A comparative study of hydroxide adsorption on the (111), (110), and (100) faces of silver with cyclic voltammetry, ex situ electron diffraction, and in situ second harmonic generation

S.L. Horswell, A.L.N. Pinheiro, E.R. Savinova, M. Danckwerts, B. Pettinger, M.-S. Zei, G. Ertl

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)

Abstract

Hydroxide adsorption on the (111), (110), and (100) faces of silver electrodes from mixed NaOH/NaF solution is studied using cyclic voltammetry and in situ second harmonic generation (SHG). Cyclic voltammograms for the three low index silver planes in alkaline electrolytes are for the first time compared. They show two pairs of anodic and cathodic peaks in the potential interval below the equilibrium Ag/AgO potential. These are attributed to the specific adsorption of hydroxide ions followed by submonolayer oxide formation. The differences in the cyclic voltammograms for the (111), (110), and (100) planes are attributed to different (i) work functions, (ii) surface atomic densities, and (iii) corrugation potentials for these surfaces. Ex situ low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED) show that disordered adlayers are formed on Ag(111) and Ag(100), in contrast to Ag(110), where ordered structures are produced in the region of the first pair of current peaks. In the region of the second pair of peaks, LEED indicates disordered oxide phases on each crystal plane and RHEED shows the presence of small islands of c(2 × 2) structure at some potentials on (110) and (100). SHG measurements were performed (i) in the potential scan mode at constant rotational angle and (ii) at constant potential as a function of the rotational angle. The isotropic (for the (111), (110), and (100) planes) and anisotropic (for the (110) and (111) planes) contributions to the SHG intensity were calculated by fitting the experimental data and are discussed in terms of their dependence on the charge density at the interface, on hydroxide adsorption, and on submonolayer oxide formation.
Original languageEnglish
Pages (from-to)10970-10981
Number of pages12
JournalLangmuir
Volume20
Issue number25
DOIs
Publication statusPublished - 7 Dec 2004

Bibliographical note

MEDLINE® is the source for the MeSH terms of this document.

Fingerprint

Dive into the research topics of 'A comparative study of hydroxide adsorption on the (111), (110), and (100) faces of silver with cyclic voltammetry, ex situ electron diffraction, and in situ second harmonic generation'. Together they form a unique fingerprint.

Cite this