Projects per year
Abstract
Current models of Foxp3+ regulatory T cell (Treg) development involve CCR7-mediated migration of thymocytes into the thymus medulla to enable essential interactions with medullary epithelium. However, increased Foxp3+ thymic Treg numbers in Ccr7−/− mice challenge this view, and the role of CCR7 in Treg development, emigration, and/or recirculation is unknown. Here, we have examined CCR7 and Rag2pGFP levels during Treg development and generated Rag2pGFPCcr7−/− mice to study its impact on the intrathymic Treg pool. We reveal surprising developmental heterogeneity in thymocytes described as Treg precursors, showing that they contain recirculating CCR6+CCR7−Rag2pGFP− T cells. Although CCR7 defines bona fide Rag2GFP+ Treg precursors, it is not required for Treg production and emigration. Rather, we show that lack of CCR7 renders the thymus more receptive to Treg thymus homing. Our study reveals a role for CCR7 in limiting Treg recirculation back to the thymus and enables separation of the mechanisms controlling Treg production and thymic recirculation.
Original language | English |
---|---|
Pages (from-to) | 1041–1048 |
Number of pages | 8 |
Journal | Cell Reports |
Volume | 14 |
Issue number | 5 |
Early online date | 28 Jan 2016 |
DOIs | |
Publication status | Published - 9 Feb 2016 |
Fingerprint
Dive into the research topics of 'CCR7 controls thymus recirculation, but not production and emigration, of Foxp3+ T cells'. Together they form a unique fingerprint.Projects
- 1 Finished
-
MRC Centre For Immune Regulation (Linked to DCDF.RRAK10540) (Linked to 14810 & 14835)
Jenkinson, E.
3/08/09 → 30/09/17
Project: Research Councils