Association of parent-reported sleep problems in early childhood with psychotic and borderline personality disorder symptoms in adolescence
Morales-Munoz, Isabel; Broome, Matthew; Marwaha, Steven

DOI:
10.1001/jamapsychiatry.2020.1875

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (≠)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 09. Feb. 2021
IMPORTANCE Persistent nightmares in childhood have been prospectively associated with psychosis and borderline personality disorder (BPD) in adolescence. However, the extent to which this association is also true for behavioral sleep problems is still unknown, and the potential mechanisms are unexplored.

OBJECTIVE To examine the prospective associations between several parent-reported sleep problems in early childhood and psychotic and BPD symptoms at 11 to 13 years of age and the potential mediation of the associations by depression at 10 years of age.

DESIGN, SETTING, AND PARTICIPANTS This cohort study assessed 13,488 participants in the Avon Longitudinal Study of Parents and Children birth cohort who were followed up for more than 13 years. Pregnant women from Avon, United Kingdom, with expected dates of delivery from April 1, 1991, to December 31, 1992, were invited to take part in the study. Data analysis was conducted from May 1 to December 31, 2019.

MAIN OUTCOMES AND MEASURES Psychotic experiences at 12 to 13 years of age were assessed using the Psychosis-Like Symptom Interview, and BPD symptoms at 11 to 12 years of age were tested using the UK Childhood Interview for DSM-IV Borderline Personality Disorder. Parent-reported nighttime sleep duration, night awakening frequency, bedtime, and regularity of sleep routines were assessed when the child was 6, 18, and 30 months and 3.5, 4.8, and 5.8 years of age.

RESULTS Data were available on 7,155 participants (3,718 girls [52%]) who reported on BPD symptoms and 6,333 (3,280 boys [52%]) who reported on BPD symptoms. Higher night awakening frequency at 18 months of age (odds ratio [OR], 1.13; 95% CI, 1.01-1.26) and less regular sleep routines at 6 months (OR, 0.68; 95% CI, 0.50-0.93), 30 months (OR, 0.64; 95% CI, 0.44-0.95), and 5.8 years (OR, 0.32; 95% CI, 0.19-0.53) of age were significantly associated with psychotic experiences in adolescence, whereas shorter nighttime sleep duration (OR, 0.78; 95% CI, 0.66-0.92) and later bedtime at 3.5 years of age (OR, 1.32; 95% CI, 1.09-1.60) were significantly associated with BPD symptoms. Results of mediation analysis were consistent with all these associations, except for later bedtime at 3.5 years and BPD in adolescence, which had no association. Depression at 10 years of age mediated the associations between frequent night awakenings at 18 months of age (bias-corrected estimate, −0.005; 95% CI, −0.008 to −0.002; P = .002) and irregular sleep routines at 5.8 years of age (bias-corrected estimate, −0.006; 95% CI, −0.010 to −0.003; P = .003) with psychosis.

CONCLUSIONS AND RELEVANCE The findings suggest that some behavioral sleep problems in childhood are distinctively associated with the onset of psychosis and BPD in adolescence, following different pathways. Furthermore, depression at 10 years of age may mediate only the association with psychosis. These findings contribute to the design of more personalized interventions in psychosis and BPD.
Theoretical and empirical research indicate adolescence as a key developmental period to study the onset of many mental disorders, including psychosis and borderline personality disorder (BPD), because of brain and hormonal changes occurring during this period. It is crucial to identify relevant factors associated with increased risk of psychopathologic symptoms among adolescents to develop effective interventions and to identify those at high risk. Sleep is a key factor associated with developmental psychopathologic symptoms and is considered a fundamental operating state of the central nervous system, occupying up to one-third of human life. Sleep may be one of the most important basic dimensions of brain function and mental health. Adequate sleep in childhood is essential for optimal cognitive and emotional functioning, and the potential association of sleep with frontal lobe functions is especially relevant in early childhood, when the brain shows substantial dynamic plasticity. Of interest, early behavioral sleep problems may be modifiable risk factors associated with future psychopathologic symptoms. This finding supports the necessity to examine the association of childhood sleep with mental disorders, such as psychosis and BPD, during adolescence.

To determine whether sleep problems precede the development of these mental disorders, prospective studies examining sleep in childhood are needed. Although there is extensive evidence that supports cross-sectional associations of sleep with BPD and psychosis, it is still unclear whether sleep problems precede their onset. Thus far, only 2 studies have longitudinally reported that children and adolescents experiencing nightmares have more psychotic experiences at 12 years and 18 years of age. With regard to BPD, only 1 study found associations between persistent nightmares across childhood and BPD symptoms at 11 to 12 years of age. One explanation might be that sleep problems indirectly increase the risk of psychosis and/or BPD by increasing the risk of depression; thus, depression could represent a mediator of these associations. Sleep disturbances are ubiquitous in depression, and childhood sleep problems are associated with subsequent depression. Other explanations might be that sleep problems are associated with both disorders, appearing earlier in development than other psychopathologic symptoms, and/or that sleep and both psychosis and BPD share common underlying mechanisms.

Although recent longitudinal research indicates that childhood nightmares are associated with the development of adolescent psychosis and BPD, those studies focused only on parasomnias, whereas the associations of more frequent sleep problems (ie, behavioral sleep problems) in early childhood, such as short sleep and frequent night awakenings, or inappropriate sleep practices have not been investigated. Given that 15% to 30% of children younger than 5 years experience behavioral sleep problems, there is a need to understand these sleep problems. In addition, psychotic symptoms are common among adults and adolescents with BPD, and genetic overlap exists. However, it is unclear whether sleep disturbances in childhood have a similar association with both conditions because of their overlap or whether sleep might have a different pathway in psychosis compared with BPD.

Identifying childhood sleep patterns and the specific time points that distinguish between psychosis and BPD may help improve our understanding of their origin. To our knowledge, no studies have examined the mediating role of depression in the association between childhood sleep and adolescent psychotic experiences and BPD symptoms. Such studies are needed to understand the potential mechanisms underlying these associations. In this study, we examined the associations between several behavioral sleep problems during specific time points in early childhood and psychotic and BPD symptoms in adolescence. We also investigated whether depression at 10 years of age mediated any associations. We hypothesized that behavioral sleep problems in early childhood would be similarly associated with psychotic experiences and BPD symptoms and that depression at 10 years of age would mediate these associations.

Methods
Participants
This cohort study used data from the Avon Longitudinal Study of Parents and Children (ALSPAC), a UK birth cohort study that examines the factors associated with development, health, and disease during childhood and beyond. Pregnant women from Avon, United Kingdom, with expected dates of delivery from April 1, 1991, to December 31, 1992, were invited to take part in the study. The ALSPAC website contains details of all the data available through a fully searchable data dictionary and variable search tool. Further details of this cohort are described in the Appendix in the Supplement. All participants provided written informed consent, and all data were deidentified. Ethical approval was obtained from the ALSPAC law and ethics committee and the local research ethics committees. Data analysis was conducted from May 1 to December 31, 2019.
Outcomes
The Psychosis-Like Symptom Interview, which is a semistruc-
tured face-to-face interview with 12 core questions about key
psychotic experiences that have occurred since the age of 12
years, was used for the assessment of psychotic experi-
ences at 12 to 13 years of age. We coded the presence of at least
1 definite psychotic symptom not attributable to sleep or fever.33

BPD symptoms at 11 to 12 years of age were assessed using
a face-to-face semistructured interview: the UK Childhood
Interview for DSM-IV Borderline Personality Disorder.34 The
derived dichotomous outcome represented the frequent or re-
peated occurrence of 5 or more BPD symptoms.35,36

Factors Associated With Psychotic or BPD Symptoms
Parent-reported nighttime sleep duration, night awakenings
frequency, bedtime, and sleep routine regularity were as-
sewed when children were 6, 18, and 30 months and 3.5, 4.8,
and 5.8 years of age. We selected all available time points that
covered infancy, toddlerhood, and preschool (ie, 6 months un-
til 5.8 years of age). This assessment was based on our aim to
identify the main time frame in early childhood that might be
associated with psychotic and/or BPD symptoms in adoles-
cence. Mothers were asked about their child’s bedtime and
wake-up time and frequency of night awakenings and whether
their child had regular sleep routines. Nighttime sleep dura-
tion was operationalized as the subtraction of bedtime minus
wake-up time.

Mediation Analysis
Depressive symptoms during the past 2 weeks were assessed
using the short (13-item) Mood and Feelings Questionnaire.37
Total Mood and Feelings Questionnaire scores at 10 years of
age were obtained.

Confounders
Multiple family risk factors were assessed using the Family Ad-
versity Index during pregnancy (long index), at 2 years of age (long
index), and at 4 years of age (short index). The Family Adversity
Index comprises 18 items (ie, long index) on childhood adversity
and socioeconomic status. The short index excludes social, prac-
tical, and financial support. Points were summed at each time
point for a total Family Adversity Index score across the 3 time
points. Childhood physical and sexual abuse was reported by the
mother when children were 1.5, 3.5, 4.8, 5.8, and 6.8 years of age.
We coded this as yes or no at any time point. Emotional tempera-
tment was examined using the Carey Temperament Scale38 when
children were 2 years of age. In accordance with a recent study,21
the mood and intensity subscales were chosen because they map
most closely onto emotional temperament.39,40 Total scores from
these 2 subscales were summed. In addition, the child’s sex, pre-
maturity (yes vs no), and the maternal age when the infant was
born were included as confounders. All these confounders were
selected based on their direct associations with our main out-
comes based on previous studies.21,41-47 A description of the vari-
ables and specific time points included in this study are given in
eTable 1 in the Supplement. A diagram of all the variables is given in
the eFigure in the Supplement.

Statistical Analysis
Because 57.1% of the original sample was unavailable for fol-
low-up at 11 to 12 years of age, we conducted logistic regres-
sions to identify significant factors associated with attrition.
Adolescents lost to attrition were more often boys and had
higher scores in family adversity and depression (eTable 2 in the
Supplement). Using the variables associated with selective
dropout as the factors, we fitted a logistic regression model (nonresponse vs response outcome) to determine weights for
each individual using the inverse probability of response.48,49
The regression coefficients from this model were used to de-
termine probability weights for the covariates in the main
analyses.

A multistaged analysis plan was developed. We first ran
logistic regression analyses in SPSS software, version 25 (SPSS
Inc) to ascertain the unadjusted and adjusted associations be-
tween behavioral sleep problems in early childhood and sub-
sequent psychotic experiences and BPD symptoms at 11 to 13
years of age. In model A, we tested unadjusted associations.
In model B, we controlled for emotional temperament, fam-
ily adversity, and childhood abuse. In model C, we addition-
ally controlled for child’s sex, prematurity, and maternal age
when the infant was born. Furthermore, all the time points of
each sleep variable were included together. The 4 different
sleep domains were evaluated separately. To avoid multicol-
linearity of repeatedly measured sleep variables, standard-
ized residuals from linear regression models were used as ex-
planatory variables.50 Because this study involved exploratory
analysis of multiple separate hypotheses as opposed to re-
peated analyses of a single hypothesis, we did not adjust for
multiple testing.51

To examine the potential mediating role of depression at
10 years of age, mediation models were tested using path analy-
sis in SPSS-Amos (SPSS Inc), with maximum likelihood esti-
mation to test the association of childhood sleep problems with
psychotic experiences and BPD symptoms at 11 to 13 years of
age with depression at 10 years of age as the mediating vari-
able. Our analysis met the 3 assumptions of partial mediation
analyses.52 We included as independent variables only sleep
variables with significant associations in model C. In addi-
tion, we controlled for all the confounders and for the poten-
tial association between psychotic experiences and BPD symp-
toms in adolescence. We used bootstrapped bias-corrected 95%
CIs and P values for assessing the significance of the standard-
ized direct, indirect, and total associations. A 2-sided P < .05
was considered to be statistically significant. Missing data were
dealt with using the full information maximum likelihood
method.53

Results
Data were available on 7155 participants (3718 girls [52%]) who
reported on psychotic experiences at 12 to 13 years of age and
6333 (3280 girls [52%]) who reported on BPD symptoms at
11 to 12 years of age. Table 1 gives the frequencies and descrip-
tive values of sociodemographic, sleep, and clinical
variables.
The associations from the logistic regressions between childhood sleep and psychotic experiences appear in Table 2. In model A, later bedtime at 6 (odds ratio [OR], 1.13; 95% CI, 1.02-1.25; \(P = .02 \)) and 30 (OR, 1.20; 95% CI, 1.02-1.43; \(P = .03 \)) months of age, higher frequency of night awakenings at 18 months of age (OR, 1.14; 95% CI, 1.02-1.27; \(P = .03 \)) and 30 months of age (OR, 1.12; 95% CI, 1.00-1.25; \(P = .04 \)) and later regular sleep routines at 6 months of age (OR, 0.65; 95% CI, 0.48-0.88; \(P = .005 \)) and 30 months of age (OR, 0.61; 95% CI, 0.42-0.88; \(P = .009 \)) and 5.8 (OR, 0.31; 95% CI, 0.19-0.50; \(P < .001 \)) years of age were significantly associated with psychotic experiences at 12 to 13 years of age. In model B, all these associations except for later bedtime at 6 and 30 months remained significant (night awakenings frequency at 18 months and psychotic experiences at 12-13 years: OR, 1.12; 95% CI, 1.00-1.25; \(P = .04 \); regular sleep routines at 6 months and psychotic experiences at 12-13 years: OR, 0.70; 95% CI, 0.51-0.95; \(P = .02 \); regular sleep routines at 30 months and psychotic experiences at 12-13 years: OR, 0.61; 95% CI, 0.42-0.90; \(P = .01 \); and regular sleep routines at 5.8 years and psychotic experiences at 12-13 years: OR, 0.34; 95% CI, 0.20-0.55; \(P < .001 \)). The significant associations obtained in model C were the same as those in model B; the strengths of these associations were
Early Childhood Sleep Problems and Psychotic and Borderline Personality Disorder in Adolescence

Table 2. Unadjusted and Adjusted Associations Between Childhood Sleep Patterns and Psychotic Experiences at 12 to 13 Years of Age*

<table>
<thead>
<tr>
<th>Sleep variable</th>
<th>Psychotic symptoms</th>
<th>Model A</th>
<th></th>
<th></th>
<th></th>
<th>Model B</th>
<th></th>
<th></th>
<th></th>
<th>Model C</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Night sleep duration by age</td>
<td></td>
</tr>
<tr>
<td>6 mo</td>
<td>−0.045</td>
<td>.35</td>
<td>0.96 (0.87-1.05)</td>
<td>−0.032</td>
<td>.51</td>
<td>0.97 (0.88-1.06)</td>
<td>−0.043</td>
<td>.38</td>
<td>0.96 (0.87-1.06)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 mo</td>
<td>0.011</td>
<td>.88</td>
<td>1.01 (0.88-1.16)</td>
<td>0.009</td>
<td>.90</td>
<td>1.01 (0.88-1.16)</td>
<td>0.006</td>
<td>.93</td>
<td>1.01 (0.88-1.16)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 mo</td>
<td>−0.065</td>
<td>.42</td>
<td>0.94 (0.80-1.10)</td>
<td>−0.060</td>
<td>.45</td>
<td>0.94 (0.81-1.10)</td>
<td>−0.064</td>
<td>.42</td>
<td>0.94 (0.80-1.10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 y</td>
<td>0.009</td>
<td>.92</td>
<td>1.01 (0.83-1.22)</td>
<td>0.018</td>
<td>.69</td>
<td>1.04 (0.86-1.26)</td>
<td>0.024</td>
<td>.80</td>
<td>1.02 (0.85-1.24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8 y</td>
<td>0.019</td>
<td>.87</td>
<td>1.02 (0.82-1.27)</td>
<td>0.010</td>
<td>.93</td>
<td>1.01 (0.81-1.26)</td>
<td>−0.008</td>
<td>.94</td>
<td>0.99 (0.80-1.24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8 y</td>
<td>0.031</td>
<td>.79</td>
<td>1.03 (0.82-1.29)</td>
<td>0.062</td>
<td>.59</td>
<td>1.06 (0.85-1.34)</td>
<td>0.045</td>
<td>.70</td>
<td>1.05 (0.83-1.31)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bedtime by age

Night awakenings frequency by age												
6 mo	0.119	.02	1.13 (1.02-1.25)	0.095	.07	1.10 (0.99-1.22)	0.099	.06	1.10 (1.00-1.23)			
18 mo	0.108	.16	1.11 (0.96-1.30)	0.085	.28	1.09 (0.93-1.27)	0.074	.34	1.08 (0.92-1.26)			
30 mo	0.187	.03	1.20 (1.02-1.43)	0.127	.13	1.10 (0.96-1.30)	0.130	.13	1.11 (1.00-1.24)			
3.5 y	−0.037	.73	0.96 (0.78-1.19)	−0.068	.52	0.94 (0.76-1.15)	−0.069	.52	0.93 (0.76-1.15)			
4.8 y	−0.007	.95	0.99 (0.80-1.24)	0.012	.92	1.01 (0.81-1.26)	0.020	.86	1.02 (0.82-1.28)			
5.8 y	−0.116	.36	0.89 (0.70-1.14)	−0.143	.25	0.87 (0.68-1.11)	−0.112	.37	0.89 (0.70-1.14)			

Regular sleep routines by age

Nightsleepdurationbyage												
6 mo	0.046	.32	1.05 (0.96-1.15)	0.036	.44	1.04 (0.95-1.14)	0.045	.34	1.05 (0.95-1.15)			
18 mo	0.131	.02	1.14 (1.02-1.27)	0.114	.04	1.12 (1.00-1.25)	0.120	.03	1.13 (1.01-1.26)			
30 mo	−0.089	.360	0.92 (0.76-1.11)	−0.082	.41	0.92 (0.76-1.12)	−0.088	.38	0.92 (0.75-1.11)			
3.5 y	0.093	.29	1.10 (0.92-1.30)	0.072	.42	1.08 (0.90-1.28)	0.075	.40	1.08 (0.91-1.28)			
4.8 y	−0.016	.67	0.98 (0.92-1.06)	−0.016	.69	0.98 (0.91-1.07)	−0.023	.66	0.98 (0.88-1.08)			
5.8 y	0.009	.69	1.01 (0.97-1.05)	0.010	.64	1.01 (0.97-1.06)	0.010	.63	1.01 (0.97-1.05)			

Abbreviation: OR, odds ratio.
* All the time points are included within the same model for each sleep variable. Standardized residuals are used as sleep measures at 18 and 30 months and at 3.5, 4.8, and 5.8 years, in which the sleep variables at later measurement time points are regressed on the corresponding variables at previous measurement waves. Model A is the unadjusted model; model B, adjusted for emotional temperament at 2 years, family adversity, and childhood abuse; and model C, adjusted for emotional temperament at 2 years, family adversity, childhood abuse, sex, prematurity, and maternal age when infant was born.

The results of the logistic regressions for BPD symptoms are reported in Table 3. In model A, shorter nighttime sleep duration at 3.5 years of age (OR, 0.79; 95% CI, 0.67-0.93; P = .005) and later bedtime at 6 months of age (OR, 1.10; 95% CI, 1.00-1.20; P = .046) and 3.5 years of age (OR, 1.31; 95% CI, 1.08-1.58; P = .005) were significantly associated with BPD symptoms in adolescence. All results except for bedtime at 6 months remained in model B (night sleep duration at 3.5 years and BPD symptoms at 11-12 years: OR, 0.82; 95% CI, 0.70-0.97; P = .02; and bedtime at 3.5 years and BPD symptoms at 11-12 years: OR, 1.25; 95% CI, 1.04-1.52; P = .02) and model C (night sleep duration at 3.5 years and BPD symptoms at 11-12 years: OR, 0.78; 95% CI, 0.66-0.92; P = .004; and bedtime at 3.5 years and BPD symptoms at 11-12 years: OR, 1.32; 95% CI, 1.09-1.60; P = .005), and the strength of these associations was increased in model C.

In examining whether depression at 10 years of age was a mediating factor of these associations, path analysis model fit indexes indicated excellent model fit (χ² = 3.05, P = .80; root mean square error of approximation = 0; comparative fit index = 1.00). Consistent with the adjusted logistic regression analysis, frequent night awakenings at 18 months of age (β = 0.007, SE = 0.001, P < .001) and irregular sleep routines at 6 months of age (β = −0.027, SE = 0.004, P < .001) and 3.5 (β = −0.027, SE = 0.006, P < .001) and 5.8 (β = −0.83, SE = 0.008, P < .001) years of age were significantly associated with psychotic symptoms at 12 to 13 years of age.
Table 3. Unadjusted and Adjusted Associations Between Childhood Sleep Patterns and Borderline Personality Disorder Symptoms at 11 to 12 Years of Age

<table>
<thead>
<tr>
<th>Sleep variable</th>
<th>Borderline personality disorder symptoms</th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night sleep duration by age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mo</td>
<td>β = −0.035, P = .41</td>
<td>0.96 (0.89-1.05)</td>
<td>0.96 (0.88-1.04)</td>
<td>0.96 (0.88-1.05)</td>
</tr>
<tr>
<td>18 mo</td>
<td>β = −0.049, P = .44</td>
<td>0.95 (0.84-1.08)</td>
<td>0.95 (0.84-1.08)</td>
<td>0.94 (0.83-1.06)</td>
</tr>
<tr>
<td>30 mo</td>
<td>β = −0.027, P = .71</td>
<td>0.97 (0.84-1.12)</td>
<td>0.99 (0.86-1.14)</td>
<td>0.99 (0.86-1.14)</td>
</tr>
<tr>
<td>3.5 y</td>
<td>β = −0.234, P = 0.005</td>
<td>0.79 (0.67-0.93)</td>
<td>0.82 (0.70-0.97)</td>
<td>0.78 (0.66-0.92)</td>
</tr>
<tr>
<td>4.8 y</td>
<td>β = 0.115, P = .25</td>
<td>1.12 (0.92-1.36)</td>
<td>1.13 (0.93-1.37)</td>
<td>1.16 (0.94-1.44)</td>
</tr>
<tr>
<td>5.8 y</td>
<td>β = 0.104, P = .32</td>
<td>1.10 (0.90-1.36)</td>
<td>1.08 (0.88-1.32)</td>
<td>1.05 (0.86-1.29)</td>
</tr>
<tr>
<td>Bedtime by age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mo</td>
<td>β = 0.093, P = .046</td>
<td>1.10 (1.00-1.20)</td>
<td>1.09 (1.00-1.20)</td>
<td>1.09 (0.99-1.19)</td>
</tr>
<tr>
<td>18 mo</td>
<td>β = 0.043, P = .55</td>
<td>1.04 (0.91-1.20)</td>
<td>1.05 (0.92-1.21)</td>
<td>1.06 (0.92-1.22)</td>
</tr>
<tr>
<td>30 mo</td>
<td>β = −0.079, P = .35</td>
<td>0.92 (0.78-1.09)</td>
<td>0.91 (0.77-1.07)</td>
<td>0.92 (0.77-1.08)</td>
</tr>
<tr>
<td>3.5 y</td>
<td>β = 0.269, P = 0.005</td>
<td>1.31 (1.08-1.58)</td>
<td>1.25 (1.48-1.52)</td>
<td>1.32 (1.08-1.60)</td>
</tr>
<tr>
<td>4.8 y</td>
<td>β = −0.151, P = .15</td>
<td>0.86 (0.70-1.06)</td>
<td>0.86 (0.70-1.05)</td>
<td>0.81 (0.66-1.00)</td>
</tr>
<tr>
<td>5.8 y</td>
<td>β = −0.044, P = .69</td>
<td>0.96 (0.77-1.19)</td>
<td>0.96 (0.78-1.19)</td>
<td>0.97 (0.78-1.20)</td>
</tr>
<tr>
<td>Night awakenings frequency by age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mo</td>
<td>β = −0.082, P = .09</td>
<td>0.92 (0.84-1.01)</td>
<td>0.92 (0.84-1.01)</td>
<td>0.92 (0.84-1.02)</td>
</tr>
<tr>
<td>18 mo</td>
<td>β = 0.021, P = .69</td>
<td>1.02 (0.92-1.14)</td>
<td>1.00 (0.90-1.11)</td>
<td>0.98 (0.87-1.09)</td>
</tr>
<tr>
<td>30 mo</td>
<td>β = 0.090, P = .28</td>
<td>1.09 (0.93-1.29)</td>
<td>1.09 (0.93-1.29)</td>
<td>1.11 (0.94-1.31)</td>
</tr>
<tr>
<td>3.5 y</td>
<td>β = 0.096, P = .20</td>
<td>1.10 (0.95-1.28)</td>
<td>1.08 (0.93-1.25)</td>
<td>1.06 (0.91-1.24)</td>
</tr>
<tr>
<td>4.8 y</td>
<td>β = −0.025, P = .57</td>
<td>0.98 (0.90-1.06)</td>
<td>0.97 (0.86-1.09)</td>
<td>0.97 (0.86-1.10)</td>
</tr>
<tr>
<td>5.8 y</td>
<td>β = 0.008, P = .64</td>
<td>1.01 (0.97-1.04)</td>
<td>1.01 (0.97-1.05)</td>
<td>1.01 (0.98-1.05)</td>
</tr>
<tr>
<td>Regular sleep routines by age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 mo</td>
<td>β = 0.091, P = .57</td>
<td>1.10 (0.80-1.49)</td>
<td>1.15 (0.84-1.58)</td>
<td>1.15 (0.83-1.58)</td>
</tr>
<tr>
<td>18 mo</td>
<td>β = −0.223, P = .16</td>
<td>0.80 (0.58-1.10)</td>
<td>0.85 (0.62-1.16)</td>
<td>0.86 (0.62-1.19)</td>
</tr>
<tr>
<td>30 mo</td>
<td>β = 0.128, P = .54</td>
<td>1.14 (0.76-1.71)</td>
<td>1.20 (0.80-1.82)</td>
<td>1.20 (0.79-1.82)</td>
</tr>
<tr>
<td>3.5 y</td>
<td>β = −0.428, P = .06</td>
<td>0.65 (0.41-1.02)</td>
<td>0.70 (0.44-1.10)</td>
<td>0.71 (0.44-1.13)</td>
</tr>
<tr>
<td>4.8 y</td>
<td>β = 0.106, P = .71</td>
<td>1.11 (0.63-1.95)</td>
<td>1.17 (0.67-2.05)</td>
<td>1.24 (0.70-2.22)</td>
</tr>
<tr>
<td>5.8 y</td>
<td>β = −0.511, P = .06</td>
<td>0.60 (0.35-1.03)</td>
<td>0.72 (0.41-1.27)</td>
<td>0.67 (0.38-1.10)</td>
</tr>
</tbody>
</table>

Abbreviation: OR, odds ratio.

* All the time points are included within the same model for each sleep variable. Standardized residuals are used as sleep measures at 18 and 30 months and at 3.5, 4.8, and 5.8 years, in which the sleep variables at later measurement time points are regressed on the corresponding variables at previous measurement waves. Model A is the unadjusted model; model B, adjusted for emotional temperament at 2 years, family adversity, and childhood abuse; and model C, adjusted for emotional temperament at 2 years, family adversity, childhood abuse, sex, prematurity, and maternal age when infant was born.

nighttime sleep at 3.5 years was associated with BPD symptoms at 11 to 12 years of age (β = −0.008, SE = 0.002, P < .001). However, there was not a significant association between bedtime at 3.5 years and BPD at 11 to 12 years of age. All these results remained after controlling for the association between psychosocial and BPD. Direct associations are shown in the Figure, and estimates of the direct, indirect, and total effects are shown in eTable 3 in the Supplement. The significant direct associations between the covariates and the independent, mediator, and dependent variables were sex and depression (β = −0.02, P < .001), sex and psychosocial (β = 0.19, P < .001), prematurity and depression (β = 0.32, P < .001), prematurity and BPD symptoms (β = 0.13, P < .001), maternal age when infant born (β = −0.03, P < .001), childhood abuse and depression (β = 0.43, P < .001), childhood abuse and BPD symptoms (β = 0.01, P = .04), family adversity and depression (β = 0.12, P < .001), family adversity and psychosocial (β = 0.03, P < .001), family adversity and BPD (β = 0.03, P < .001), emotional temperament and depression (β = 0.02, P < .001), and emotional temperament and BPD (β = 0.001, P < .001). The significant associations between the covariates were maternal age when infant was born with emotional temperament at 2 years of age (β = −0.36, P < .001), prematurity (β = −0.03, P < .001), and family adversity (β = −0.11, P < .001); emotional temperament at 2 years of age with sex (β = −0.07, P = .011), prematurity (β = 0.05, P < .001), childhood abuse (β = 0.07, P < .001), and family adversity (β = 0.28, P < .001); sex with prematurity (β = −0.004, P < .001) and childhood abuse (β = −0.006, P < .001); and childhood abuse with family adversity (β = 0.13, P < .001).

The associations between the covariates and BPD and psychosocial symptoms were partly mediated by depression (the eAppendix in the Supplement gives estimates of total, direct, and indirect effects). However, depression only partly...
Psychotic symptoms at 12 y of age
BPD symptoms at 11 y of age

Figure. Path Diagram Showing the Main Significant Direct Associations in the Final Model

This figure shows only the direct associations of the independent, mediator, and dependent variables. Night awakening at 18 months of age, regular sleep routines at 6 months and 3.5 and 5.8 years of age, night sleep duration at 3.5 years of age, and bedtime at 3.5 years of age represent the independent variables (exposures); depression at 10 years of age represents the mediator; and psychotic symptoms at 12 to 13 years of age and borderline personality disorder (BPD) symptoms at 11 to 12 years of age represent the dependent variables (outcomes). The covariates also included in this path analyses were sex, prematurity, maternal age when infant was born, childhood abuse, family adversity, and emotional temperament. Significant pathways are signified by solid arrows and nonsignificant modeled pathways by gray dotted lines.

Discussion

This is the first study, to our knowledge, to examine the prospective associations between early childhood sleep problems and adolescent psychotic experiences and BPD symptoms. We also tested whether depression at 10 years of age represents a possible mechanism by which early sleep problems are associated with psychotic experiences or BPD symptoms. Our main findings indicated that frequent night awakenings at 18 months of age and irregular sleep routines at 6 and 30 months and 5.8 years of age were associated with psychotic experiences at 12 to 13 years of age, whereas shorter nighttime sleep duration and later bedtime at 3.5 years of age were associated with BPD symptoms at 11 to 12 years of age. Depression at 10 years of age mediated only the associations between frequent night awakenings at 18 months of age and irregular sleep routines at 5.8 years of age with later psychotic experiences. In addition, contrary to an existing cross-sectional study in chronotype,54 we did not find significant longitudinal associations between bedtime and psychotic symptoms.

Frequent night awakenings at 18 months of age and irregular sleep routines at 6 months and 30 months and 5.8 years of age were prospectively associated with psychotic experiences at 12 to 13 years of age, even when depression at 10 years of age was included as a mediator and after controlling for BPD symptoms at 11 to 12 years of age. This finding suggests a specific pathway between these childhood sleep problems and adolescent psychotic experiences. This finding is distinct from but adds to the existing 2 studies19,20 that reported an association between persistent parasomnias and subsequent psychosis. In the current study, which examined how much behavioral sleep problems are specifically associated with psychotic experiences, we found that night awakenings at 18 months of age were associated with psychotic experiences in adolescence. Insomnia is common in psychosis,55,56 and frequent night awakening is 1 of the diagnostic criteria for insomnia.57 Our findings support the idea that insomnia contributes to psychosis but suggest that difficulties can appear years before the onset of psychotic experiences. We also found that irregular sleep routines across several stages of childhood were associated with psychotic experiences in adolescence. A lack of routine is a key feature of sleep problems in young people at ultrahigh risk of psychosis.58

Shorter nighttime sleep duration at 3.5 years of age was the only sleep variable directly associated with BPD in adolescence. Given the persistent associations after controlling for interactions with psychotic symptoms, our results suggest a separate and specific pathway for BPD. A previous study21 found that persistent nightmares in childhood were independently associated with BPD symptoms at 11 to 12 years of age. This was the first study, to our knowledge, to report an independent association between short sleep in preschool-aged children and BPD symptoms in adolescents, consistent with cross-sectional studies17,59 in which patients with BPD reported short sleep.
Depression at 10 years of age mediated the associations between frequent night awakenings at 18 months of age and irregular sleep routines at 5.8 years of age and psychotic symptoms in adolescence. Although depression is considered a mediator in the sleep-psychosis association, the extent to which this is true for all the sleep patterns was previously unknown, to our knowledge. Our results are supported by existing models of the genesis and maintenance of paranoia and hallucinations that consider depression to be central.

Furthermore, the role of specific neurotransmitters in the brain, such as dopamine and serotonin, might also partially explain the mediating role of depression, taking into account that both neurotransmitters are involved in not only the sleep-wake cycle but also the development of depression and psychosis.

Depression at 10 years of age did not mediate the associations between short nighttime sleep at 3.5 years of age and BPD, although BPD shares common sleep and biological features with depression. This finding again supports the specificity of pathways. Our findings indicate that there might be a direct association between childhood sleep duration and later BPD symptoms independently of depression. Patients with BPD often stay up late and sleep during the day, indicating that altered circadian rhythms may be associated with BPD. Of interest, infants with slow circadian rhythm development sleep less during the night, suggesting that infants’ short nighttime sleep might be an indicator of circadian dysfunction.

In this study, we found that shorter nighttime sleep in toddlers was prospectively associated with BPD symptoms, indicating that altered circadian rhythm might be associated with subsequent BPD symptoms. These results, however, should be interpreted with caution because circadian disturbances are commonly observed in patients with depression; thus, depression might still play an important role. Another explanation might be that other factors mediate this association, such as emotion dysregulation.

The current robust analyses indicate some specificity between particular early sleep difficulty and later differing psychopathologic symptoms. This finding may be a function of assessing sleep problems earlier than existing research. This finding could have important implications for helping practitioners identify children who might be at higher risk for psychotic experiences or BPD symptoms in adolescence and potentially lead to the design of more effectively targeted sleep or psychological interventions to prevent the onset of or attenuate these mental disorders.

Strengths and Limitations

This study has several strengths. First, we used data from a large prospective cohort. Second, psychotic experiences and BPD symptoms were assessed using validated interviews. Third, we addressed sleep early in childhood.

There are also some limitations. First, the sleep variables are based on parent reports, and objective measures such as actigraphy were not available; this study focused on parent-reported perceptions of sleep, which could be different from objective sleep. However, parent-reported sleep reports are considered valid in young children, and a previous study reported low specificity for actigraphs, particularly for infants. Second, other potential contributing factors, such as pervasive developmental delay, hyperactivity, prenatal medications, or caregiver shift-work, should be explored in future studies. In addition, we were unable to account for changes in confounding variables over time, such as within family adversity. Third, although the study design cannot determine causality, analyses meet some Bradford Hill criteria.

Fourth, the ALSPAC cohort is representative of the UK population, which is racially and ethnically diverse. However, this diversity is not identical in characteristics or perhaps extent to that in other populations. Fifth, the degree of prematurity could be an important confounder. We first included the variable prematurity as a confounder and then...
Early Childhood Sleep Problems and Psychotic and Borderline Personality Disorder in Adolescence

Conclusions

In this study, frequent night awakenings at 18 months of age and irregular sleep routines at 6 months, 30 months, and 5.8 years of age were associated with psychotic experiences at 12 to 13 years of age, whereas only short nighttime sleep at 3.5 years of age was associated with BPD symptoms at 11 to 12 years of age. Furthermore, depression at 10 years of age mediated the association between night awakenings at 18 months of age and irregular sleep routines at 5.8 years of age with psychotic experiences. These findings suggest that the associations between childhood sleep and psychotic experiences as well as childhood sleep and BPD symptoms in adolescence follow different pathways. These results could contribute to the design of more personalized sleep and psychological interventions in psychosis and BPD.

ARTICLE INFORMATION

Accepted for Publication: April 30, 2020.
Published Online: July 1, 2020.

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Morales-Muñoz I et al. JAMA Psychiatry.

Author Contributions: Drs Morales-Muñoz and Marwaha had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.
Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: All authors.
Critical revision of the manuscript for important intellectual content: Morales-Muñoz, Marwaha.
Statistical analysis: All authors.

Supervision: Broome, Marwaha.

Conflict of Interest Disclosures: Dr Broome reported receiving funding from Oxford University Press and the National Institute for Health Research Clinical Research Network and personal fees from Medical Defence Union outside the submitted work. Dr Marwaha reported attending and education event sponsored by Jansen. No other disclosures were reported.

Funding/Support: This study was supported by grant 102235/2/131/2 from the UK Medical Research Council and Wellcome. The University of Bristol provided core support for the Avon Longitudinal Study of Parents and Children (ALSPAC).

Role of the Funder/Sponsor: There was no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We thank all the families who took part in this study, the midwives for their help in recruiting them, and the ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses.

REFERENCES

jampychiatry.com}

Downloaded From: https://jamanetwork.com/ by a University of Birmingham User on 07/01/2020