Projects per year
Abstract
The r-color size-Ramsey number of a k-uniform hypergraph H, denoted by R^r(H), is the minimum number of edges in a k-uniform hypergraph G such that for every r-coloring of the edges of G there exists a monochromatic copy of H. In the case of 2-uniform paths Pn, it is known that Ω(r2n)=R^r(Pn)=O((r2logr)n) with the best bounds essentially due to Krivelevich. In a recent breakthrough result, Letzter, Pokrovskiy, and Yepremyan gave a linear upper bound on the r-color size-Ramsey number of the k-uniform tight path P(k)n; i.e. R^r(P(k)n)=Or,k(n). Winter gave the first non-trivial lower bounds on the 2-color size-Ramsey number of P(k)n for k≥3; i.e. R^2(P(3)n)≥8/3n−O(1) and R^2(P(k)n)≥⌈log2(k+1)⌉n−Ok(1) for k≥4.
We consider the problem of giving a lower bound on the r-color size-Ramsey number of P(k)n (for fixed k and growing r). Our main result is that R^r(P(k)n)=Ωk(rkn) which generalizes the best known lower bound for graphs mentioned above. One of the key elements of our proof is a determination of the correct order of magnitude of the r-color size-Ramsey number of every sufficiently short tight path; i.e. R^r(P(k)k+m) = Θk(rm) for all 1≤m≤k.
All of our results generalize to ℓ-overlapping k-uniform paths P(k,ℓ)n. In particular we note that when 1≤ℓ≤k/2, we have Ωk(r2n)=R^r(P(k,ℓ)n)=O((r2logr)n) which essentially matches the best known bounds for graphs mentioned above. Additionally, in the case k=3, ℓ=2, and r=2, we give a more precise estimate which implies R^2(P(3)n)≥28/9n−O(1), improving on the above-mentioned lower bound of Winter in the case k=3.
We consider the problem of giving a lower bound on the r-color size-Ramsey number of P(k)n (for fixed k and growing r). Our main result is that R^r(P(k)n)=Ωk(rkn) which generalizes the best known lower bound for graphs mentioned above. One of the key elements of our proof is a determination of the correct order of magnitude of the r-color size-Ramsey number of every sufficiently short tight path; i.e. R^r(P(k)k+m) = Θk(rm) for all 1≤m≤k.
All of our results generalize to ℓ-overlapping k-uniform paths P(k,ℓ)n. In particular we note that when 1≤ℓ≤k/2, we have Ωk(r2n)=R^r(P(k,ℓ)n)=O((r2logr)n) which essentially matches the best known bounds for graphs mentioned above. Additionally, in the case k=3, ℓ=2, and r=2, we give a more precise estimate which implies R^2(P(3)n)≥28/9n−O(1), improving on the above-mentioned lower bound of Winter in the case k=3.
Original language | English |
---|---|
Article number | 103969 |
Number of pages | 14 |
Journal | European Journal of Combinatorics |
Volume | 120 |
Early online date | 12 Apr 2024 |
DOIs | |
Publication status | Published - Aug 2024 |
Bibliographical note
Funding:1. Research supported in part by U.S. National Science Foundation grant DMS-1954170.
2. The research leading to these results was supported by EPSRC, United Kingdom, grant no. EP/V002279/1 and EP/V048287/1. There are no additional data beyond that contained within the main manuscript.
Fingerprint
Dive into the research topics of 'A lower bound on the multicolor size-Ramsey numbers of paths in hypergraphs'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Ramsey theory: an extremal perspective
Treglown, A. (Co-Investigator) & Lo, A. (Principal Investigator)
Engineering & Physical Science Research Council
1/01/22 → 31/12/24
Project: Research Councils
-
Matchings and tilings in graphs
Lo, A. (Co-Investigator) & Treglown, A. (Principal Investigator)
Engineering & Physical Science Research Council
1/03/21 → 29/02/24
Project: Research Councils