TY - JOUR
T1 - Contrasting compositions of PM2.5 in Northern Thailand during La Niña (2017) and El Niño (2019) years
AU - Kraisitnitikul, Pavidarin
AU - Thepnuan, Duangduean
AU - Chansuebsri, Sarana
AU - Yabueng, Nuttipon
AU - Wiriya, Wan
AU - Saksakulkrai, Supattarachai
AU - Shi, Zongbo
AU - Chantara, Somporn
PY - 2024/1
Y1 - 2024/1
N2 - There have been a very limited number of systematic studies on PM2.5 compositions and their source contribution in Southeast Asia. This study aims to explore the characteristics of PM2.5 composition collected in Chiang Mai (Thailand) during La Niña and El Niño years and to apportion their sources during smoke haze and non-haze periods. The average PM2.5 concentration of smoke haze episode in 2019 (El Niño) was much higher than in 2017 (La Niña). The ratios of organic carbon (OC) to elemental carbon (EC), as well as K (biomass burning (BB) tracer) to PM2.5, were higher during smoke haze episodes in 2019 than in 2017 indicating a significant influence from BB. The ratios of secondary organic carbon (SOC) levels to primary organic carbon (POC) levels during smoke haze episodes were higher than those in non-haze period, which indicated greater SOC contributions or more photo-oxidation of precursors in haze episodes with high ambient temperatures. However, the ratios of soil markers (Ca and Mg) during non-haze period were high implying that soil source contributed more to PM2.5 concentrations when there less BB occurred. The positive Matrix Factorization (PMF) model revealed that the source of BB, characterized by high K fractions, was the largest contributor during smoke haze episodes accounting for 50% (2017) and 79% (2019). Climate conditions influence meteorological patterns, particularly during incidences of extreme weather such as droughts, which affect the scale and frequency of open burning and thus air pollution levels.
AB - There have been a very limited number of systematic studies on PM2.5 compositions and their source contribution in Southeast Asia. This study aims to explore the characteristics of PM2.5 composition collected in Chiang Mai (Thailand) during La Niña and El Niño years and to apportion their sources during smoke haze and non-haze periods. The average PM2.5 concentration of smoke haze episode in 2019 (El Niño) was much higher than in 2017 (La Niña). The ratios of organic carbon (OC) to elemental carbon (EC), as well as K (biomass burning (BB) tracer) to PM2.5, were higher during smoke haze episodes in 2019 than in 2017 indicating a significant influence from BB. The ratios of secondary organic carbon (SOC) levels to primary organic carbon (POC) levels during smoke haze episodes were higher than those in non-haze period, which indicated greater SOC contributions or more photo-oxidation of precursors in haze episodes with high ambient temperatures. However, the ratios of soil markers (Ca and Mg) during non-haze period were high implying that soil source contributed more to PM2.5 concentrations when there less BB occurred. The positive Matrix Factorization (PMF) model revealed that the source of BB, characterized by high K fractions, was the largest contributor during smoke haze episodes accounting for 50% (2017) and 79% (2019). Climate conditions influence meteorological patterns, particularly during incidences of extreme weather such as droughts, which affect the scale and frequency of open burning and thus air pollution levels.
KW - Climate
KW - Air pollution
KW - Metals
KW - Carbon
KW - Biomass burning
KW - Source identification
U2 - 10.1016/j.jes.2022.09.026
DO - 10.1016/j.jes.2022.09.026
M3 - Article
SN - 1001-0742
VL - 135
SP - 585
EP - 599
JO - Journal of Environmental Sciences
JF - Journal of Environmental Sciences
ER -