Abstract
Low-cost and large-area chiral metamaterials (CMs) are highly desirable for practical applications in chiral biosensors, nanophotonic chiral emitters, and beyond. A promising fabrication method takes advantage of self-assembled colloidal particles, onto which metal patches with defined orientation are created using glancing angle deposition (GLAD). However, using this method to make uniform and well-defined CMs over macroscopic areas is challenging. Here, we fabricate a uniform large-area colloidal particle array by interface-mediated self-assembly and precisely control the structural handedness of chiral plasmonic shells (CPSs) using GLAD. Strong chiroptical signals arise from twisted currents at the main, corner, and edge of CPSs, allowing a balance between strong chiroptical and high transmittance properties. Our shell-like chiral geometry shows excellent sensor performance in detecting chiral molecules due to the formation of uniform superchiral fields. Systematic investigations optimize the interplay between peak and null point resonances in different CPSs and result in a record consistency chiral sensor parameter U, i.e., 3.77 for null points and 0.0867 for peaks, which are about 54 and 1.257 times larger than the highest value (0.068) of previously reported CMs. The geometrical chirality, surface plasmonic resonance, chiral surface lattice resonance, and chiral sensor performance evidence the chiroptical effect and the excellent chiral sensor performance.
Original language | English |
---|---|
Pages (from-to) | 53183–53192 |
Number of pages | 10 |
Journal | ACS Applied Materials & Interfaces |
Volume | 14 |
Issue number | 47 |
Early online date | 15 Nov 2022 |
DOIs | |
Publication status | Published - 30 Nov 2022 |
Keywords
- chiral metamaterials
- chiroptical effect
- chiral sensor
- chiral field
- microsphere self-assembly
- glancing angle deposition