Compensatory mutations reducing the fitness cost of plasmid carriage occur in plant rhizosphere communities

Susannah M. Bird, Robert Jackson, Michael A Brockhurst*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Downloads (Pure)

Abstract

Plasmids drive bacterial evolutionary innovation by transferring ecologically important functions between lineages, but acquiring a plasmid often comes at a fitness cost to the host cell. Compensatory mutations, which ameliorate the cost of plasmid carriage, promote plasmid maintenance in simplified laboratory media across diverse plasmid–host associations. Whether such compensatory evolution can occur in more complex communities inhabiting natural environmental niches where evolutionary paths may be more constrained is, however, unclear. Here, we show a substantial fitness cost of carrying the large conjugative plasmid pQBR103 in Pseudomonas fluorescens SBW25 in the plant rhizosphere. This plasmid fitness cost could be ameliorated by compensatory mutations affecting the chromosomal global regulatory system gacA/gacS, which arose rapidly in plant rhizosphere communities and were exclusive to plasmid carriers. These findings expand our understanding of the importance of compensatory evolution in plasmid dynamics beyond simplified lab media. Compensatory mutations contribute to plasmid survival in bacterial populations living within complex microbial communities in their environmental niche.
Original languageEnglish
Article numberfiad027
JournalFEMS Microbiology Ecology
Volume99
Issue number4
Early online date23 Mar 2023
DOIs
Publication statusPublished - Apr 2023

Fingerprint

Dive into the research topics of 'Compensatory mutations reducing the fitness cost of plasmid carriage occur in plant rhizosphere communities'. Together they form a unique fingerprint.

Cite this