector potential, ih. It turns out that the critical curves on the complex energy plane, C-n, where an exponential decay of the appropriate quantity is changed by a power-law one, are all different. They also differ from the corresponding curves for [lnT] and that of the averaged one-particle Green's function; the latter defines the density of states support for the open system. This results from the absence of self-averaging in disordered 1D systems and reflects higher-order correlations in localized eigenstates of the non-Hermitian model.
Original languageEnglish
Pages (from-to)5080-5083
Number of pages4
JournalPhysical Review Letters
Issue number25
Publication statusPublished - 1 Jun 1999


Dive into the research topics of 'Delocalization in an Open One-Dimensional Chain in an Imaginary Vector Potential'. Together they form a unique fingerprint.

Cite this