Centers of centralizers of nilpotent elements in exceptional Lie superalgebras

Leyu Han

Research output: Contribution to journal β€Ί Article β€Ί peer-review

Abstract

Let π–Œ=π–Œ0Μ…βŠ•π–Œ1Μ…Β be a finite-dimensional simple Lie superalgebra of type D(2,1;Ξ±), G(3) or F(4) over C. Let G be the simply connected semisimple algebraic group over β„‚ such that Lie(G)=π–Œ0Μ…. Suppose eβˆˆπ–Œ0Μ…Β is nilpotent. We describe the centralizer π–Œe of e in π–Œ and its centre π–Ÿ(π–Œe) especially. We also determine the labelled Dynkin diagram for e. We prove theorems relating the dimension of (π–Ÿ(π–Œe))Ge and the labelled Dynkin diagram.
Original languageEnglish
Article number2250053
Number of pages31
JournalJournal of Algebra and Its Applications
Volume21
Issue number03
DOIs
Publication statusPublished - 7 Jan 2021

Keywords

  • nilpotent elements
  • labelled Dynkin diagrams
  • Lie superalgebras

ASJC Scopus subject areas

  • Algebra and Number Theory

Fingerprint

Dive into the research topics of 'Centers of centralizers of nilpotent elements in exceptional Lie superalgebras'. Together they form a unique fingerprint.

Cite this