Categorical Proof-theoretic Semantics

David Pym*, Eike Ritter*, Edmund P. Robinson*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Downloads (Pure)

Abstract

In proof-theoretic semantics, model-theoretic validity is replaced by proof- theoretic validity. Validity of formulae is defined inductively from a base giving the validity of atoms using inductive clauses derived from proof-theoretic rules. A key aim is to show completeness of the proof rules without any requirement for formal models. Establishing this for propositional intuitionistic logic (IPL) raises some technical and conceptual issues. We relate Sandqvist’s (complete) base- extension semantics of intuitionistic propositional logic to categorical proof theory in presheaves, reconstructing categorically the soundness and completeness argu- ments, thereby demonstrating the naturality of Sandqvist’s constructions. This naturality includes Sandqvist’s treatment of disjunction that is based on its second-order or elimination-rule presentation. These constructions embody not just validity, but certain forms of objects of justifications. This analysis is taken a step further by showing that from the perspective of validity, Sandqvist’s semantics can also be viewed as the natural disjunction in a category of sheaves.
Original languageEnglish
JournalStudia Logica
Early online date3 May 2024
DOIs
Publication statusE-pub ahead of print - 3 May 2024

Keywords

  • proof theory
  • categorical logic

ASJC Scopus subject areas

  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Categorical Proof-theoretic Semantics'. Together they form a unique fingerprint.

Cite this