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Abstract: The forward model in diffuse optical tomography (DOT) describes how light
propagates through a turbid medium. It is often approximated by a diffusion equation (DE) that
is numerically discretized by the classical finite element method (FEM). We propose a nonlocal
diffusion equation (NDE) as a new forward model for DOT, the discretization of which is carried
out with an efficient graph-based numerical method (GNM). To quantitatively evaluate the new
forward model, we first conduct experiments on a homogeneous slab, where the numerical
accuracy of both NDE and DE is compared against the existing analytical solution. We further
evaluate NDE by comparing its image reconstruction performance (inverse problem) to that
of DE. Our experiments show that NDE is quantitatively comparable to DE and is up to 64%
faster due to the efficient graph-based representation that can be implemented identically for
geometries in different dimensions. The proposed discretization method can be easily applied to
other imaging techniques like diffuse correlation spectroscopy which are normally modeled by
the diffusion equation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In diffuse optical tomography (DOT), near-infrared light (650-900 nm) is injected into an object
through optical fibers placed on its surface. The light is injected through each fibre in turn
and propagates through the object. The spatial distribution of light remitted from the object’s
surface is measured for each source fibre, and this information is used to estimate the object’s
internal optical properties by iteratively refining the optical properties of a forward model of light
propagation in the object until the model predictions match the measured surface remittance.
As such, the forward model of light propagation must be able to accurately model the main
interactions (i.e. absorption and scattering) between light and the object so as to recover internal
properties faithfully.
When its wave nature is neglected and light is interpreted as a stream of particles (photons),

the main interactions between light and biological tissue are characterized as absorption and
scattering and are modelled by the radiative transfer equation (RTE) which is generally accepted to
accurately describe how light propagates in biological tissues [1,2]. Analytical solutions exist for
the RTE only for simple geometries with nearly homogeneous interior structure [3,4]. Although
a number of algorithms exist to find numerical solutions for more complex inhomogeneous
domains [5,6], they are extremely computationally expensive, especially for large 3D volumes.
Due to the complexity of the RTE and the limitations of existing algorithms, a range of stochastic
or deterministic approximation schemes are frequently adopted to simplify the RTE. The Monte
Carlo method is the most commonly used stochastic model [7,8]. It is however costly in
computational time, because millions of photons need to be tracked to acquire meaningful
statistics. Light propagation can also be modelled by a deterministic diffusion equation (DE)
using the P1 approximation of the RTE. It is based on the assumption that the radiance in
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an optical medium in which multiple scattering occurs is almost isotropic, and scattering in
that medium is dominant over absorption. The modified Beer–Lambert law (MBLL) is also
sometimes used to model thick tissues [9,10]. However Boas et al. [11] observed that standard
MBLL analysis cannot accurately quantify relative changes in the concentration of chromophores.
Bhatt et al. [12] proposed a generalized Beer–Lambert model to overcome this limitation and
have applied this method widely to near-infrared spectroscopy (NIRS) studies.

In DOT, technically, such interactions can be accurately described by a diffusion equation (DE)
which is derived from the radiative transfer equation (RTE) [1] under the assumption that the
radiance in an optical medium is almost isotropic, and that the scattering interactions dominate
over absorption [13]. Defining a computational domain Ω with boundary surface Γ and internal
domain Ω′ (i.e. Ω = Ω′ ∪ Γ and Ω′ ∩ Γ = ∅), the DE for a continuous wave (CW) imaging
system is given as

−∇ · (κ (x) ∇Φ (x)) + µa (x)Φ (x) = q0 (x) for x ∈ Ω. (1)

Φ (x) is the photon fluence rate as a function of position x. The diffusion coefficient κ (x) =
1/(3(µa (x) + µ′s (x))), where µa and µs are the spatially varying absorption and scattering
coefficients and µ′s (x) = (1 − g)µs (x) where g is the anisotropy factor [14]. q0 (x) is the isotropic
component of the source. ∇ is the gradient operator and ∇ · (·) denotes the differential divergence
of a vector function (i.e. κ∇Φ). This is usually solved under the Robin boundary condition (RBC)
in which light that escapes the medium does not come back. The RBC is written as

2An̂ · (κ (x) ∇Φ (x)) + Φ (x) = 0 for x ∈ Γ, (2)

where n̂ denotes the outward unit normal on the boundary. A is related to the relative refractive
index mismatch between the medium and air and is derived from Fresnel’s law [14].
Mathematically, Eq. (1) is an elliptic partial differential equations, the differential operators

(i.e. gradient or divergence) in which are defined using the classical vector calculus. A general
approach to analytically solve the DE (with its RBC) is to apply the Green function, but
analytical solutions are only known for homogeneous objects [15–17]. For more complex DOT
geometries, the finite element method (FEM) [16] is commonly used to discretize the DE and
its RBC. In this discretization, the computational domain Ω is divided into a series of elements
(triangles in 2D, tetrahedra in 3D). The discretized geometry using FEM is normally termed as
a FE mesh. However, FEM implementations can be difficult and time-consuming, especially
when higher-order polynomial basis (shape) functions are used for non-linear interpolation
between vertices of high-order elements [18]. In previous work [19], we introduced a graph
representation to discretize a total-variation regularization term for the inverse problem in DOT.
In this discretization, the object geometry is represented by an unstructured graph, defined by
vertices, edges and weights. The graph was constructed by exploring neighborhood relationships
between vertices.
In order to fully leverage the power of graph-based discretization, one must use the nonlocal

vector calculus. In the classical local vector calculus, the differential operators are numerically
evaluated using purely local information. In the nonlocal calculus, the operators include more
pixel information in the domain. For example, in image processing, some well-known PDEs
and variational techniques such as nonlocal image denoising [20,21] and inpainting [22,23]
have explored the advantages of nonlocal vector calculus [21,24]. When applied to these
problems, local operators include information from only neighbouring pixels whilst nonlocal
methods include information from a wider area and are naturally formulated in a graph-based
representation instead of in terms of the classical local difference operators.
In image processing, nonlocal methods are shown to have several advantages over local

methods, including preservation of important image features such as texture and ability to handle
unstructured geometries. It has also been observed that many PDE-based physical processes,
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minimizations and computational methods, such as CT image processing and reconstruction [25],
can be generalized to be nonlocal. Therefore we expect that such a framework may be useful for
the physical modelling in DOT.
As such, we propose a nonlocal diffusion equation (NDE) as a new forward model for DOT.

The concept of differential operators under the nonlocal vector calculus [21–24] is used to
formulate a new forward model that can accurately simulate light propagation in turbid media.
The discretization for the NDE is performed using a graph-based numerical method (GNM). As
a result, the proposed method naturally applies without modification to complex, unstructured
DOT geometries in both two and three dimensions. The accuracy of the proposed model is
compared against the conventional diffusion equation implemented by FEM and to the existing
analytical solution on a homogeneous slab. We also compare the image reconstruction accuracy
of different forward models on a 2D circular model and a 3D human head model. It should be
noted that the diffusion equation is also used to model light propagation in imaging techniques
such as diffuse correlation spectroscopy and near infrared spectroscopy, and our results can be
applied to any technique that uses a diffusion-based model of light propagation.

2. Methodology

Our approach is based on reformulating the diffusion equation (Eq. (1)) in terms of nonlocal
differential operators. We denote ∇w(·), divw(·) and Nw(·) as the nonlocal gradient, the nonlocal
divergence and the nonlocal normal derivative, respectively. Their definitions are given in Eq.
(6), Eq. (7) and Eq. (8). We simply replace the differential operators in Eq. (1) with their
nonlocal counterparts and solve the new NDE under the framework of nonlocal vector calculus:

−divw (κ (x) ∇wΦ (x)) + µa (x)Φ (x) = q0 (x) for x ∈ Ω′. (3)

Similarly, we reformulate the RBC with the nonlocal normal derivative and the nonlocal gradient
to give a nonlocal boundary condition (NBC):

2ANw (κ (x) ∇wΦ (x)) + Φ (x) = 0 for x ∈ Γ. (4)

We now formulate a graph-based numerical method to discretize the NDEwith its NBC. Following
established methods [21,24], we first discretize the computational domain Ω using a weighted
graph G = (V ,E,w), where V = {Vk}

N
k=1 denotes a finite set of N vertices, and E ∈ V × V

represents a finite set of weighted edges. Here V = VΩ′ ∪ VΓ with VΩ′ representing vertices in Ω′
and VΓ vertices on boundary Γ. In this study, we assume that G is an undirected simple graph
(no multiple edges). Let (i, j) ∈ E be an edge of E that connects the vertices i and j in V . The
weight wij denotes the similarity between two vertices i and j. The computation of this quantity
is discussed later in this section. The nonlocal differential operators required by Eq. (3) and Eq.
(4) on the graph G are then defined as follows.

Definition (Nonlocal gradient). For a function Φi : V → R and a nonnegative and symmetric
weight function wij: V × V → R, the nonlocal partial derivative can be written as

∂jΦi ,
(
Φj − Φi

) √wij : V × V → R. (5)

Therefore the nonlocal gradient ∇wΦi is defined as the vector of all partial derivatives:

∇wΦi,j ,
(
Φj − Φi

) √wij : V × V → R. (6)

Definition (Nonlocal divergence). Given a vector function νi: VΩ′ → R and a weight function
wij: V × V → R, the nonlocal divergence operator divw acting on νi is

divw νi ,
N∑
j=1

(
νij − νji

) √wij : VΩ′ → R, (7)

where νij is the j’th element of νi.



Research Article Vol. 10, No. 12 / 1 December 2019 / Biomedical Optics Express 6230

Definition (Nonlocal normal derivative). Given a function νi: VΓ → R and a weight function
wij: V × V → R, the nonlocal normal operator acting on νi is

Nwνi , −
N∑
j=1

(
νij − νji

) √wij : VΓ → R. (8)

Definition (Nonlocal Laplacian). Let Φi : V → R and wij: V × V → R. The linear nonlocal
Laplace operator acting on Φi is defined based on Eq. (6) and Eq. (7):

∆wΦi ,
1
2

divw (∇wΦi) =

N∑
j=1

(
Φj − Φi

)
wij : V → R. (9)

The nonlocal normal derivative Nw in Eq. (8) is a nonlocal analogue of the normal derivative
operator at the boundary encountered in the classical differential vector calculus (i.e. n̂ in Eq.
(2)). Note that divw in Eq. (7) and Nw in Eq. (8) have similar definitions but differ in their
signs and the regions over which divw νi and Nwνi are calculated. Also note that the mapping
νi 7→ Nwνi is scalar-valued which is analogous to the local differential divergence of a vector
function in Eq. (1). Finally, with the definitions of divw and Nw, the nonlocal divergence
theorem is

∫
Ω′

divw νdx =
∫
Γ
Nwνdx, which essentially relates the flow (i.e. flux) of a nonlocal

vector field through a boundary/surface to the behaviour of the nonlocal vector field inside the
boundary/surface.

It should be noticed from the nonlocal differential operator definitions (Eq. (6), Eq. (7), Eq. (8)
and Eq. (9)) that, in a full non-local scheme, each vertex has connections with all the vertices in V
over Ω such that the constructed graph is fully connected. This can make the computational load
extremely heavy and so approaches based on spectral graph theory [26,27] or nearest neighbors
[28], are typically employed to partition the vertices in the computational domain into groups
according to their similarities. For example, Bertozzi [27] used spectral approaches along with
the Nyström extension method to efficiently calculate the eigendecomposition of a dense graph
Laplacian. The second eigenvector of the graph Laplacian was used to initialize the partitioning
so that the weights between vertices in different groups are small and the weights between vertices
within the same group are large. In this paper, we build the graph by using the positions of the
nodes and the connectivity between nodes in the finite element mesh as the vertices and edges
in the graph to sparsify the graph for computational efficiency. We have learned from previous
work [19] that the graph-based nonlocal inverse model with this sparse method can achieve
accurate and stable reconstruction, regardless of the mesh resolution. Therefore for each vertex
i, we consider only those vertices that are directly connected to the vertex i for Ni (i.e. those
vertices that share the same edge with i). With this structure and the nonlocal discrete differential
operators, we can derive the following discretized versions of Eq. (3) and Eq. (4):∑

j∈Ni

(
κi + κj

) (
Φi − Φj

)
wij + µaiΦi = q0i for i ∈ Ω′

2A
∑
j∈Ni

(
κi + κj

) (
Φi − Φj

)
wij + Φi = 0 for i ∈ Γ

(10)

The nonnegative and symmetric weight function wij between two connected vertices i and j
has many possible choices. In this work, we first obtain the similarity wij by simply using the
inverse of the Euclidean distance dij between two nodes. Then we normalize the similarity using
wij/

∑
j∈Ni wij to convert the similarities into probabilities and ensure that the probabilities sum to

one.
We note that due to the nature of the graph representation, the implementation of Eq. (10) is

identical for a 2D or 3D geometry. It should also be noted that increasing the number of vertices
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and edges will decrease the sparsity of the graph and increase the computational burden with no
change in the implementation. Under these assumptions, Eq. (10) can be rewritten in matrix
form as

MΦ = Q. (11)

M is a N ×N sparse matrix and a symmetric, diagonally dominant and positive definite real-value
matrix, whose entries are

Mi,j =



∑
j∈Ni

(
κi + κj

)
wij + µai if i = j ∈ Ω′∑

j∈Ni

(
κi + κj

)
wij +

1
2A if i = j ∈ Γ

−
(
κi + κj

)
wij if i , j and j ∈ Ni

0 otherwise

.

Q is a N × Ns sparse matrix where Ns is the number of sources and each column represents one
distributed Gaussian source. The linear system (Eq. (11)) can be solved exactly by using a direct
solver with Cholesky decomposition.

3. Experimental results

In this section, numerical experiments are conducted to quantitatively evaluate the performance
of the proposed NDE method. The NDE method with the GNM implementation will be
compared against the original DE with the FEM implementation. We evaluate the light
propagation performance of the proposed method in a 3D homogeneous rectangular slab and then
a heterogeneous two-layer rectangular slab where the analytical solutions are known, followed
by two dimensional (2D) and three dimensional (3D) image reconstruction examples. All the
experiments are performed using Matlab 2018b on a Windows 7 platform with an Intel Xeon
CPU i7-6700 (3.40 GHz) and 64 GB memory.

3.1. Forward modelling on a 3D rectangular-slab model

To quantitatively compare our GNM method with classical FEM approaches, we model a
rectangular-slab of size: 200×100×100 mm3, as shown in Fig. 1. The mesh is composed of
442381 nodes corresponding to 2620541 tetrahedral elements, with the average nodal distance of
1.5 mm. For the forward model based on FEM, such a discrete structure can be directly employed
for the finite element method. However, the forward model based on GNM requires only the
vertices and edges of the mesh. It is well known that Monte Carlo method is the gold standard for
modeling photon and electron transport in medium. However it is costly in computational time,
because a large number of photons need to be simulated so as to acquire meaningful statistics.
FEM based models have been shown to be capable of producing quantitatively correct boundary
measurements when the mesh resolution is high [29]. Therefore in this work, we evaluate the
light propagation performance of both methods (FEM and GNM) on a slab mesh in which
the average nodal distance is as small as 1.5 mm. We then compare both methods with the
well-known analytical solution. We conduct simulations using a CW source for which we can
analytically calculate the photon flux measurement on the boundary (BF) as well as the fluence
rate (FR) at each vertex.
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Fig. 1. Rectangular-slab mesh with one source (red dot) and six detectors (green dots). The
distance between the source and the six detectors varies from 15 mm to 40 mm, in 5 mm
increments.

3.1.1. 3D homogeneous rectangular-slab model

For a 3D homogeneous rectangular-slab model, the optical parameters µa and µ′s in the slab were
set to 0.01 mm−1 and 1 mm−1, respectively. The analytical solution of the BF has the form [15]:

I (ρ) =
1
4π

[
1

µa + µ
′
s

(
µeff +

1
r1

)
e−µeffr1

r12
+

3 + 4A
3 (µa + µ′s)

(
µeff +

1
r2

)
e−µeffr2

r22

]
, (12)

where ρ represents the distance from the source, A is the internal reflection parameter for
the air-tissue interface, µeff is the effective attenuation coefficient which is

√
3µa (µa + µ′s),

r1 =
√
1/(µa + µ′s)2 + ρ2 and r2 =

√
(3 + 4A)2/(3(µa + µ′s))2 + ρ2.

In Fig. 2(a), we plot the normalized photon flux at the boundary (NBF). We normalize the BF
to remove any constant offset resulting from the use of different propagation models. It can be
seen that the NBF from both forward models match the analytical solution. In order to observe
the difference clearly, in Fig. 2(b), we plot the percentage of error between the analytical solution
and the other two methods with regards to NBF. The percentage of error is calculated by, for each
source-detector channel, dividing the absolute difference between each forward model and the
analytical solution by the analytical solution. We average the percentage errors along the six
source-detector pairs. The forward models based on FEM and GNM are both shown to reproduce
the analytical solution to within 7% on average.
We then compare the FR calculated at the vertices inside of the medium. The analytical

solution of the FR is [17]:

Φ (r, z) =
Pµ2eff
4πµa


©«

exp
{
−µeff

[
(z − z0)2 + r2

]1/2}
−µeff

[
(z − z0)2 + r2

]1/2 ª®®¬ −
©«

exp
{
−µeff

[
(z + z0)2 + r2

]1/2}
−µeff

[
(z + z0)2 + r2

]1/2 ª®®¬
 , (13)

where P is the source power. z0 is the depth of the source which is 1/µ′s. z represents the depth
under the surface which is z = 50mm in our case. r is the distance between a given vertex and
the source on the X-Y plane. Note that

√
(z − z0)2 + r2 represents the distance between a given

vertex and the source.
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Fig. 2. The flux measurements on the boundary versus the source-detector distance. (a):
NBF; (b): Percentage of error based on NBF.

In Fig. 3, we compare the FR calculated using Eq. (13) and the FEM and GNM methods. We
choose the vertical plane across the source-detector positions as the region of interest (ROI). For
each method, in order to remove any constant offset resulting from the use of different propagation
models, we rescaled FR onto the range [0, 1] by dividing the FR with the highest FR value in the
ROI and name the rescaled FR as NFR. This is necessary because in FEM, point sources are
distributed across the nodes belonging to the element in which the source is placed, whereas
in GNM, the source is fully attached to the nearest node. The two methods can therefore have
different initialization states for the same source. In Fig. 3(a)–(c), we plot the NFR at each vertex
in the ROI calculated using the analytical method, and the FEM and GNM models, respectively.
We also plot its logarithm in (d)–(f), corresponding to the NFR in (a)–(c) respectively. It can
be observed that the light propagation in the medium modelled by the proposed forward model
is comparable to the one modelled by the forward model based on FEM. In order to see the
difference clearly, in Fig. 4, we plot the descending tendency of the NFR calculated by different
propagation methods. Specifically, we plot the logarithm of NFR along the z axis starting from
the source position. As can be seen, for all methods the fluence rate gradually drops as the light
penetrates deeper. The descending tendency of the curves derived from the both forward methods
are almost parallel to the one from the analytical solution. Therefore we can see that all the three
models can generate the same NFR distribution.

3.1.2. 3D heterogeneous rectangular-slab model

We further evaluate the light propagation performance of FEM and GNM on a heterogeneous
model which has the same geometry as the previous example, but contains two optically different
layers. We choose the thickness of the first layer to be relevant to one potential application of
the layered model: DOT for measurements of cerebral oxygenation, where the thickness of the
tissues above the brain is around 10 mm. Figure 5 gives the 2D section of the two-layered model
in which the thickness of the first layer is 7.5mm. The optical properties (µa, µ′s) in the two layers
were set to (0.015 mm−1, 1.5 mm−1) and (0.01 mm−1, 1 mm−1), respectively. The positions of
sources and detectors are the same as that in Section 3.1.1. The analytical solution of the BF for
two-layered medium is given in [30] and we use it as the ground truth to evaluate the accuracy of
our proposed forward model. In Fig. 6, we first plot the normalized photon flux (NBF) at the
boundary versus the source-detector separation and then give the percentage of error between the
analytical solution and the other two methods. The forward models based on FEM and GNM are
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Fig. 3. (a)–(c): NFR at each vertex in the ROI calculated using the analytical solution,
forward models based on FEM and the one based on GNM, respectively; (d)–(f): logarithm
of the NFRs, corresponding to (a)–(c).

Fig. 4. Descending tendency of the NFR from the source to the medium along the z axis.
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both shown to reproduce the analytical solution to within 8.5% on average. Similar to what we
observed in the previous section, GNM has less error than FEMwhen the source-detector distance
is short (15mm) while the error becomes greater when the source-detector distance is as long
as 40mm. There is no significant difference in the percentage errors when the source-detector
distance is between 20mm to 35mm. Therefore similar conclusions can be achieved from the
experiments in Section 3.1.1 and 3.1.2.

Fig. 5. Scheme of the heterogeneous rectangular-slab model.

Fig. 6. The flux measurements on the boundary versus the source-detector distance. (a):
NBF; (b): Percentage of error based on NBF.

3.1.3. Computational time

After evaluating the accuracy of the fluence rates and boundary measurements modelled by
different forward models, in Fig. 7, we compare the computational efficiency of FEM and
GNM forward models on the 3D homogeneous rectangular-slab model. We run each model on
six meshes with different average nodal distance of 1.5, 2, 2.5, 3, 3.5 and 4 mm respectively.
The mesh spatial resolution becomes lower when the nodal distance is larger. We run each
forward modelling process ten times and record the mean and standard deviation of the CPU time
consumed for computing one source-detector channel. For a fair comparison, we use a direct
solver with Cholesky decomposition to solve the linear equation resulting from each forward
model.
For all mesh resolutions, based on each source-detector channel, the CPU times required by

the FEM model are larger than for GNM. When the mesh resolution is low (for example the case
where the average nodal distance is 4 mm) the CPU time consumed by the FEM approach (0.11s)
is 175% larger than the time required by the GNM approach (0.04s). When the mesh resolution
is high (average nodal distance is 1.5 mm), the CPU time consumed by the FEM approach (14.6s)
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Fig. 7. CPU time (s) consumed at one source-detector channel using different forward
models. ’A’ represents the FEM approach while ’B’ represents the GNM approach. Right
figure is the zoomed-in plot of the area in the green dash line of the left figure.

is only 14% longer than the GNM approach (12.7s). It should be noticed that the CPU time
plotted in Fig. 7 is only for one source-detector channel. GNM is 14% faster than the FEM
approach when average nodal distance is low (mesh resolution is high). For DOT which normally
has thousands of source-detector channels in some clinical scenarios, this 14% improvement at
each channel would make a significant difference in the total computational time. This result
demonstrates the computational efficiency of the proposed forward model.

3.2. Image reconstruction using different forward models

We now consider the recovery of the optical properties at each vertex within the medium using
both forward models. The image reconstruction process is implemented by iteratively refining the
optical properties of the forward model until the forward model prediction matches the boundary
measurements [14]. It can be implemented by solving the following minimization problem:

µ∗a = arg min
µa

{
‖ΦM − F (µa) ‖

2
2 + λR (µa)

}
, (14)

where ΦM represents the boundary measurements acquired from the optical detectors, F is the
non-linear operator induced from the forward model, R is a general regularization term, and λ is
a weight that determines the extent to which regularization will be imposed on the solution µ∗a. In
this paper, we adopt the popular quadratic Tikhonov-type regularization (R(µa) = ‖µa − µa,0‖22 )
for all methods for fair comparison [14]. Four quantitative evaluation metrics are considered to
evaluate the reconstruction results: the average contrast (AC) [31], peak signal-to-noise ratio
(PSNR) [31], structural similarity index (SSIM) [32] and root mean square error (RMSE) [32].
If the reconstructed image is identical to the ground truth image, AC is equal to 1. For PSNR
and SSIM, the recovered image has higher quality if higher PSNR or SSIM values are obtained.
Lower RMSE represents better reconstruction results. Randomly generated Gaussian noise is
added to the amplitude of the measurement vector to simulate real noise in a CW system. In
order to reduce the randomness resulting from the randomly distributed Gaussian noise, we run
each experiment ten times and record the average (mean) and standard deviation (SD) of the four
evaluation metrics.
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3.2.1. Image reconstruction on a homogeneous circle model

We consider a 2D homogeneous circular geometry containing one target activation region (Fig.
8(b)). The model has a radius of 43mm and is composed of 1785 nodes and 3418 linear triangle
elements. Sixteen source-detector fibres are placed equidistant around the external boundary for
data acquisition (Fig. 8(a)). When one fibre as a source is turned on, the rest are used as detectors,
leading to 240 total boundary measurements. All sources were positioned one scattering distance
within the outer boundary because the source is assumed to be spherically isotropic. The
background absorption coefficient is set to 0.01 mm−1. One 10mm radius target region is centred
at (20mm, 0mm) with 0.03 mm−1 absorption coefficient. The reduced scattering coefficient is set
to be homogeneous throughout the whole computational domain with the value of 1 mm−1. 1%
normally distributed Gaussian noise was added to the amplitude of the measurement vector.

Fig. 8. (a): A typical circle mesh with sixteen co-located sources and detectors; (b): True
distribution of µa; (c): Images reconstruction of µa using the forward model based on FEM
and GNM (from left to right column) on 0% (top part) and 1% (bottom part) noisy data.

Figure 8(c) shows the reconstruction results using the forward model based on FEM (Eq. (1))
and GNM (Eq. (3)) on 0% and 1% noisy data respectively. By visual inspection, it is evident that
for the same level of Gaussian noise, the image recovered using the GNM approach is similar to
the one recovered using the FEM approach. Figure 9 gives the 1D cross section of the results
recovered in Figure 8 along the horizontal line across the centre of the target (20mm, 0mm). It
can be seen that the curves resulting from different forward models have similar edge smoothing
resulting from the Tikhonov regularization and slightly different peak values. This is consistent
with our visual observation from the reconstructed images in Figure 8.

In Table 1, the values of the metrics AC, PSNR, SSIM and RMSE are shown to qualitatively
evaluate the results in Figure 8. It can be observed that when the data is clean, GNM gives
AC closer to 1, slightly higher PSNR and SSIM, and lower RMSE than FEM. For the noisy
data, GNM achieves similar AC, PSNR, SSIM and RMSE values with the FEM approach. This
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Fig. 9. 1D cross sections of images recovered in Figure 8 along the horizontal line across
the centre of the target. Left to right column: 0% and 1% added Gaussian noise.

experiment quantitatively validates the forward modelling capacity of our proposed model and
the consistency between these two forward models.

Table 1. Evaluation metrics for the recovered results using FEM and GNM on data with 0% and 1%
added noise.

0% noise 1% noise (Mean ± SD)

FEM GNM FEM GNM

AC 1.1 1.0 1.1 ± 0.1 1.1 ± 0.1

PSNR 54.5 55.8 54.3 ± 0.5 54.3 ± 0.4

SSIM 99.6e-2 99.7e-2 99.6e-2 ± 7.6e-4 99.6e-2 ± 4.9e-4

RMSE 1.9e-3 1.6e-3 1.9e-3 ± 1.2e-4 1.9e-3 ± 8.4e-5

3.2.2. Image reconstruction on a heterogeneous head model

We now evaluate both forward models on a physically realistic three dimensional heterogeneous
head model. This head model is composed of three tissue layers which are scalp, skull and
brain. The reconstruction mesh consists of 50721 nodes associated with 287547 tetrahedral
elements, with the average element size 9.3mm3. Each node is assigned to one of the three layers.
Absorption coefficients assigned to each layer refer to an in vivo study [33] at 750nm.

A large rectangular imaging array with 36 sources and 37 detectors was placed over the
back-head area (Figure 10(a)), allowing use of multiple sets of overlapping measurements which
can improve both the spatial resolution and quantitative accuracy [34]. The source-detector
(SD) separation distances ranges from 1.3 to 4.8cm, leading to 590 overlapping, multi-distance
measurements. One anomaly with 15mm radius is simulated in the brain (Figure 10(b)). In order
to simulate traumatic brain injury (TBI) cases where the cerebral tissue oxygen saturation (StO2)
is normally between 50% and 75% [35] (compared to 80% in healthy tissue), the absorption
coefficient in the anomaly is calculated using Beer’s law [14] with 55% StO2. In line with the
current in vivo performance of the imaging system, 0.12%, 0.15%, 0.41% and 1.42% Gaussian
random noise was added to first (13mm), second (30mm), third (40mm) and fourth (48mm) nearest
neighbor measurements to provide realistic data [36]. Reconstructed absorption coefficients
of the simulated anomaly using different models are displayed in the third to fourth column of
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Figure 10. Corresponding 2D cross section is given in the second row. The visualization suggests
that GNM can achieve better reconstruction performance with optical property values closer
to the ground truth. This may be because the simulated anomaly is close to the outer surface
and GNM gives lower errors when the source detector distance is low. We can also see that the
results by both methods are smoothed and the volume sizes of the recovered anomaly are smaller
than the ground truth. Evaluation metrics are given in Table 2. Even though there is slight visual
difference between the two methods , no obvious difference between these two reconstruction
models can be observed from the four evaluation metrics. These findings further quantitatively
validate the consistency between these two forward models.

Fig. 10. (a): Three-dimensional head mesh and distribution of the rectangular imaging
array with 36 sources (red dots) and 37 detectors (green dots); (b): Ground truth; (c)
Reconstruction with the forward model based on FEM and GNM, respectively.

Table 2. Evaluation metrics for µa on the recovered results shown in Figure 10.

Mean ± SD

FEM GNM

AC 0.8 ± 0.0 0.9 ± 0.1

PSNR 78.9 ± 0.0 79.0 ± 0.0

SSIM 99.9e-2 ± 9.1e-7 99.9e-2 ± 3.8e-7

RMSE 1.1e-4 ± 5.1e-7 1.1e-4 ± 1.8e-6

4. Conclusion

We have proposed a new formulation of the forward model for DOT that is based on the concepts
of differential operators under a nonlocal vector calculus. The discretization of the new forward
model is performed using an efficient graph-based numerical method. Our proposed model is
shown to be able to accurately model the light propagation in the medium and is quantitatively
comparable with both analytical and FEM forward models. Compared with the conventional
forwardmodel based on FEM, our proposedmodel has the following two advantages: 1) according
to the experiments in Section 3.1, our proposed model is shown to be more computationally
efficient with an average speed improvement of 30% compare to the FEM forward model due to
the simple graph-based discretization; 2) it allows identical implementation for geometries in
different dimensions thanks to the nature of the graph representation. In addition, the proposed



Research Article Vol. 10, No. 12 / 1 December 2019 / Biomedical Optics Express 6240

graph-based discretization method can also be applied to other imaging techniques which are
modelled using a diffusion equation, where has potential to improve the computational efficiency
and simplicity.
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