Vastus lateralis motor unit firing rate is higher in women with patellofemoral pain

Gallina, Alessio; Hunt, Michael A.; Hodges, Paul W.; Garland, S. Jayne

DOI:
10.1016/j.apmr.2018.01.019

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 19/09/2019

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?).
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Title: Vastus lateralis motor unit firing rate is higher in females with patellofemoral pain

Running head: Motor unit firing rate in patellofemoral pain

Alessio Gallina, MSc, Michael A. Hunt, PhD, Paul W. Hodges, PhD, S. Jayne Garland, PhD

aGraduate Programs in Rehabilitation Science, University of British Columbia, Vancouver, BC, Canada;
bDepartment of Physical Therapy, University of British Columbia, Vancouver, BC, Canada;
cSchool of Health & Rehabilitation Sciences, University of Queensland, Brisbane, QLD, Australia;
dFaculty of Health Sciences, Western University, London, ON, Canada
ABSTRACT:

Objective: To compare neural drive, determined from motor unit firing rate, to the vastus medialis and lateralis in females with and without patellofemoral pain.

Design: Cross-sectional study.

Setting: University research laboratory.

Participants: Females (N=56) 19-35 years old, 36 with patellofemoral pain and 20 controls.

Interventions: Not applicable.

Main Outcome Measure(s): Participants sustained an isometric knee extension contraction at 10% of their maximal voluntary effort for 70s. Motor units (N=414) were identified using high-density surface electromyography. Average firing rate was calculated between 5 and 35s after recruitment for each motor unit. Initial firing rate was the inverse of the first three motor unit inter-spike intervals.

Results: In control participants, vastus medialis motor units discharged at higher rates than vastus lateralis ($p=0.001$). This was not observed in females with patellofemoral pain ($p=0.78$) due to a higher discharge rate of vastus lateralis compared to control participants ($p=0.002$). No between-group differences were observed for vastus medialis ($p=0.93$). Similar results were obtained for the initial motor unit firing rate.

Conclusions: These findings suggest that females with patellofemoral pain have a higher neural drive to vastus lateralis but not vastus medialis, which may be a contributor of the altered patellar kinematics observed in some studies. The different neural drive may be an adaptation to patellofemoral pain, possibly to compensate for decreased quadriceps force production, or a precursor of patellofemoral pain.
KEYWORDS: Patellofemoral pain; Motor unit; EMG; quadriceps; neural drive

ABBREVIATIONS LIST: PFP: Patellofemoral Pain; EMG: Electromyographic; VM: Vastus Medialis; VL: Vastus Lateralis; MU: Motor Unit; ES: Effect Size; CI: Confidence Interval.
INTRODUCTION:

Patellofemoral pain (PFP) is a musculoskeletal disorder characterized by anterior knee pain during activities such as stair climbing, squatting, and sitting for long time periods. As lower knee extension strength is associated with PFP and has been identified as a risk factor for PFP, altered neuromuscular function of the knee extensor muscles is considered to play a role in the development and maintenance of PFP.

More specifically, as the medial and lateral components of the quadriceps apply different medio-lateral forces at the patella, their unbalanced activation may alter pressure distribution across the patellofemoral joint as well as patellar kinematics.

A widely investigated indicator of coordination between vasti muscle activation in PFP is the relative timing of activation of vastus medialis (VM) and lateralis (VL) muscles during movement. Although commonly used, a systematic review identified only a trend for delayed activation of the VM relative to VL and this was largely accounted for by large and unexplained variability across studies. In addition, although timing measures are easy to obtain and provide valuable information, they only permit the identification of temporal differences in muscle activation. The force exerted by a muscle is known to depend on the number and discharge rate of its active motor units. For this reason, altered neural drive to VM and VL may be relevant for PFP.

Previous studies have investigated surface electromyographic (EMG) amplitude to compare vasti muscle activation between participants with and without PFP. However, this provides only a crude indicator of the neural drive to a muscle, as surface EMG amplitude is influenced by factors such as: adipose tissue thickness, normalization, crosstalk, motor unit action potential cancellation, and others, which
may differ between groups. In isometric tasks, the influence of these factors can be limited by estimating the neural drive from motor unit (MU) activity. Although motor unit activity has traditionally been assessed using intramuscular recordings, recent technological advances enable estimation of neural drive using non-invasive high-density surface electromyography.

The aim of this study was to compare neural drive to the vastus medialis and lateralis in females with and without PFP during a submaximal, isometric task. On the basis of theories that propose a role for unbalanced activation of the vasti muscles, we hypothesized that MU firing rate of VM would be lower in participants with PFP relative to asymptomatic controls, or VL would be higher, or both.

METHODS:

Thirty-six females with PFP and 20 asymptomatic females (control participants) were recruited for the study from the community and from local physiotherapy clinics. To be included in the PFP group, participants had to be: female, 19-35 years old, with retro- or peri-patellar knee pain of intensity equal or greater than 3/10 for at least 1 month aggravated by any of the following activities: sitting for long time periods, stair ambulation, squatting, running, kneeling or jumping. They also needed to report pain or discomfort to at least one of the following tests: patellar palpation, patellar compression, resisted knee extension with knee close to full extension, or isometric knee extension while applying pressure proximally to the patella. These criteria were similar to those used in other studies\(^\text{10,17,21}\); the screening was performed by a physiotherapist with more than 2 years of clinical experience in musculoskeletal assessment. Asymptomatic
controls must not have had any knee pain in the last 12 months. Participants were excluded from either group if they had chronic neuromuscular disorders affecting the legs or previously had lower-limb surgery. All participants provided written informed consent before the start of the experimental session. The study was approved by the institution’s Clinical Research Ethics Board.

Body mass and height were measured, and age, time of onset of pain and average pain intensity in the previous week (11-point Numerical Rating Scale) were obtained by self-report for each participant. Physical activity (General Physical Activity Questionnaire, GPAQ 22) and functional limitation (Anterior Knee Pain scale 23) were evaluated using validated questionnaires. The test leg was the most painful knee. For control participants, the leg was determined randomly before the testing session.

The protocol consisted of recording high-density surface EMG signals from both vasti during a submaximal, isometric task. The electrode grids were placed according to anatomical references as described previously 24. The medial and lateral edges of VM and VL were identified using ultrasound imaginga and were marked on the skin. VM and VL innervation zones were located using a linear electrode array (16 silver bar electrodes, 10-mm interelectrode distanceb) and marked on the skin. Two electrode grids (semidisposable adhesive matrixb) were placed on the skin so that the innervation zone was aligned between the second and third column, and all the electrodes were placed on the muscle of interest. Each grid comprised 64 electrodes arranged in 5 columns and 13 rows with an electrode missing in one of the corners, 8 mm inter-electrode distance and was held in place using bi-adhesive foam. In the VM, for instance, the longer dimension of the electrode grid (approximately 10 cm) spanned the
distal-medial to the proximal-lateral region of the muscle (fig. 1); for this reason, the grid placement provided EMG signals representative of different regions within each vastus muscle. Reference electrodes (2x3.5 cm; conductive hydrogel^c) were placed on the patella and both sides of the knee.

Isometric knee extension torque was measured using an isokinetic dynamometer^d. Participants were secured to the chair; the hip and knee angles were 85 and 45 degrees of flexion, respectively. Resistance was applied approximately 2 cm proximal to the medial malleolus. Participants performed 3 maximal voluntary contractions (MVC) of knee extension with verbal encouragement, with a rest period of at least 60s between trials. Contraction intensity was increased to maximum over approximately 1-2 s and was maintained for at least 3 s before relaxation. The peak of the torque profile was extracted from each trial. The highest torque of the three values was considered the maximal knee extension strength, and normalized to body mass. The submaximal task consisted of a single 70 s knee extension at 10% MVC. Participants were provided with real-time feedback of their knee extension torque and target.

High-density surface EMG signals were collected as monopolar recordings (128-channel EMG-USB^e). Signals were amplified 500-1000 times, filtered (band-pass 10-750 Hz) and digitized at 2048 Hz using a 12-bit A/D converter. Knee extension torque was acquired simultaneously using the same amplifier. Butterworth filters (4th order; 10-400 Hz for the EMG signals; low-pass 10 Hz for the torque) were applied to the signals before processing.
Motor unit discharges were identified separately for VM and VL using a previously described method \(^{25}\) reliable between sessions \(^{27}\) and valid when compared to a gold-standard, intramuscular electromyography \(^{26}\). An example of motor unit identification from surface EMG signals can be observed in figure 1. Motor unit firing patterns were reviewed visually and firing rates >30 Hz or <3 Hz were manually excluded \(^{27}\). Similar to a previous study \(^{28}\), the MU template was created by averaging epochs of 40ms around each MU discharge. The peak-to-peak amplitude was calculated for each of the 13x5 channels to identify the location of each MU, i.e.: where it was represented with highest amplitude. Motor unit recruitment was identified as the first of four consecutive discharges <500 ms apart. The initial MU firing rate was calculated as the inverse of those first three MU inter-spike intervals. The neural drive was quantified two ways: as the initial firing rate at recruitment, and the average firing rate, calculated as the average firing rate between 5s and 35s after motor unit recruitment. Additional parameters used to describe the population of MUs identified were: MU recruitment threshold, calculated as the torque value coincident with the first motor unit discharge (see above); MU location, calculated as the proximal-distal coordinate of the channel with largest peak value (along the longest dimension of the electrode grid, fig.2).

Statistical analyses were performed using SPSS v. 22\(^{e}\). After logarithmic transformation of average firing rate and initial firing rate, the assumptions of normally distributed data (Shapiro-Wilk’s test) and equal variances across groups (Levene’s test) were met. Demographic variables and knee extension strength were compared between groups using unpaired T-tests. Differences in MU firing rates between Groups (PFP,
control) and *Muscles* (VM, VL) were tested using a two-way ANCOVA, separately for average firing rate and initial firing rate. To account for the effect of the MU recruitment threshold on average firing rate and initial firing rate, recruitment threshold torque was included in the model as a covariate. Effect sizes (ES) were calculated using Cohen’s d, separately for each comparison. Two-way ANOVA was used to determine whether MU recruitment threshold torque or MU location differed between *Groups* or *Muscles*. Post-hoc tests were corrected for multiple comparisons using Bonferroni corrections. Statistical significance was set at $p<0.05$.

RESULTS:

When compared to controls, participants with PFP were of similar age, height, weight and physical activity but had higher BMI and lower knee extension strength (Table 1). Twenty-six participants with PFP reported bilateral symptoms. After visual inspection, a total of 414 MUs were identified and included in the analyses. The number of identifiable MUs included for each participant ranged from 2-10 (mean MU/participant=4.8; total N=96) for the VM and 1-12 (mean 4.3; N=86) for the VL of controls, and 0-8 (mean 3.0; N=104) for the VM and 0-8 (mean 3.6; N=128) for the VL of participants with PFP. No MUs were identified from the VM of one participant with PFP and from the VL of 3 participants with PFP.

An interaction effect between *Group* and *Muscle* was observed in the MU average firing rate analysis ($p<0.05$; fig.3). A higher average firing rate was observed in the PFP group compared to controls for VL (8.8 ± 1.7 Hz vs. 8.2 ± 1.6 Hz, $p=0.002$, ES: 0.34, 95% CI: [0.03 0.13]) but not for VM (8.9 ± 2.0 Hz vs. 8.8 ± 1.6 Hz, $p=0.93$, ES: 0.07,
VM had a higher average firing rate than VL in controls (8.8±1.6 Hz vs. 8.2±1.7 Hz, \(p=0.001 \), ES: 0.33, 95% CI: [0.04 0.15]), but no difference between the two vasti was observed in females with PFP (8.9±2.0 Hz vs. 8.8±1.7 Hz, \(p=0.78 \), ES: 0.04, 95% CI: [-0.04 0.05]). Similarly, an interaction effect between Group and Muscle was observed in the MU initial firing rate analysis (\(p=0.001 \); fig.3). A higher initial firing rate was observed in the PFP group for VL (7.4±2.1 Hz vs. 6.4±1.7 Hz, \(p<0.001 \), ES: 0.49, 95% CI: [0.07 0.21]) but not for VM (7.1±2.0 Hz vs. 7.1±1.7 Hz, \(p=0.55 \), ES: 0.03, 95% CI: [-0.09 0.05]). VM had a higher initial firing rate than VL in controls (7.1±1.7 Hz vs. 6.4±1.7 Hz, \(p=0.002 \), ES: 0.40, 95% CI: [0.05 0.20]), but no difference between the two vasti was observed in PFP (7.1±1.9 Hz vs. 7.4±2.1 Hz, \(p=0.17 \), ES: 0.17, 95% CI: [-0.11 0.02]). Neither Muscle nor Group influenced the recruitment threshold torque (\(p>0.2 \)) or MU position (\(p>0.15 \), fig.3).

DISCUSSION:

This study found differences in MU firing rate across individual heads of the quadriceps between females with and without PFP. In females without PFP, VM motor units discharged at higher rates than VL. This difference was not observed in those with PFP and was explained by a higher VL firing rate. We suggest that the greater neural drive to the VL may contribute to altered patellofemoral kinematics, which is proposed to be relevant for PFP.

The evidence of higher neural drive to the VL in females with PFP implies a role of vasti muscle activation in the adaptation to, or in the development of, PFP. Our findings are strengthened by the fact that differences in neural drive cannot be attributed...
to the location of the motor unit within the muscle or its recruitment threshold, as neither differed between groups or muscles. Previous studies identified altered timing and amplitude of surface EMG in PFP10,12,16,18 and with experimental knee pain,29–31. Our findings appear to concur with studies that reported earlier activation for VL rather than delayed activation of VM in reflex contractions32 and when participants with PFP were asked to rise onto their toes33. Overall, this study further expanded this research, showing that the distribution of neural drive between VM and VL, measured as motor unit firing rate, differs between females with and without PFP.

Changes in muscle activation with pain and in musculoskeletal disorders are thought to be a purposeful adaptation to avoid pain in the short-term by altering joint kinematics34. Previous studies on cadavers identified altered patellar kinematics7 and pressure distribution within the patellofemoral joint8 when the relative load of VM and VL was manipulated. In vivo studies showed that anesthetic block of the VM results in altered patellar kinematics9, and studies using EMG timing and amplitude identified associations between VM/VL activation and patellar tilt12,16. Considering the results of these studies, a greater neural drive to the VL may result in larger force produced by the lateral component of the quadriceps. However, caution must be used when inferring forces from muscle activation because muscle force depends on both neural activation and peripheral factors at the muscle level35. As individuals with PFP appear to have smaller cross-sectional areas of the quadriceps muscles as a whole (systematic review by Giles and colleagues36), the neural drive is likely an important contributor to the relative amount of force produced by VM and VL. However, other factors such as
between-group differences in fiber type composition and structural parameters of the
quadriceps should also be considered could also play a role.

Higher discharge rates of VL and similar discharge rate for VM suggest that
neural drive to the quadriceps as a whole is higher in PFP. This is in contrast with the
clinical belief that the quadriceps muscle is inhibited in PFP, and it could inform the
mechanisms that should be targeted in future intervention studies. Functionally, the
greater neural drive to VL (or potentially vastus intermedius or rectus femoris – not
measured in this study) could be an attempt to compensate for a decreased overall
force production capability of the knee extensors, observed as smaller quadriceps
cross-sectional area. Due to its architecture, VL mainly produces a force vector
towards knee extension and may be more efficient than VM to generate forces due to
its greater physiological cross-section area. However, as the VL also applies a
laterally-directed force vector on the patella, a selective increase of neural drive
could potentially result in increased lateral forces applied to the patella. In line with this,
some studies reported increased lateral patellar spin and translation and higher
joint reaction forces in the lateral patellofemoral compartment in PFP. The potential
association between altered neural drive to the quadriceps and altered force production
capabilities at the muscle could be observed in the cross-over effects of interventions
targeting the two dysfunctions. Future studies should investigate the association
between force production capability of the quadriceps and neural drive to the VL in PFP.

The notion that unbalanced vasti activation may be due to greater neural drive to
VL rather than VM inhibition may potentially have clinical implications. Traditionally,
putative imbalanced activation of VM and VL in PFP is treated by enhancing the
activation of the medial component using techniques such as taping \(^{43}\) and therapeutic exercise intended to preferentially target the distal region of the VM \(^{42}\). Less frequently, interventions such as taping \(^{44,45}\) and botulinum injections \(^{46}\) are aimed at reducing the activation or force produced by the VL. This study suggests that reducing neural drive to the VL as opposed to increasing neural drive to the VM may result in muscle activation patterns similar to individuals without PFP. Techniques that reduced/inhibit VL activation have a potential role in rehabilitation. This might be achieved in clinical practice using a variety of techniques, for instance, with taping techniques \(^{44,45}\). Given the assumed link between muscle activity and resultant joint kinematics, our findings support the notion that reducing drive to VL may have positive clinical outcomes. Future longitudinal studies should also evaluate if reducing the neural drive to the VL improves patellofemoral kinematics and kinetics in PFP, resulting in less degeneration of the lateral patellar facet \(^{41}\). The findings of this study may also be relevant for prevention. If differences in neural drive were present before the development of PFP, screening and early treatment may reduce the incidence of PFP; this however should be carefully evaluated in prospective studies. Overall, this study suggests that neural drive may be an important variable of interest in PFP, and further research into its clinical and biomechanical implications is warranted.

LIMITATIONS:

Due to the cross-sectional design of our study, whether the greater drive to the VL is an adaptation to, or precursor of, PFP cannot be determined. More research is needed to understand what drives the greater neural drive to the VL and if this motor
control alteration can be observed in tasks other than isometric contractions. The
association between altered neural drive and differences in force production capabilities
are not examined in the current study and should be assessed to make informed
inferences on force production. It should be noted that changes in MU firing rate provide
an accurate, but only partial, representation of changes in the neural drive. Changes in
motor unit recruitment strategies, such as the number and population of active motor
units, have been described with experimental knee pain \(^{48}\) and are not accounted for by
changes in firing rates. In addition, only females with PFP were tested in this study to
limit the confounding effect of sex-differences in anatomy, muscle strength and
neuromuscular strategies. For this reason, these findings are only generalizable to
females with PFP; future studies should investigate whether similar findings are
observed in males with PFP.

CONCLUSIONS:

Motor unit firing rate of the vastus lateralis, but not medialis, during low-force,
isometric contractions differs between females with and without PFP. Neuromuscular
control of individual quadriceps heads could be considered a possible target for future
interventions aimed to prevention and management of PFP.

FUNDING:

REMOVED FOR BLINDED REVIEW
SUPPLIERS:

a. LogicScan 64 LT-1T; Telemed, Vilnius, Lithuania
b. OTBioelettronica, Torino, Italy
c. Kendall, Covidien, Mansfield, MA, USA
d. System 4 Pro; Biodex Medical Systems, Shirley, NY, USA
e. IBM Inc., Armonk, NY, USA
Fig. 1: Experimental set-up and example of motor unit identification. Left: Placement of the electrode grids; the dashed line depicts the location of the innervation zones across both muscles. Middle: Double differential EMG signals from 10 channels of the VM of a control participant; three of the motor units automatically identified are highlighted with grey boxes (A, B, C). Right: the triggered-average surface EMG representation of each motor unit.
Fig.2: Motor unit discharges and location. Left: firing rate of one motor unit from VM (black) and VL (gray) in one control participant and one with PFP. The torque signal is shown as a thick, light grey line; the recruitment threshold of the VM and VL MU is indicated as a black and a gray circle respectively. Right: examples of motor units located distally and proximally within the VL. Crosses on each surface EMG amplitude distribution identify the peak of the distribution; the Y coordinate of that channel was considered to be the proximal-distal location within the muscle.

Fig.3: A) MU firing rate while holding 10% MVC. B) Initial MU firing rate. C) MU Recruitment threshold torque. D) MU position. Statistical significance for post-hoc comparisons is indicated. ** p<0.01.
Table 1: Participant characteristics and knee extension strength. Pain intensity was subjectively rated indicating a number between 0 (no pain) and 10 (worst imaginable pain). Anterior knee pain scores of 100 indicate maximal function and no pain. KES: knee extension strength; nKES: normalized knee extension strength.

<table>
<thead>
<tr>
<th></th>
<th>CTRL</th>
<th>PFP</th>
<th>T-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE, years</td>
<td>25.6 (4.3)</td>
<td>26.7 (4.1)</td>
<td>$p=0.38$</td>
</tr>
<tr>
<td>HEIGHT, cm</td>
<td>167.7 (8.5)</td>
<td>166.4 (7.9)</td>
<td>$p=0.59$</td>
</tr>
<tr>
<td>BODY MASS, kg</td>
<td>58.2 (8.5)</td>
<td>62.3 (8.9)</td>
<td>$p=0.10$</td>
</tr>
<tr>
<td>BMI, kg/m2</td>
<td>20.6 (1.7)</td>
<td>22.5 (2.9)</td>
<td>$p=0.01^*$</td>
</tr>
<tr>
<td>PHYSICAL ACTIVITY</td>
<td>3153 (2034)</td>
<td>4018 (2961)</td>
<td>$p=0.20$</td>
</tr>
<tr>
<td>METmin/week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAIN ONSET, months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(interquartile range)</td>
<td></td>
<td>12-60</td>
<td></td>
</tr>
<tr>
<td>PAIN INTENSITY, out of 10</td>
<td>0 (0)</td>
<td>4.1 (1.5)</td>
<td></td>
</tr>
<tr>
<td>ANTERIOR KNEE PAIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCORE23, out of 100</td>
<td>100 (0)</td>
<td>74.3 (8.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td>(p <)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>nKES, Nm/kg</td>
<td>2.3±0.4</td>
<td>1.9±0.5</td>
<td>(<0.01^*)</td>
</tr>
<tr>
<td>KES, Nm</td>
<td>135.3±32.9</td>
<td>116.5±30.6</td>
<td>(<0.05^*)</td>
</tr>
</tbody>
</table>
REFERENCES:

Herrington L. The difference in a clinical measure of patella lateral position

