Combination of Langmuir-Hinshelwood-Hougen-Watson and microkinetic approaches for simulation of biogas dry reforming over a platinum-rhodium alumina catalyst

Boonlue Sawatmongkhon, Kampanart Theinnoi, Wongchang, Haoharn, Athanasios Tsolakis

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
1029 Downloads (Pure)

Abstract

Dry reforming of CH4 on a platinum-rhodium alumina catalyst is selected to numerically investigate biogas reforming process. Langmuir-Hinshelwood-Hougen-Watson (LHHW) rate expressions for dry reforming and reverse water-gas shift reactions are presented. Activation energies are estimated by combining microkinetics with the theory of unity bond index-quadratic exponential potential (UBI-QEP). Pre-exponential factors are initially obtained by using the transition state theory (TST) and optimised, later, by minimising errors between modelling and experimental data. Adsorption of CH4 on the catalyst surface is found to be the rate determining step in the range of relatively low temperature (600-770 °C), while at relatively high temperature (770-950 °C) the thermal cracking of adsorbed CH4 is the rate controlling step. Small effect of reverse water-gas shift reaction results in the ratio of H2 to CO produced less than unity for all operating conditions. The simulation shows that the dry reforming process proceeds with reaction rate far from equilibrium state. The presented mechanism is capable of predicting the dependence of biogas dry reforming activities (e.g., reactant conversions, product formations, H2 to CO ratio, and temperature profile inside the catalyst) on operating conditions (e.g., inlet temperature, heat supplied through the catalyst wall, and composition of biogas at inlet). © 2017 Hydrogen Energy Publications LLC.
Original languageEnglish
Pages (from-to)24697-24712
JournalInternational Journal of Hydrogen Energy
Volume42
Issue number39
Early online date1 Sept 2017
DOIs
Publication statusPublished - 28 Sept 2017

Keywords

  • Biogas dry reforming
  • Langmuir-Hinshelwood-Hougen-Watson approach
  • Microkinetics
  • On-board hydrogen production

Fingerprint

Dive into the research topics of 'Combination of Langmuir-Hinshelwood-Hougen-Watson and microkinetic approaches for simulation of biogas dry reforming over a platinum-rhodium alumina catalyst'. Together they form a unique fingerprint.

Cite this