TY - JOUR
T1 - Blockade by agmatine of catecholamine release from chromaffin cells is unrelated to imidazoline receptors
AU - Santos, WC
AU - Hernandez-Guijo, JM
AU - Ruiz Nuno, Ana
AU - Olivares, R
AU - Jurkiewicz, A
AU - Gandia, L
AU - Garcia, AG
PY - 2001/4/6
Y1 - 2001/4/6
N2 - The blockade of exocytosis induced by the putative endogenous ligand for imidazoline receptors, agmatine, was studied by using on-line measurement of catecholamine release in bovine adrenal medullary chromaffin cells. Agmatine inhibited the acetylcholine-evoked release of catecholamines in a concentration-dependent manner (IC(50)=366 microM); the K(+)-evoked release of catecholamines was unaffected. Clonidine (100 microM) and moxonidine (100 microM) also inhibited by 75% and 50%, respectively, the acetylcholine-evoked response. In cells voltage-clamped at -80 mV, the intermittent application of acetylcholine pulses elicited whole-cell inward currents (I(ACh)) that were blocked 63% by 1 mM agmatine. The onset of blockade was very fast (tau(on) = 31 ms); the recovery of the current after washout of agmatine also occurred very rapidly (tau(off = 39 ms). Efaroxan (10 microM) did not affect the inhibition of I(ACh) elicited by 1 mM agmatine. I(ACh) was blocked 90% by 100 microM clonidine and 50% by 100 microM moxonidine. The concentration-response curve for acetylcholine to elicit inward currents was shifted to the right in a non-parallel manner by 300 microM agmatine. The blockade of I(ACh) caused by agmatine (100 microM) was similar at various holding potentials, around 50%. When intracellularly applied, agmatine did not block I(ACh). At 1 mM, agmatine blocked I(Na) by 23%, I(Ba) by 14%, I(K(Ca)) by 16%, and I(K(VD)) by 18%. In conclusion, agmatine blocks exocytosis in chromaffin cells by blocking nicotinic acetylcholine receptor currents. In contrast to previous views, these effects seem to be unrelated to imidazoline receptors.
AB - The blockade of exocytosis induced by the putative endogenous ligand for imidazoline receptors, agmatine, was studied by using on-line measurement of catecholamine release in bovine adrenal medullary chromaffin cells. Agmatine inhibited the acetylcholine-evoked release of catecholamines in a concentration-dependent manner (IC(50)=366 microM); the K(+)-evoked release of catecholamines was unaffected. Clonidine (100 microM) and moxonidine (100 microM) also inhibited by 75% and 50%, respectively, the acetylcholine-evoked response. In cells voltage-clamped at -80 mV, the intermittent application of acetylcholine pulses elicited whole-cell inward currents (I(ACh)) that were blocked 63% by 1 mM agmatine. The onset of blockade was very fast (tau(on) = 31 ms); the recovery of the current after washout of agmatine also occurred very rapidly (tau(off = 39 ms). Efaroxan (10 microM) did not affect the inhibition of I(ACh) elicited by 1 mM agmatine. I(ACh) was blocked 90% by 100 microM clonidine and 50% by 100 microM moxonidine. The concentration-response curve for acetylcholine to elicit inward currents was shifted to the right in a non-parallel manner by 300 microM agmatine. The blockade of I(ACh) caused by agmatine (100 microM) was similar at various holding potentials, around 50%. When intracellularly applied, agmatine did not block I(ACh). At 1 mM, agmatine blocked I(Na) by 23%, I(Ba) by 14%, I(K(Ca)) by 16%, and I(K(VD)) by 18%. In conclusion, agmatine blocks exocytosis in chromaffin cells by blocking nicotinic acetylcholine receptor currents. In contrast to previous views, these effects seem to be unrelated to imidazoline receptors.
UR - http://www.scopus.com/inward/record.url?scp=0035815304&partnerID=8YFLogxK
U2 - 10.1016/S0014-2999(01)00897-4
DO - 10.1016/S0014-2999(01)00897-4
M3 - Article
C2 - 11301064
VL - 417
SP - 99
EP - 109
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
IS - 1-2
ER -