A decomposition-based multiobjective evolutionary algorithm with weights updated adaptively

Yuan Liu, Yikun Hu, Ningbo Zhu, Kenli Li, Juan Zou, Miqing Li

Research output: Contribution to journalArticlepeer-review

64 Downloads (Pure)


Recently, decomposition-based multiobjective evolutionary algorithms (DMEAs) have become more prevalent than other patterns (e.g., Pareto-based algorithms and indicator-based algorithms) for solving multiobjective optimization problems (MOPs). They utilize a scalarizing method to decompose an MOP into several subproblems based on the weights provided, resulting in the performances of the algorithms being highly dependent on the uniformity between the problem’s optimal Pareto front and the distribution of the specified weights. However, weight generation is generally based on a simplex lattice design, which is suitable for “regular” Pareto fronts (i.e., simplex-like fronts) but not for other “irregular” Pareto fronts. To improve the efficiency of this type of algorithm, we develop a DMEA with weights updated adaptively (named DMEA-WUA) for the problems regarding various Pareto fronts. Specifically,the DMEA-WUA introduces a novel exploration versus exploitation model for environmental selection.The exploration process finds appropriate weights for a given problem in four steps: weight generation, weight deletion, weight addition and weight replacement. Exploitation means using these weights from the exploration step to guide the evolution of the population. Moreover, exploration is carried out when the exploitation process is stagnant; this is different from the existing method of periodically updating weights. Experimental results show that our algorithm is suitable for solving problems with various Pareto fronts, including those with “regular” and “irregular” shapes.
Original languageEnglish
Pages (from-to)343-377
Number of pages35
JournalInformation Sciences
Early online date6 Apr 2021
Publication statusPublished - Sept 2021

Bibliographical note

Funding Information:
This work was supported in part by the National Outstanding Youth Science Program of the National Natural Science Foundation of China under Grant 61625202; the International (Regional) Cooperation and Exchange Program of the National Natural Science Foundation of China under Grant 61860206011; the Program of the National Natural Science Foundation of China under Grants 61876061 and 61876164; and the Postgraduate Scientific Research Innovation Project of Hunan under Grant CX20190309.

Publisher Copyright:
© 2021 Elsevier Inc.


  • Exploitation
  • Exploration
  • Multiobjective optimization problems
  • The decomposition-based multiobjective evolutionary algorithm
  • Weights updated adaptively

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Theoretical Computer Science
  • Computer Science Applications
  • Information Systems and Management
  • Artificial Intelligence


Dive into the research topics of 'A decomposition-based multiobjective evolutionary algorithm with weights updated adaptively'. Together they form a unique fingerprint.

Cite this