Absolute partial decay-branch measurements in 13C

Carl Wheldon, Nicholas Ashwood, Matthew Barr, Neil Curtis, Martin Freer, Tzany Kokalova, Jonathan Malcolm, Victor Ziman, Thomas Faestermann, Hans-Friedrich Wirth, Ralf Hertenberger, Rudi Lutter

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
243 Downloads (Pure)

Abstract

The <SUP>9</SUP>Be(<SUP>6</SUP>Li, <I>d</I>)<SUP>13</SUP>C* reaction
at a beam energy of 42 MeV has been investigated using a large-acceptance
silicon-strip detector array and the high-resolution Q3D magnetic spectrograph.
The Q3D facilitated the unambiguous determination of the reaction channel via
identification of the deuteron ejectile, thereby providing the spectrum
of excited states in <SUP>13</SUP>C in the range from 10.7 to 15.0 MeV.
The silicon array was used to detect and identify the <SUP>13</SUP>C
recoil-breakup products with efficiencies of up to 49%. The results obtained
for the absolute partial branching ratios represent the first complete
measurements for states in this energy region and allow the extraction of
reduced widths. The quantities measured for
&Gamma;<SUB>n0</SUB>/&Gamma;<SUB>tot</SUB> and
&Gamma;<SUB>n1</SUB>/&Gamma;<SUB>tot</SUB> are
0.91&plusmn;0.11 and &leq;0.13 (10.753 MeV),
0.51&plusmn;0.04 and 0.51&plusmn;0.04 (10.818 MeV),
0.68&plusmn;0.03 and 0.42&plusmn;0.02 (10.996 MeV),
0.49&plusmn;0.08 and 0.71&plusmn;0.11 (11.848 MeV), and
0.49&plusmn;0.08 and 0.53&plusmn;0.08 (12.130 MeV), respectively.
For the two observed higher-lying energy levels,
&Gamma;<SUB>&alpha;0</SUB>/&Gamma;<SUB>tot</SUB> and
&Gamma;<SUB>n1</SUB>/&Gamma;<SUB>tot</SUB> have been measured
as 0.54&plusmn;0.02 and 0.45&plusmn;0.02 (13.760 MeV) and
0.94&plusmn;0.03 and 0.13&plusmn;0.02 (14.582 MeV), respectively.
The consequences for the proposed molecular structures in <SUP>13</SUP>C
are explored following the extraction of reduced widths.
Original languageEnglish
Article number044328
Pages (from-to)1-8
Number of pages8
JournalPhysical Review C
Volume86
DOIs
Publication statusPublished - 2012

Fingerprint

Dive into the research topics of 'Absolute partial decay-branch measurements in 13C'. Together they form a unique fingerprint.

Cite this