Cation disorder and lithium insertion mechanism of Wadsley–Roth crystallographic shear phases from first principles

Can P. Koçer, Kent J. Griffith, Clare P. Grey, Andrew J. Morris

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)
142 Downloads (Pure)

Abstract

Wadsley–Roth crystallographic shear phases form a family of compounds that have attracted attention due to their excellent performance as lithium-ion battery electrodes. The complex crystallographic structure of these materials poses a challenge for first-principles computational modeling and hinders the understanding of their structural, electronic and dynamic properties. In this article, we study three different niobium–tungsten oxide crystallographic shear phases (Nb12WO33, Nb14W3O44, Nb16W5O55) using an enumeration-based approach and first-principles density-functional theory calculations. We report common principles governing the cation disorder, lithium insertion mechanism, and electronic structure of these materials. Tungsten preferentially occupies tetrahedral and block-central sites within the block-type crystal structures, and the local structure of the materials depends on the cation configuration. The lithium insertion proceeds via a three-step mechanism, associated with an anisotropic evolution of the host lattice. Our calculations reveal an important connection between long-range and local structural changes: in the second step of the mechanism, the removal of local structural distortions leads to the contraction of the lattice along specific crystallographic directions, buffering the volume expansion of the material. Niobium–tungsten oxide shear structures host small amounts of localized electrons during initial lithium insertion due to the confining effect of the blocks, but quickly become metallic upon further lithiation. We argue that the combination of local, long-range, and electronic structural evolution over the course of lithiation is beneficial to the performance of these materials as battery electrodes. The mechanistic principles we establish arise from the compound-independent crystallographic shear structure and are therefore likely to apply to niobium–titanium oxide or pure niobium oxide crystallographic shear phases.
Original languageEnglish
Pages (from-to)15121-15134
Number of pages14
JournalJournal of the American Chemical Society
Volume141
Issue number38
Early online date26 Aug 2019
DOIs
Publication statusPublished - 25 Sep 2019

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Cation disorder and lithium insertion mechanism of Wadsley–Roth crystallographic shear phases from first principles'. Together they form a unique fingerprint.

Cite this