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smart therapeutics, optical detection sys-
tems, and many others. Design of safe 
engineered nanomaterials (ENMs) is 
perhaps the most important challenge 
in the field,[1] because due to their small 
size, ENMs may result in the modula-
tion of pathways and mechanisms of toxic 
action that may endanger human health 
and the environment. Nanoinformatics 
approaches have gained popularity over 
the last few years as novel tools to address 
several challenges in nanotechnology[2] 
including design of safer ENMs, based 
on computational and data analysis meth-
odologies, with the goal of reducing to 
the greatest possible extent the need for 
traditional hazard and risk assessment 
methodologies that are based on animal 
testing.[3] Machine learning has been 
used extensively in nanoinformatics to 
develop predictive models for toxicity- and 
ecotoxicity-related endpoints, employing 
various approaches such as read-across 
methods,[4–6] nano-quantitative structure–
activity relationships (nanoQSAR[7–10]), 

QSAR-perturbation models,[11–13] and workflows predicting 
molecular initiating events and key events in adverse outcome 
pathways (AOPs).[14] Among the different types of descriptors 
used in predictive modeling approaches, image descriptors 
resulting from the analysis of electronic images of ENMs have 
been employed successfully.[15,16]

This study presents the results of applying deep learning methodologies 
within the ecotoxicology field, with the objective of training predictive models 
that can support hazard assessment and eventually the design of safer 
engineered nanomaterials (ENMs). A workflow applying two different deep 
learning architectures on microscopic images of Daphnia magna is proposed 
that can automatically detect possible malformations, such as effects on the 
length of the tail, and the overall size, and uncommon lipid concentrations 
and lipid deposit shapes, which are due to direct or parental exposure to 
ENMs. Next, classification models assign specific objects (heart, abdomen/
claw) to classes that depend on lipid densities and compare the results with 
controls. The models are statistically validated in terms of their prediction 
accuracy on external D. magna images and illustrate that deep learning 
technologies can be useful in the nanoinformatics field, because they can 
automate time-consuming manual procedures, accelerate the investigation 
of adverse effects of ENMs, and facilitate the process of designing safer 
nanostructures. It may even be possible in the future to predict impacts on 
subsequent generations from images of parental exposure, reducing the time 
and cost involved in long-term reproductive toxicity assays over multiple 
generations.

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim. This is an open access article under the terms of the Creative 
Commons Attribution License, which permits use, distribution and repro-
duction in any medium, provided the original work is properly cited.
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1. Introduction

Nanotechnology has emerged at the forefront of science and 
technology due to its enormous potential to produce revolu-
tionary advances in material science and in several fields of 
application, including microelectronics, energy storage units, 
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One of the most promising new areas in artificial intelligence 
(AI) and machine learning for building predictive models are 
the so-called deep learning technologies,[17] which are extensions 
of the traditional neural networks architectures, using more 
hidden layers and a larger variety of activation functions,[18] 
that is, functions that map the input to the output response 
of each neuron. Convolutional neural networks (CNNs) have 
shown state-of-the-art performance for image classification, 
segmentation, and object detection and tracking.[19] Extremely 
accurate deep learning models have been created in many disci-
plines using only electronic images as input information. Huge 
effort is especially focused on medical (e.g., histopathology)[20,21] 
and microscopy images[22] as well as on the detection of 
common objects or humans by identifying, for example, pedes-
trians, vehicles, or faces[23] and more recently on the detection 
and count of whales from satellite or aerial images to guide con-
servation actions.[24] Applications of deep learning methodolo-
gies in nanoinformatics are very rare. Güven and Oktay applied 
CNN to distinguish Fe3O4 ENMs from background[25] and in a 
follow-up study, Oktay and Gurses[26] applied multiple output 
CNNs (MO-CNN) to detect the locations of Fe3O4 ENMs in elec-
tronic images, to provide their boundaries, and to define their 
size and shape based on the segmentation output.

Our work builds upon one of the most extensive ecotoxi-
cological datasets available, using state-of-the art AI meth-
odologies to address the problem of identifying the effects of 
exposure to coated or uncoated TiO2, Ag, or AgS ENMs under 
different experimental conditions on Daphnia magna, based 
solely on electronic images. The ENMs had different surface 
coatings, and were dispersed in artificial Daphnia medium or 
representative test waters and exposed to Daphnia immedi-
ately or following 6 months of aging in the various waters. The 
aim was to develop a complete and fully automated workflow, 
which needs only an electronic image of the Daphnia as input 
and predicts if the daphnids are damaged or not, the severity of 
damage and the types of malformations present. The workflow 
was built upon various object detection and classification deep 
learning technologies, which were compared in terms of accu-
racy, robustness, flexibility, and computational costs.

The object detection part of the workflow aimed at detecting, 
isolating, and classifying regions of daphnids where specific 
malformations occur, such as the eye and the tail. We applied 
the single shot multibox detector (SSD) MobileNet neural net-
work,[27] which is a flexible, light, and quick architecture that 
can run on any device efficiently and also the heavier, but 
more robust region with CNNs (R-CNN).[28] SSD takes one 
shot for detecting multiple objects within an image compared 
to R-CNN, which requires two shots for detecting the object—
one for generating region proposals, and one for detecting the 
object of each proposal. Different deep learning architectures, 
namely ImageNet[29] and residual networks,[30] were employed 
for classifying cropped images into categories defining the type 
and the severity of malformations. The results illustrate that the 
deep learning models can identify with accuracy the regions on 
the Daphnia that could be affected after exposure to ENMs.

The proposed workflow can be used to screen multiple 
images and provide accurate predictions in very short computa-
tional times. Contrary to alternative image analysis approaches, 
deep learning methods do not require the user to pre-define 

and compute image descriptors. Descriptors are automatically 
detected throughout the training procedure. Training algo-
rithms can process big sets of images (in the order of thou-
sands) in relatively short computational times. On the other 
hand, the availability of big datasets is a prerequisite for devel-
oping successful and accurate deep learning models and the 
algorithms must be executed in high performance computing 
environments, employing graphics processing units (GPU).

The four deep learning models presented here are available 
through a Docker container. The complete workflow has been 
implemented as a user-friendly web application that allows easy 
and fast predictions. The application is available through the 
NanoSolveIT cloud platform, developed in the context of the 
H2020 project NanoSolveIT.[31]

2. Methods and Strategies

D. magna are a freshwater zooplankton found in lakes and 
ponds throughout the world, in Europe, Africa, Asia, and 
America. Daphnia, a keystone species used in regulatory 
testing, is widely used in ecotoxicological studies mainly due 
to its tractability under laboratory conditions, short generation 
time, small body size, and parthenogenetic life cycle, as well as 
its transparent body that allows for light microscopy imaging.

An ecotoxicological study based on the Daphnia reproductive 
test was initiated to derive useful information on the effect of 
various ENMs on the daphnids in different experimental con-
ditions. A set of more than 4000 light microscopy images of 
Daphnia exposed to pristine and 2 year old ENMs in different 
media and at different time points over multiple generations 
was produced, collected, and organized to deliver a unique 
dataset for further in silico exploitation. Following the exposure 
of the parental generations (F0), the offspring from the third 
brood were split into two groups, one group that was continu-
ously exposed to the same ENM for the subsequent generations 
(Fexp) while the other group was exposed only to the relevant 
test water over the subsequent generations to assess the poten-
tial for recovery from parental exposure (Frec).

The dataset included Daphnia images from four generations, 
namely F0, F1, F2, and F3. Different media were also included 
in the study: high hardness (HH) combo medium and class V 
river water, respectively. The HH combo medium represents an 
average hard water standard without any natural organic matter 
(NOM) and is commonly used for the culturing of Daphnia 
while class V water is an artificial representative river water 
medium that has high alkalinity and high NOM concentrations 
(4.6 mg L−1) and is representative of typical of waters found in 
the southern UK, Poland, Greece, France, the Balearic coun-
tries, and the Iberian Peninsula.[32] Figure  1 shows schemati-
cally the data included in the study.

The Daphnia images were taken at different time points 
starting from day 3 post-exposure to the ENMs to day 24 with  
3 days of interval. This resulted in images for eight different 
time points during the daphnid life cycle (growth and reproduc-
tion phases) and up to five images were taken for the same time 
point. Moreover, different ENM concentrations were used −5, 
10, 20, 100, or 5000 µg L−1. The details of the different studies 
are summarized in Table 1.

Small 2020, 2001080
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The ENMs used included three silver ENMs (uncoated 
Ag, Ag coated with PVP, and AgS) and two titanium dioxides 
(uncoated TiO2, and TiO2 coated with PVP), with polymeric 
PVP and micron-sized Ag used as coating-only and bulk (size) 
controls, respectively. All samples in each study were compared 
to the unexposed control. All ENMs were used in all three 
studies, while the polymer (PVP) and micron-sized bulk Ag 
controls were used only in studies 1 and 3.

More information regarding the life trait responses of the 
Daphnia to ENM exposure was collected from each experiment, 
including the total number of Daphnia in the first, second, 
third, and fourth broods; the time (in days) till the first, second, 
third, and fourth broods; and the average number of offspring 
per adult in each of the broods.

Data on the Daphnia images and the different physical mal-
formations occurring in each of these images were organized 
in a format suitable for modeling (i.e., in an excel sheet with 
1 row per treatment condition and time point) in an effort to 
in silico explore the available dataset and extract the maximum 
possible information from the available images. Changes in 

daphnid size relative to the control act as an indicator of tox-
icity, due to changes in feeding; when under stress daphnids 
may divert energy to antioxidant production to overcome oxida-
tive stress and thus may not have enough energy to shed their 
carapace,[33] which is an essential step in growth (sheds every 
3 days or so normally). Additionally, maternal feeding has been 
documented to affect offspring growth and reproduction.[34] 
Exposure to environmental toxicants has been linked with the 
activity of lipid allocation resulting in transcriptional and meta-
bolic changes and enhanced lipid deposition.[35]

Small 2020, 2001080

Figure 1.  Data included in the different studies. In each case, the generation was formed from the third brood of the previous generation. In each study, 
the parent generation was exposed to ENMs and the F1 generation was split within 24 h of birth, with half continuing to be exposed to the ENM while 
the other half was further cultured in ENM-free medium to allow assessment of the potential for recovery from the parental exposure.

Table 1.  Summarized details for each study.

Studies Study details

Study 1 Pristine ENM, HH combo, four generations—all exposed

Study 2 Aged ENM, HH combo, four generations—only the first (F0) generation 
exposed

Study 3 Pristine ENM, class V, four generations—all exposed

Study 4 Aged ENM, class V, four generations—only the first (F0) generation 
exposed

Figure 2.  An example of a Daphnia image, where all parts of interest, that 
is, areas where malformations or changes as a result of ENM exposure 
can occur, are indicated.
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An expert’s opinion was first used to assess the type and 
severity of malformations captured by the light microscopy 
images. Malformations were observed to occur in the following 
regions of the daphnids: the eye (shape, presence/absence), the 
tail (length, presence/absence), the heart, the claw, and abdomen 
as well as changes in the overall daphnid shape and size (from 
head to tail) (Figure 2). Qualitative as well as quantitative assess-
ment of the malformations that appeared in the images was pro-
posed by expert evaluation (by the experimentalist who acquired 
the images), based on the comparison of images of Daphnia 
exposed to ENMs and control Daphnia (not exposed to ENMs), 
where the rest of the conditions (medium, time point, and gener-
ation) were exactly the same. For the eye, shape, heart, abdomen, 
and claws, the judgment on whether a daphnid was malformed 
or not was solely based on human expertise. The decision on the 
heart, abdomen, and claws was taken by visually comparing the 
number of lipids and grouping the images into four categories 
based on the malformation severity as determined by the expert, 
namely 1, if no lipids were detected; 2, if ENM-exposed Daphnia 

had less lipids compared to the unexposed control Daphnia; and 
3 or 4, if ENM-exposed Daphnia had more lipids compared to 
the unexposed controls. For the eye and the overall size a visual 
inspection of the image classified the daphnid as normal or mal-
formed. The length of the tail and the overall size were meas-
ured using ImageJ and compared with the averages over all 
the control Daphnia of the same category (i.e., same medium, 
time point, and generation). A relative difference greater than 
10% indicated that the daphnid was malformed, otherwise the 
daphnid was normal. The types of malformations and the classes 
used by the expert are summarized in Table 2.

2.1. Workflow

The total dataset consists of 4323 images of Daphnia, of 
which 1219 images refer to controls or Daphnia that were 
not affected by the presence of ENMs, whereas 3104 images 
included Daphnia that have been affected due to the presence 
of ENMs. The Daphnia appearing in the images are not nec-
essarily located at the center of the image and most of them 
have some background noise from salts or organic matter in 
the medium, as well as the ENM in some cases. Also the angle 
of the organism varies from image to image. That produces 
a relatively high-dimensional feature space and formulates a 
challenging object detection/image classification problem. To 
address this challenge, we designed a workflow that employs 
several deep learning architectures and methods and consists 
of several steps as shown in Figure 3.

The workflow starts with the development of an object 
detection deep learning model for drawing bounding boxes, 
isolating the objects of interest, and assigning the correct label 
to them. The objects of interest are the following: head, eye, 
heart, abdomen/claw, tail, tail-tip, and tail-base. We considered 

Small 2020, 2001080

Table 2.  Types and classes of Daphnia malformations.

Area/region examined Classification

Eye, shape 0 (normal)
1 (malformation)

Tail, overall size 0 (normal, if absolute value of (average control-measured 
value)/average control ≤10%)

1 (malformation, if absolute value of (average control-
measured value)/average control >10%)

Abdomen, heart, claw 0 (normal)
1 (no lipids)

2 (less lipids than control)
3 (more lipids than control)
4 (more lipids than class 3)

Figure 3.  A graphical representation of the workflow used in the analysis. Emphasis was placed on extracting the maximum possible information from 
the image, by automating the malformation assessment and the decision-making procedure of the human expert. The workflow starts with detecting 
seven regions of interest in the image and continues with computing the overall size and the tail length. Cropped images of the abdomen/claw and 
heart regions are used as input to specially trained deep learning models to classify them with respect to lipid concentrations. The results are compared 
to control images to determine the types and levels of malformation.
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the abdomen and the claw of the Daphnia as one object, since 
they are next to each other in the Daphnia body. For training 
this model, a dataset was constructed first, containing 518 ran-
domly selected Daphnia images, the seven regions of interest for 
each image, and the respective annotations, using the standard 
PASCAL Visual Object Class (VOC) format. Pascal VOC 
format[36] is a standard format in the object detection domain that 
uses the extensible markup language (XML) for representing the 
information and has been adopted by many open source deep 
learning software packages, including the TensorFlow Object 
Detection API that was employed in this work. Each one of 
the images was manually segmented with respect to the seven 
object classes specified, and shown schematically in Figure  4, 
which presents an example of a Daphnia image with the anno-
tated bounding boxes and their centers. The respective PASCAL 
VOC XML file contains the coordinates of the bounding boxes 
corresponding to the seven regions of interest and the respec-
tive annotations (the part of the body corresponding to each 
bounding box). Figure S1, Supporting Information, presents 
an example of a Daphnia image and parts of the PASCAL VOC 
XML corresponding to each region of interest.

Besides the boundaries that define each box, its center gives 
additional valuable information, because the distance between 
two boxes can be estimated by measuring the number of pixels 
from the center of one box to another and dividing by the appro-
priate distance scale. In particular, the distance between the tail 
tip and the tail base provides an estimation of the length of the 
tail, and the distance between the eye and the tail tip estimates 
the overall size of the specific daphnid. These measurements can 
be directly compared with the respective values of the healthy 
control Daphnia. Large discrepancies give indications that the 
daphnids are malformed due to their exposure to ENMs.

In all the object detection training runs, transfer learning[37] 
was employed. Training a completely new deep neural network 
requires huge amounts of data and a lot of computational power. 
Transfer learning is a technique that allows researchers to train 
neural networks with relatively smaller datasets and affordable 
computational power. To this end, an existing deep neural net-
work model was employed that has been pre-trained on the big 
MS COCO dataset[38] that contains more than 300  K images 
and 2.5 million labeled instances of 91 object types. Only the 

last fully connected layer of the network was trained with the 
available data, while the first convolutional layers maintained 
the pretrained weights, which hold more primitive informa-
tion regarding shapes. For each detected object, the produced 
model returns an array of four numbers that define completely 
a bounding rectangle that surrounds its position. The top value 
represents the distance of the rectangle’s top edge from the top 
of the image, in pixels. The left value represents the left edge’s 
distance from the left of the input image. The other values rep-
resent the bottom and right edges in a similar manner.

The object detection model outputs were used to train deep 
neural network models for predicting damage in each region 
of interest. The data on eye malformations were extremely 
unbalanced in favor of the normal versus the damaged class, so 
it was not possible to develop a model for prediction of eye mal-
formation. Similarly, there are various and very different shape 
malformations such as misshaped back, larger body outline, 
misshaped front, and no tail, with very few images belonging to 
each subclass, and not enough for training a deep learning clas-
sification problem. Considering that in most of the images, the 
severity of damage provided by the expert for the abdomen and 
the claw were similar, we decided to consider these two regions 
as one class. Therefore, our approach is to detect following four 
possible malformations of the Daphnia:

i.	 Length of the tail
ii.	 Overall size of the daphnid
iii.	Malformation in abdomen or claw
iv.	 Malformation in heart

The object detection deep learning model gives enough infor-
mation to measure the length of the tail and the overall size and 
to compare them with the tail and size of the unexposed con-
trol daphnids. For the two last malformations, additional deep 
learning classification models had to be developed. New training 
sets were created by cropping the parts of the images that enclose 
the abdomen/claw and heart regions, as shown in Figure 4, and 
having a human expert assigning each image to a class.

The following five classes were defined based on the density 
of lipids in the cropped abdomen/claw images (examples are 
shown in Figure 5):

Class 0: no lipids are observed
Class 1: some lipids are observed near the intestine only
Class 2: lipids are formed in the whole abdomen area
Class 3: high concentration of lipids in the abdomen/claw area
Class 4: very high concentration of lipids in the abdomen/claw area

The following three classes were defined based on the den-
sity and location of lipids in the cropped heart images (exam-
ples are shown in Figure 6):

Class 0: no lipids are observed
Class 1: lipids are formed and observed near the food string
Class 2: lipids are formed and observed below and beyond the 

food string

The cropped images showing the abdomen/claw or the heart 
were split 90:10 into the training and test sets. To ensure a  
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Figure 4.  Daphnia and the annotated bounding boxes for the different 
features of interest used for classification of malformations in response to 
ENM exposure (head: purple box, eye: pink box, heart: red box, abdomen/
claw: brown box, tail: blue box, tail-tip: green box, tail-base: yellow box).
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well-balanced representation of all classes in the training and 
test sets, 10% of the images from each class were selected 
randomly to populate the test sets and the remaining images 
constituted the training sets for the two classification problems. 
The residual networks and ImageNet spooling deep learning 
architectures were applied for training the classification 
models, which were validated on the test set of images.

3. Results and Discussion

The results from the deep learning models that were trained for 
the implementation of the workflow presented in the previous 
section, and the development of a completely automated tool, 
which is able to perform the object recognition and the malfor-
mation assessment procedure, are presented. All models were 
trained on a PC with an Intel Core i3 processor, 16 GB of RAM, 
and an NVIDIA GeForce GTX 1070 GPU running on the GPU 
using the TensorFlow open source library for training deep 
learning machine learning models. Besides offering a large 
variety of deep learning architecture, TensorFlow has a number 
of additional advantages, for example, models can be contain-
erized and run on GPUs or CPUs from a container equipped 
with TensorFlow serving.

3.1. Object Detection Deep Learning Model

For the object recognition problem, two deep learning archi-
tectures were employed, namely the single shot detector (SSD) 
mobile net v1[27] and Fast R-CNN.[39] The metric used for 
measuring the performance of the two algorithms was the total 
loss of each network, which is explained in more detail in the 

Experimental Section. Figures S2 and S3, Supporting Informa-
tion, present the total loss of the two deep learning architectures 
as a function of training iterations. The model developed with 
the SSD architecture converged very quickly to a minimal loss 
function value (Figure S2, Supporting Information). In contrast, 
the Fast R-CNN diverged to very high values and was not able 
to recover after 8000 iterations (Figure S3, Supporting Informa-
tion). Clearly, the SSD model, whose architecture is shown in 
Figure 7, was selected for object detection. The results are sum-
marized in Table 3, which shows the number of images for which 
each region of interest was successfully detected. Figure S4,  
Supporting Information, presents examples of successfully 
annotated Daphnia images, using the developed workflow.

3.2. Measuring the Overall Size of the Daphnia and  
the Length of the Tail

The size of an individual daphnid and the length of the tail are 
two critical points in the characterization of a daphnid as being 
damaged or not compared to the control measurements. The 
object detection model presented in the previous subsection 
provides all the information that allows automatic calculation 
of these critical parameters. More specifically, the overall size 
of a daphnid is calculated by counting the number of pixels 
between the centers of the eye and the tail tip bounding boxes 
and dividing by the appropriate scaling factor, as shown in 
Figure 8. In a similar manner, the length of the tail is computed 
by counting the number of pixels between the tail tip and the tail 
base. Table 4 summarizes the results regarding the number of 
images for which the overall size and the tail length were auto-
matically calculated successfully. Inability to calculate these char-
acteristics was due to incorrect detection of objects, especially 
the tail-tip that is used in both tail length and overall size calcu-
lations (see Table 4), the appearance of more than one daphnid 
in a single image, the presence of background error, which 
sometimes is detected as an eye, or the absence of the scale line.

The accuracies of the automatic overall size and the tail 
length calculations are presented graphically as percentage 
error plots in Figures  9 and  10, respectively. The prediction 
errors were computed by comparing the modeling outcomes 
with the measurements of the human expert. The results show 
that both parameters can be predicted successfully, but better 
accuracy is obtained for the overall length estimation. This is 
due to the fact that tail length measurements are more sensi-
tive to the location of the centers of the tail-tip and tail-base 

Small 2020, 2001080

Figure 5.  Examples of the five classes of lipids concentration in the abdomen/claw.

Figure 6.  Examples of the three classes of lipids concentration in the 
heart.
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bounding boxes as shown in Figures S5 and S6, Supporting 
Information. QQ plots of the overall size and tail length 
percentage errors are provided in Figures 11 and 12 and illus-
trate that both of them follow normal distributions.

3.3. Classification of the Daphnia Abdomen/Claw or Heart in 
Terms of Lipids Concentration

The final step in the image analysis workflow is the develop-
ment of deep learning models for the automatic classification 
of cropped Daphnia abdomen/claw or heart images according 
to the classes defined in the previous section, based on lipids 
presence and concentration. The models are developed using 
the same deep learning methods and only the models predicting 
malformation in abdomen/claw are presented in detail. The 
dataset consisted of 3780 cropped abdomen/claw images, after 
excluding 122 blurry images from the 3902 images, where the 
abdomen/claw region was detected correctly. The dataset was 
split into training and test sets containing 90% and 10% of the 
images, respectively, as explained in Section 2. Deep learning 
models were trained using the residual CNN algorithm and the 
ImageNet deep learning method and they were validated on the 
test set in terms of predicting the class related to lipid concen-
tration, assigned by the human experts. The metric used for 
training the deep learning model was the overall accuracy, that 
is, the percentage of correct classifications. The two architectures 
had comparable results, with residual CNNs presenting a slightly 
better prediction accuracy (Figure S7, Supporting Information), 
while ImageNet CNN was faster in convergence but was over-
fitted in earlier iterations (Figure S8, Supporting Information).

The residual CNN was selected for further analysis 
because of the slightly better performance. The residual CNN 

architecture is presented in Figure 13. Figures S9 and S10, Sup-
porting Information, compare the accuracy in the training and 
the test sets as a function of iterations in the first 12 000 itera-
tions. The accuracy in the training set is constantly increasing, 
but in the test set, it reaches a plateau and after a number of 
iterations, it starts declining, meaning that the model develop-
ment procedure is performing overtraining rather than contin-
uing the learning procedure from the actual data.

The deep learning model produced at iteration 12 000 using 
residual CNN was selected as the final model for the five-
class classification problem. The model was validated using a 
number of metrics: the confusion matrix, the overall accuracy, 
the Mathews correlation coefficient, the sensitivity, and speci-
ficity. The two last metrics are standard metrics for binary clas-
sification problems, but can be extended to multi-categorical 
classification problems, by using the one against all approach, 
where the sensitivity and specificity are computed for each class 
separately. For example, for class 0, true positives (TP) are all 
class 0 images classified as class 0, false negatives (FN) are all 
class 0 images not classified as class 0, true negatives (TN) are 
all non-class 0 images not classified as class 0, and false posi-
tives (FP) are all non-class 0 images classified as class 0. The 
statistical results on the test set are presented in Table 5.

The validation metrics in Table  5 indicate that the predictive 
performance of the model is not highly satisfactory. It should be 
noted, however, that the classification problem is an “ordinal” 
problem, wherein the classes are inherently ordered in terms of 
lipid concentration (from no lipid to high lipid concentration in 
the abdomen and claw), although we cannot define meaningful 
numeric differences between them.[40] Most validation metrics 
reported in Table 6 underestimate the prediction accuracy, because 
they assume that every misclassification is considered equally 
costly. The confusion matrix gives a clearer and more complete 
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Figure 7.  Illustration of the single shot detector (SSD) network architecture. The network generates scores for the presence of each object category in 
each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple 
feature maps with different resolutions to naturally handle objects of various sizes.

Table 3.  Performance of the SSD deep learning model on Daphnia object detection, showing the number of successful detections of each object of 
interest (absolute number and percentage (%) of images available.

Number of   
images

Successful abdomen/
claw detections

Successful heart 
detections

Successful eye 
detections

Successful head 
detections

Successful tail 
detections

Successful tail-base 
detections

Successful tail-tip 
detections

Normal 1219 1087 (89.2%) 1141 (93.6%) 1171 (96.1%) 1133 (92.9%) 1187 (97.4%) 1029 (84.4%) 800 (65.6%)

Malformed 3104 2815 (90.7%) 2811 (90.5%) 2958 (95.3%) 2898 (93.4%) 3019 (97.3%) 2590 (83.4%) 2088 (67.3%)

Total 4323 3902 (90.3%) 3952 (91.4%) 4129 (95.5%) 4031 (93.2%) 4206 (97.3%) 3619 (83.7%) 2888 (66.8%)



www.advancedsciencenews.com www.small-journal.com

2001080  (8 of 12) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

picture of the prediction accuracy of the model and indicates that 
besides the 46% of images that are classified correctly, another 
41% of the predictions are next to the actual classes assigned by 
the expert, while only 13% of the predictions differ from the actual 
classes by more than one position in the ordered list.

We formulated an additional three-class classification problem 
by combining previously defined classes 1 and 2 into one class 
and classes 3 and 4 into another class, while class 0 remained the 
same (see Figure 5). The progress in the new deep learning model 
accuracy is shown in Figures S11 and S12, Supporting Informa-
tion. The statistical results on the test set are presented in Table 6.

As expected, the accuracy has increased substantially and 
reached 75%.

Similar results were obtained after training deep learning 
models on the cropped heart images. The dataset consisted of 
3930 images, after excluding 22 blurry images from the 3952 
images, where the heart region was detected correctly. The 
dataset was split into training and test sets containing 90% and 
10% of the images, as explained in Section 2. Figures S13 and 
S14, Supporting Information, present graphically the accuracy 
of the residual CNN network on the training and test sets. The 
model trained after 8000 iterations showed an overall accuracy 
of 67%. More detailed statistical results are shown in Table 7.

3.4. Implementation of the Deep Learning Workflow as a Service

All models and workflows presented in this work have been 
developed in the context of the H2020 Project NanoSolveIT.[31] 

The SSD object detection model and the three residual CNN 
classification models (three-class and five-class abdomen/
claw prediction models and the three-class heart prediction 
model) have been containerized in a Docker container avail-
able through https://hub.docker.com/r/nanosolveit/deepdaph-
models. The complete workflow is being integrated into the 
NanoSolveIT cloud platform as a user-friendly web applica-
tion, which is accessible through https://deepdaph.cloud.nano-
solveit.eu/. The application is also available through application 
programming interfaces (APIs) that allow further integration 
with other services within the NanoSolveIT cloud platform 
but also with external services. The API documentation can be 
found at https://deepdaph-api.cloud.nanosolveit.eu/.

4. Conclusion

A multigeneration study on D. magna exposed to freshly dis-
persed and aged ENMs of various concentrations in different 
media was conducted. A series of the freshwater zooplankton 
Daphnia light microscopy images were produced and system-
atically studied in silico to predict the different malformations 
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Figure 8.  Measurement of the tail length and the overall size of the 
Daphnia based on object detection.

Table 4.  Number of Daphnia images for which overall sizes and tail 
lengths were automatically calculated (absolute number and percentage 
(%) of total images available).

Number of 
images

Number of images on which tail length and 
overall size were calculated successfully

Normal 1219 674 (55.3%)

Malfunctioned 3104 1738 (56.0%)

Total 4323 2412 (55.8%)

Figure 9.  A plot of percentage errors for the overall Daphnia size meas-
urements (expert determined (observed) values vs model outputs).

Figure 10.  A plot of percentage errors for the tail length measurements 
(expert determined (observed) values vs model outputs).

https://hub.docker.com/r/nanosolveit/deepdaph-models
https://hub.docker.com/r/nanosolveit/deepdaph-models
https://deepdaph.cloud.nanosolveit.eu/
https://deepdaph.cloud.nanosolveit.eu/
https://deepdaph-api.cloud.nanosolveit.eu/
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observed on the Daphnia including overall size; tail length; and 
malformations in heart, abdomen, and claw.

For this purpose, a computational workflow based on AI and 
deep learning methodologies has been developed to first detect, 
isolate, and classify regions of interest on the Daphnia images 
where specific malformation occurs and then to assess the type 
and the severity of malformations compared to the control.

To the best of our knowledge, this in silico study is the first 
attempt reported to develop validated deep learning predictive 
models to an extensive ecotoxicological study for predicting the 
effects of the direct or parental exposure to ENMs on Daphnia. 
The proposed models can automate time-consuming proce-
dures needed for image classification by human experts and 
thus accelerate hazard assessment and facilitate the develop-
ment of safe-by-design ENMs. Future extension of the work 
will allow adverse effects prediction for subsequent generations 
based on parental exposure images reducing the time and cost 
involved in long-term reproductive toxicity assays over multiple 
generations.

5. Experimental Section
Daphnia Maintenance and Culturing: D. magna are invertebrates, 

and as such are not subject to requirements for ethical approval for 
use in experimental research. Stocks of D. magna were maintained 
using pools of third brood Bham2 strain (genetically identical), which 
originated from the University of Reading[41] and the Water Research 
Centre (WRc), Medmenham, UK. D. magna were kept in a controlled 
environment in a 20  °C temperature with 12 h light and dark cycles 
and were cultured in a standard HH media (HH combo)[42] and an 
artificial natural water representative of a class V river lowland water[43] 
that was refreshed weekly to ensure healthy culture maintenance.  
D. magna cultures were fed Chlorella vulgaris algae daily, to total 0.5 mg 
carbon between days 0 and7 (750 µL) and 0.75 mg (1.5 mL) carbon from 
day 7. Third brood neonates were removed from exposure within 24 h of 
birth and used to set up the following generation.

ENMs Exposure: For the multigenerational studies (Figure  1), each 
ENM type (pristine/aged) was exposed to 10 daphnids per 250  mL in 
three replicates (total of 30 daphnids per exposure) to an F0 parent 
generation. Exposure concentrations were EC5 concentration (TiO2 
ENMs) or EC30 concentration (Ag ENMs). The third broods (F1) from 
the F0 generation were split to produce a continuously paired exposure 
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Figure 11.  QQ plot of the percentage errors for the overall Daphnia size 
measurements.

Figure 12.  QQ plot of the percentage errors for the tail length 
measurements.

Figure 13.  Schematic representation of the residual convolutional neural network (CNN) architecture using standard residual blocks. Each block is 
composed of two sets of batch normalization, ReLU, and convolutional layers. A fully connected layer completes the model.



www.advancedsciencenews.com www.small-journal.com

2001080  (10 of 12) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

(Fexp) over four successive generations (F0, F1exp, F2exp, and F3exp) using 
the recovery (F1rec) generation for three generations (F1rec, F2rec, and 
F3rec). The media (with or without ENMs for the exposed and recovery 
experiments, respectively) was refreshed once a week.

Imaging of Daphnids for Assessment of Defects: Measurements of body 
size were taken every 3 days (between days 3 and 24) in accordance with 
moulting of the carapace.[44] Images were captured using a Nikon (Japan) 
stereomicroscope, model SMZ800 Digital Sight, fitted with a D5-Fi2 
camera using NIS-Elements software. Scale bars represent 500 µm in all 
images. Five daphnids per treatment were imaged and body lengths were 
measured from the apex of the helmet to the base of the apical spine.

Image Analysis via Machine Learning: For the object detection 
problem, the fast R-CNN and SSD architectures were employed: The fast 
R-CNN algorithm is an improvement over the R-CNN method, proposed 
previously. R-CNN uses a selective search algorithm for extracting 
specific number (e.g., 2000) region proposals instead of selecting a 
very huge number of regions. The CNN acts as a feature extractor and 
the extracted features were fed into a Support Vector Machine model 
to classify the presence of the object within that candidate region. 
Fast R-CNN improves the convergence time by feeding the full image 
(and not the 2000 image proposals) to the CNN. This generates a 
convolutional feature map, which was used to identify the regions of 

Small 2020, 2001080

Table 5.  Validation metrics of residual CNN in the five-class classification problem for Daphnia abdomen/claw images.

Confusion matrix (absolute numbers and percentage (%) of test images available in each class, correct predictions are shown in bold).

n = 378 Number of images Predicted class 0 Predicted class 1 Predicted class 2 Predicted class 3 Predicted class 4

Actual class 0 80 35 (43.8%) 33 (41.2%) 10 (12.5%) 2 (2.5%) 0 (0%)

Actual class 1 74 7 (9.5%) 37 (50.0%) 19 (25.7%) 10 (13.5%) 1 (1.3%)

Actual class 2 99 3 (3.0%) 22 (22.2%) 33 (33.3%) 35 (35.4%) 6 (6.1%)

Actual class 3 83 3 (3.6%) 5 (6.0%) 7 (8.4%) 43 (51.8%) 25 (30.2%)

Actual class 4 42 0 (0%) 0 (0%) 3 (7.1%) 8 (19.1%) 31 (73.8%)

Five-class sensitivity and specificity

Class 1 Class 2 Class 3 Class 4 Class 5

Sensitivity 43.8% 50.0% 33.3% 51.8% 73.8%

Specificity 95.6% 80.3% 86.0% 81.4% 90.5%

Accuracy: 0.46 and Matthews correlation coefficient: 0.3

Table 6.  Validation metrics of residual CNN in the three-class classification problem for Daphnia abdomen/claw images.

Confusion matrix (absolute numbers and percentage (%) of test images available in each class, correct predictions are shown in bold).

n = 378 Number of images Predicted class 0 Predicted class 1 Predicted class 2

Actual class 0 80 70 (87.5%) 8 (10.0%) 2 (2.5%)

Actual class 1 173 25 (14.4%) 119 (68.8%) 29 (16.8%)

Actual class 2 125 4 (3.2%) 25 (20.0%) 96 (76.8%)

Three-class sensitivity and specificity

Class 1 Class 2 Class 3

Sensitivity 87.5% 68.8.0% 76.8%

Specificity 90.3% 83.9% 87.7%

Accuracy: 0.75 and Matthews correlation coefficient: 0.64

Table 7.  Validation metrics of residual CNN in the three-class classification problem for Daphnia heart images.

Confusion matrix (absolute numbers and percentage (%) of test images available in each class, correct predictions are shown in bold).

n = 393 Number of images Predicted class 0 Predicted class 1 Predicted class 2

Actual class 0 148 89 (60.1%) 57 (38.5%) 2 (1.4%)

Actual class 1 211 24 (11.4%) 149 (70.6%) 38 (18.0%)

Actual class 2 34 0 (0%) 6 (17.6%) 28 (82.4%)

Three-class sensitivity and specificity

Class 1 Class 2 Class 3

Sensitivity 60.1% 70.6.0% 82.4%

Specificity 90.2% 65.4% 88.9%

Accuracy: 0.67 and Matthews correlation coefficient: 0.45
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proposals, warp them into squares, reshape them to fixed sizes using 
a pooling layer, and finally feed them into a fully connected layer. A 
softmax layer predicts the classes of the proposed regions.

The SSD method discretizes the output space of bounding boxes into 
a set of default boxes over different aspect ratios and scales per feature 
map location. At prediction time, the network generates scores for the 
presence of each object category in each default box and produces 
adjustments to the box to better match the object shape. Additionally, 
the network combines predictions from multiple feature maps with 
different resolutions to naturally handle objects of various sizes. 
Compared to R-CNN methods, the SSD model is simpler, because it 
completely eliminates proposal generation and the subsequent pixel or 
feature resampling stage and encapsulates all computation in a single 
network. This makes SSD easy to train and straightforward to integrate 
into systems that require a detection component. In the simulations, in 
this study, the SSD v1 pretrained model was used, employing the rectifier 
linear unit (ReLU) activation function and an initial learning rate of 0.004, 
which was decreased by a decay factor of 0.94 every 307 20 iterations.

The loss function used in both algorithms is a combination of 
confidence loss and localization loss. The localization loss between 
the predicted box and the ground truth box includes the offsets for the 
center points and the width and the height of the bounding box. The 
confidence loss is the softmax loss over multiple classes’ confidences.

The produced object detection deep learning models take a Daphnia 
image as input. The configuration of the training method allows the 
input size of the image to be determined. The internal reshaper creates 
a 600 × 600 pixel image with three channels (red, blue, and green) per 
pixel. The reshaped image feeds the model as a flattened buffer of 
270 000 byte values (600 × 600 × 3). Since the model is quantized, each 
value should be a single byte representing a value between 0 and 255. 
The output consists of the four arrays as shown in Table 8.

For the classification tasks, two main architectures were employed, 
namely the residual CNN and the ImageNet CNN. ImageNet neural 
networks are based on the LeNet architecture, which consists of stacking 
convolutional layers followed by pooling, ending with fully connected 
layers. ImageNet neural networks were the first to introduce ReLU as the 
activation function. Residual networks managed to go deeper by adding 
more layers and by introducing the residual layer in an effort to solve the 
problem of the vanishing gradient. Linear activation functions are also 
used in such architectures. The main difference here is the use of skip 
connections that form the residual block as the main component.

The produced ImageNet CNN had four convolutional layers each 
followed by a pooling layer and two fully connected layers with 2000 
neurons each. The output of the network was a layer with dimensions 
equal to the number of classes. The ReLU activation function was used in 
all neurons of the neural network. The input tensor was either 512 × 512, 
256 × 256, or 128 × 128. Each pooling layer was a 2 × 2 max pooling with 
strides of two. A variety of optimizers were applied ranging from simple 
gradient descent optimizers to more sophisticated approaches such as 
Adam or Adagrad. The learning rates started from 0.03 and decreased 
to 0.0003, but did not play a significant role on the predictive accuracy 
of the produced models. The main difference was noticed in the overall 
training time. For the more advanced optimizers, it was observed that 

the convergence time decreased at two-thirds of the time required by the 
simpler algorithms.

For the residual CNNs, standard residual blocks were used. The 
architecture starts with batch normalization using ReLU activation 
functions, which is followed by a convolutional block with a 3 × 3 kernel, 
normalizations and activation again, and then a convolutional layer 
again. Models with numbers of layers ranging from 10 to 20 with a stride 
every five layers were developed to downsample the input by the order 
of 2, similar to a pooling layer. Finally, a fully connected layer with 1000 
neurons was added to complete the model. The main optimizer used for 
these models was an Adam optimizer with a learning rate of 0.001.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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