A novel semi‐resolved CFD‐DEM method with two‐grid mapping: Methodology and verification

Hanqiao Che, Kit Windows‐yule, Catherine O'sullivan, Jonathan Seville

Research output: Contribution to journalArticlepeer-review

47 Downloads (Pure)

Abstract

The semi-resolved Computational Fluid Dynamics coupled with the Discrete Element Method (CFD-DEM) method has emerged as approach to modeling particle-fluid interactions in granular materials with high particle size ratios. However, challenges arise from conflicting requirements regarding the CFD grid size, which must adequately resolve fluid flow in the pore space while maintaining a physically meaningful porosity field. This study addresses these challenges by introducing a two-grid mapping approach. Initially, the porosity field associated with fine particles is estimated using a coarse CFD grid, which is then mapped to a dynamically refined grid. To ensure conservation of total solid volume, a volume compensation procedure is implemented. The proposed method has been rigorously verified using benchmark cases, showing its high computational efficiency and accurate handling of complex porosity calculations near the surface of coarse particles. Moreover, the previously unreported impact of the empirical drag correlation on fluid-particle force calculations for both coarse and fine particles has been revealed.
Original languageEnglish
Article numbere18321
Number of pages17
JournalAIChE Journal
DOIs
Publication statusPublished - 3 Dec 2023

Keywords

  • bimodal particles
  • CFD-DEM
  • semi-resolved
  • two-grid method

Fingerprint

Dive into the research topics of 'A novel semi‐resolved CFD‐DEM method with two‐grid mapping: Methodology and verification'. Together they form a unique fingerprint.

Cite this