Prostaglandin E(2) induces spontaneous rhythmic activity in mouse urinary bladder independently of efferent nerves
Kobayter, S; Young, JS; Brain, Keith

DOI:
10.1111/j.1476-5381.2011.01543.x

Citation for published version (Harvard):
Prostaglandin E₂ induces spontaneous rhythmic activity in mouse urinary bladder independently of efferent nerves

S Kobayter¹, JS Young¹* and KL Brain²

¹Department of Pharmacology, University of Oxford, Oxford, UK, and ²School of Clinical and Experimental Medicine, University of Birmingham, Medical School, Birmingham, UK

BACKGROUND AND PURPOSE
The acute effects of PGE₂ on bladder smooth muscle and nerves were examined to determine the origin of PGE₂-induced spontaneous rhythmic contractions.

EXPERIMENTAL APPROACH
Contraction studies, confocal Ca²⁺ imaging and electrophysiological recordings in strips of mouse urinary bladder were used to differentiate the effects of PGE₂ on bladder smooth muscle and efferent nerves.

KEY RESULTS
PGE₂ (50 μM) increased the tone and caused phasic contractions of detrusor smooth muscle strips. Confocal Ca²⁺ imaging showed that PGE₂ increased the frequency of whole-cell Ca²⁺ transients (WCTs) (72 ± 5%) and intracellular recordings showed it increased the frequency of spontaneous depolarizations, from 0.31-s⁻¹ to 0.90-s⁻¹. Non-selective inhibition of EP receptors using SC-51322 and AH-6809 (10 μM), or the L-type Ca²⁺ channel blocker nifedipine (1 μM), prevented these phasic contractions and WCTs, and reduced the tone (by 45 ± 7% and 59 ± 6%, respectively). Blocking P2X1 receptors with NF449 (10 μM) caused a small but significant reduction in the frequency of PGE₂-induced phasic contractions (24 ± 9%) and WCTs (28 ± 17%) but had no significant effect on spontaneous depolarizations or tone. Inhibiting muscarinic receptors with cyclopentolate (1 μM) had no significant effect on these measures. Spontaneous WCTs became synchronous in PGE₂, implying enhanced functional coupling between neighbouring cells. However, the electrical input resistance was unchanged.

CONCLUSIONS AND IMPLICATIONS
It was concluded that depolarization alone is sufficient to explain a functional increase in intercellular coupling and the ability of PGE₂ to increase detrusor spontaneous rhythmic activity does not require parasympathetic nerves.

Abbreviations
AH-6809, 6-isopropoxy-9-xanthone-2-carboxylic acid; KO, knockout; NF449, 4,4',4″-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetakis-1,3-benzenedisulphonic acid; sAP, spontaneous action potential; sEJP, spontaneous excitatory junction potential; SC-51322, 8-chloro-2-[3-[(2-furanyl)methyl]thio]-1-oxopropyl]-dibenzo[Z][b,f][1,4]oxazepine-10(11H)-carboxylic acid hydrazide; SMC, smooth muscle cell; TTX, tetrodotoxin; WCT, whole-cell Ca²⁺ transient
Introduction

Prostanoids are potent and ubiquitous inflammatory mediators. In the bladder, production of prostanoids, particularly PGE₂, is elevated in pathological conditions, such as detrusor overactivity that follows spinal cord injury (Masunaga et al., 2006), and bladder outlet obstruction (Schöder et al., 2004). It is likely that this association is at least partially causative, because inhibiting COX with indomethacin reduces the symptoms of bladder overactivity in people with neurogenic detrusor instability (Cardozo and Stanton, 1980). Prostanoid synthesis occurs locally in bladder urothelium and smooth muscle. This synthesis can be initiated by factors including stretch, nerve stimulation, injury, exposure to ATP and other inflammatory mediators (Dveksler et al., 1989; Khan et al., 1998).

Prostanoids are implicated in the modulation of bladder function (Khan et al., 1998). If PGE₂ is instilled intravesically in the conscious, catheterized rat, micturition is facilitated and an increased basal intravesical pressure is generated (Ishizuka et al., 1995). Similar urodynamic effects are observed in humans; intravesical instillation of PGE₂ causes detrusor overactivity, urgency and decreased bladder capacity (Schussler, 1990). The basis for such excitatory effects, observed in detrusor strips of animal models and humans (Maggi, 1992) is likely to be a slow increase in detrusor muscle tone, followed by an increase in phasic contractions (Bultitude et al., 1976). These PG-generated smooth muscle contractions are inhibited by the L-type calcium channel blocker verapamil (Hanawa, 1991; cited in Khan et al., 1998).

PGE₂ is likely to mediate its effects through more than one EP receptor. The competitive EP₁ antagonist SC-19220 increases bladder capacity and reduces voiding (Ishizuka et al., 1998). Studies using EP receptor KO mice suggest a role for EP₁ in detrusor overactivity (Schröder et al., 2004). Studies using EP receptor KO mice suggest a role for EP₁ in detrusor overactivity (Schröder et al., 2004), whereas EP₂ is implicated in bladder capacity in physiology (McCaffery et al., 2008). Further experiments are required to characterize the role of different EP receptors in physiological and pathophysiological conditions.

It is still unclear whether PGE₂ mediates its actions in the bladder directly on smooth muscle cells (SMCs) or indirectly by acting on nerves. It has been suggested that PGs released from SMCs and from the urothelium modulate afferent nerve activity and efferent neurotransmission (de Groat and Yoshimura, 2001). Furthermore, our group recently showed that spontaneous action potentials (sAPs) in mouse bladder are purinergic and neurogenic (Young et al., 2008), suggesting that if PGE₂ affects spontaneous activity it could do so through a direct action on efferent nerves.

Hence, the aim of this study was to differentiate the effects of PGE₂ on bladder smooth muscle and efferent nerves using a combination of contraction studies, high-resolution Ca²⁺-imaging and electrophysiology.

Methods

Female CD-1 mice, aged 8–13 weeks, were killed by increasing the CO₂ concentration followed by cervical dislocation. All experiments were carried out in accordance with the UK Animals (Scientific Procedures) Act 1986 and European Communities Council Directive 86/09/EEC. The urinary bladder was removed and placed in physiological saline. The bathing physiological salt solution contained (mM): NaCl 118.4, NaHCO₃ 25.0, NaH₂PO₄ 1.13, CaCl₂ 1.8, KCl 4.7, MgCl₂ 1.3 and glucose 11.1. pH and [O₂] were regulated by continuously bubbling the solution reservoir with 95% O₂ and 5% CO₂. The connective tissue surrounding the bladder was first removed, then the ventral wall of the bladder was opened longitudinally from the bladder neck to the apex of the dome. The urothelium was left intact. Tissue strips, 6–8 mm long and 1–2 mm wide, were cut along the cranio-caudal axis of the dorsal surface for organ bath studies and were 3–4 mm long and 1–2 mm wide for electrophysiological recording or Ca²⁺ imaging.

Contraction studies

Each bladder strip was mounted in a 7 mL organ bath and connected to an isometric transducer (Letica Scientific Instruments, Hospitalet, Spain), under an initial tension of 9.8 mN and allowed to equilibrate (i.e. to accommodate under tension) for at least 60 min. Contraction data were digitized using a Powerlab/4SP data acquisition system, Chart v.5.5.6/s software (ADInstruments, Chalgrove, UK) and data stored on a Macintosh computer. The maximum amplitude of contractions was measured off-line.

Electrophysiological recordings

Bladder strips were allowed to equilibrate for at least 30 min, and then individual bladder SMCs were impaled from the serosal surface using a shallow angle of approach and superficial penetration with glass capillary microelectrodes filled with 0.5 M KCl (resistance 200–300 MΩ). This approach is identical to that used previously in our laboratory (Young et al., 2008), where filling the cells with Oregon Green 488 BAPTA-1 (mixed with the KCl in the microelectrode) showed large cells typical of SMCs (Dixon and Gosling, 1990; Anderson and Arner, 2004). For both electrophysiology and Ca²⁺ imaging, pinning with a small amount of even stretch reduced most spontaneous movement of detrusor strips. The use of long-tipped electrodes assisted the maintenance of recordings during movement of the tissue, a particular methodological challenge when using PGE₂. Following bridge balancing and neutralization of the electrode’s tip capacitance, membrane potential changes were recorded using a high input impedance amplifier (Axoclamp-2B; Axon Instruments, Sunnyvale, CA, USA) and displayed on a digital oscilloscope (DSO 1602; Gould, Ilford, Essex, UK). Membrane potential changes were digitized at 1 kHz using a PowerLab/4SP (ADInstruments, Chalgrove, Oxfordshire, UK) and stored on computer for later analysis.

One long, continuous recording per preparation was made, which included a control period (typically 10 min), and then a period (at least 15 min) in the presence of the drug. The approach of making a single recording per prepa-
Data were exported to Chart v5.5.6 and then to Excel for Image SXM v1.85 (http://www.liv.ac.uk/~sdb/ImageSXM). Image analysis was performed using custom-written macros ing a minimum of two cells sampled per drug or treatment. for control and drug treatments within one region, contain- sets were acquired once every minute. Five sets were sampled Milton Keynes, UK). A series of 70 frames was captured at upright confocal microscope (Leica SP2; Leica Microsystems, Chalgrove, Oxfordshire, UK).

Ca\(^{2+}\) imaging and analysis

Each detrusor strip was exposed to 10 \(\mu\)M Oregon Green 488 BAPTA 1-AM (Invitrogen, Paisley, UK) in 1% DMSO-0.2% Pluronic F-127 (Sigma-Aldrich, Dorset, England) in physiological saline for 70 min at 36°C. The tissue was rinsed in physiological saline, bubbled with 95%O\(_2\)/5%CO\(_2\) to pH 7.4, for at least 10 min. Tissues were pinned flat, serosal side up, in a Sylgard-lined organ bath, and mounted on the stage of an upright confocal microscope (Leica SP2; Leica Microsystems, Milton Keynes, UK). A series of 70 frames was captured at 5 Hz using a \(\times40\) objective to generate one image set. Such sets were acquired once every minute. Five sets were sampled for control and drug treatments within one region, containing a minimum of two cells sampled per drug or treatment. Image analysis was performed using custom-written macros for Image SXM v1.85 (http://www.liv.ac.uk/~sdb/ImageSXM). Data were exported to Chart v5.5.6 and then to Excel (Microsoft, Redmond, WA, USA) for further analysis.

Correlating whole-cell Ca\(^{2+}\) transients between neighbouring cells

The total number of whole-cell Ca\(^{2+}\) transients (WCTs) observed in neighbouring cells, before and after superfusion with PGE\(_2\) (50 \(\mu\)M) was compared. Only directly neighbouring cells that exhibited WCTs under control conditions were analysed. Contingency analysis (with Fisher’s exact test) was used to determine whether cells were functionally coupled.

Drugs

All drugs were stored at \(-20°C\) as 10 mM stock solutions; PGE\(_2\) and SC-51322 in ethanol, nifedipine and AH-6809 in DMSO, and NF449, tetrodotoxin (TTX) and cyclopentolate in distilled water. Nifedipine and cyclopentolate hydrochloride were obtained from Sigma (Dorset, UK); SC-51322 and AH 6809 were obtained from Biomol (Exeter, UK); and PGE\(_2\), TTX and NF449 were obtained from Tocris (Bristol, UK). Drugs were diluted to their final concentration with physiological saline and applied directly into the relevant baths in the contraction studies, and by switching the superfusate in the Ca\(^{2+}\)-imaging and electrophysiological experiments. The maximum ethanol concentration used was relatively high, so particular attention was paid to these control experiments. In physiological saline, 0.5% ethanol did not produce a change in either the tone, the phasic contractions in any of the 12 preparations tested (number of animals, \(n_a = 9\), the WCTs (number of preparations, \(n_p = 9\), \(n_a = 3\), resting membrane potential (median \(-43.5\) mV; range \(-48.5\) to \(-32.7\) mV; to median \(-42.3\) mV; range \(-50.2\) to \(-31.9\) mV), or the amplitude of spontaneous depolarizations (median 4.2 mV; range 3.4 to 6.0 mV; to 4.0 mV; range 3.2 to 5.0 mV; \(P = \text{NS}\)). The nomenclature of receptors and ion channels conforms to BJPs Guide to Receptors and Channels (Alexander et al., 2011).

Statistical analysis

The normality and homogeneity of variance were tested prior to further statistical analysis using Kolmogorov–Smirnov and Levene’s tests, respectively (Minitab version 11; SPSS Inc., Chicago, IL, USA). Other statistical analyses were performed in Prism 4 (GraphPad Software, CA, USA). Unless otherwise stated, statistical comparisons were by Student’s two-tailed paired \(t\)-tests. The term \(n_p\) used in the presentation of statis-
tical analyses throughout, refers to the number of animals used and the term \(n_a\) refers to the number of preparations used. To test for functional coupling between nearby cells, contingency tables were constructed and tested with Fisher’s exact test (for a methodological example, see Brain et al., 2002).

Results

Contraction studies

On mouse isolated bladder strips, PGE\(_2\) (50 \(\mu\)M) caused a concentration-dependent increase in tone with an EC\(_{50}\) of 9.2 \(\mu\)M (pEC\(_{50}\) = 5.04 ± 0.41; Figure 1A; \(n_p = 11; n_a = 6\). The tone developed slowly (Figure 1B; median time to plateau: 56 s; range 41–160 s; \(n_p = 20; n_a = 10\); rapid phasic con-
To determine whether L-type Ca\(^{2+}\) channels were required for the response to PGE\(_2\) (50 \(\mu\)M), the selective L-type Ca\(^{2+}\) channel blocker nifedipine (1 \(\mu\)M) was used. Nifedipine reduced the increase in basal tone observed after addition of PGE\(_2\) (50 \(\mu\)M) by 45.3 \pm 6.6\% (\(P < 0.05\), \(n = 20\), \(n = 10\)) and abolished the PGE\(_2\)-induced phasic contractions in all preparations (Figure 2Aa). To determine whether neurotransmitter release mediated PGE\(_2\)-induced contractions, the contributions of purinergic and cholinergic neurotransmission were explored by application of the P2X1 selective antagonist NF449 (10 \(\mu\)M) or the muscarinic receptor antagonist cyclopentolate (1 \(\mu\)M). The P2X1 selective antagonist NF449 (10 \(\mu\)M) did not significantly affect the PGE\(_2\) (50 \(\mu\)M)-induced tone (8.4 \pm 12.4\%, \(P > NS\), \(n = 15\), \(n = 9\)), but significantly reduced the frequency of phasic contractions (by 23.5 \pm 8.5\%, \(P < 0.05\), \(n = 6\), \(n = 4\); Figure 2Ab). Cyclopentolate pretreatment had no effect on the PGE\(_2\)-induced tone (15 \pm 18\% \(P = NS\), \(n = 8\), \(n = 4\)) or on the frequency of phasic contractions (0.4 \pm 2.4\%, \(P = NS\), \(n = 7\), \(n = 4\); Figure 2Ac).

In order to identify the role of EP receptors in the response to PGE\(_2\) (50 \(\mu\)M), SC-51322 (10 \(\mu\)M), a selective EP\(_1\) antagonist, and AH-6809 (10 \(\mu\)M), a non-selective EP\(_2\) and EP\(_3\) antagonist were used (Figure 2Ad). The binding affinity for SC-51322 is 14 nM for EP\(_1\) receptors, and AH-6809 has a Ki of 1.1–1.6 \(\mu\)M at EP\(_{1,3}\) receptors (Abramovitz et al., 2000); so, both of these antagonists were used at concentrations significantly in excess of their Ki and/or binding affinity. When used together a significant reduction in the PGE\(_2\) (50 \(\mu\)M)-induced tone was observed (by 59.2 \pm 6.2\%, \(P < 0.01\), \(n = 6\), \(n = 6\)) and phasic contractions did not occur. When used separately SC-51322 and AH-6809 significantly reduced the PGE\(_2\) (50 \(\mu\)M)-induced tone, but to a lesser extent (by 39.1 \pm 5.8\% \(P < 0.05\), \(n = 7\), \(n = 6\) and 23.7 \pm 4.4\% \(P < 0.05\), \(n = 5\), \(n = 5\), respectively) suggesting an additive effect of the two antagonists. The frequency of phasic contractions was significantly reduced by SC-51322 (64 \pm 38\% \(P < 0.05\), \(n = 7\), \(n = 6\)), but not by AH-6809 alone (9.7 \pm 4.7\% \(P = NS\), \(n = 5\), \(n = 5\)). The effects of these antagonists on tone and the frequency of phasic contractions are summarized in Figure 2B and C, respectively.

Electrophysiology

Electrophysiological studies were used to characterize the electrical changes in response to PGE\(_2\) (50 \(\mu\)M). Spontaneous depolarizations, i.e. both spontaneous excitatory junction potentials (sEJPs) and sAPs, occurred with a stochastic temporal distribution in control conditions, but occurred in bursts following the superfusion of PGE\(_2\) (50 \(\mu\)M; Figure 3). Bursting began following superfusion for 350 s (median; range 161 to 629 s; \(n = 11\)). Bursts of spontaneous depolarizations occurred at a frequency of 0.14 \pm 0.02 Hz (mean \pm SEM; range 0.08 to 0.22 Hz, no. of bursts 10–138 from \(n = 10\)). One way of showing that the spontaneous depolarizations occur in bursts is to measure the interval between successive events; if these events occur independently then the probability density function for such intervals should be exponential. This distribution of intervals between successive depolarizations in control conditions was exponential, but in the presence of PGE\(_E\) events with a short (<2 s) interval occurred with a greater probability than expected (Figure 4A), implying that they were clustered in bursts.

PGE\(_E\) (50 \(\mu\)M) increased the frequency of spontaneous depolarizations from 0.31 Hz (median; range 0.18 to 0.75 Hz) to 0.90 Hz (range 0.40 to 1.41 Hz; two-tailed paired t-test, \(P < 0.001\), \(n = 13\), \(n = 12\); Figure 4Ba). This is in contrast to the solvent (0.5% ethanol) control, which actually reduced the frequency of spontaneous depolarizations from 0.36 Hz (median; range 0.14 to 0.51 Hz) to 0.29 Hz (range 0.10 to 0.44 Hz) (\(P < 0.001\)). PGE\(_E\) (50 \(\mu\)M) also depolarized the resting membrane potential from –43.9 mV (median; range
50.2 to 24.6 mV) to 33.3 mV (range 41.2 to 16.1 mV) (P < 0.001; Figure 4Bb). In control conditions, depolarizations occurred with variable rise time (time from 10 to 90% peak amplitude) with a median of 18.8 ms (range 7.4 to 66.0 ms). Following superfusion of PGE2 (50 μM), the resulting spontaneous depolarizations occurred with a much broader rising phase, that is, with a greater rise time of 39.3 ms (range 20.8 to 98.5 ms) (P < 0.001; Figures 3C, 4Bc). The median amplitude of depolarizations increased from 4.0 mV (median; range 3.0 to 10.7 mV) in control conditions to 5.0 mV (4.5 to 16.7 mV) in the presence of PGE2 (50 μM) (P < 0.05; Figure 4Bd).

In order to test whether the effects of PGE2 were mediated through P2X1 receptors, PGE2 (50 μM) was superfused in combination with the selective P2X1 antagonist NF449 (10 μM). Pretreatment with NF449 (10 μM) did not change the amplitude, frequency or interval between spontaneous depolarizations, nor did it prevent the change in the resting membrane potential, in response to PGE2 (50 μM) (P < 0.05; Figure 5A; Table 1). There was, however, an increase in the rise time of events from 47.7 ms with PGE2 (50 μM) alone to 67.4 ms when NF449 (10 μM) was also present (P < 0.05).

The L-type Ca2+ channel blocker nifedipine (1 μM) prevented all measured effects of PGE2 on spontaneous depolarizations, but the PGE2-stimulated change in resting membrane potential remained (Figure 5B; Table 2).

Ca2+ imaging

Ca2+ imaging was used to determine the effect of PGE2 (50 μM) on smooth muscle Ca2+ regulation, particularly WCTs. Previous studies have shown that WCTs are due to smooth muscle action potentials (Heppner et al., 2005; Young et al., 2008).

Loading detrusor smooth muscle with the Ca2+ indicator Oregon Green BAPTA-1 AM and imaging groups of smooth muscle under control conditions revealed three types of spontaneous Ca2+ transients: WCTs, Ca2+ waves and local Ca2+ transients. Only WCT frequency and amplitude were investigated in this study.

WCTs were present under control conditions and their frequency was increased significantly by PGE2 (50 μM) (by 72/11006 5%; P < 0.001, n = 27 cells, n = 9; Figure 6A,B). PGE2 (50 μM) also appeared to increase the occurrence of subcellular Ca2+ transients, including waves (see Figure S1), although the frequency was not calculated. The amplitude of the WCTs was not affected by PGE2 (0.340 ± 0.031 ΔF/F0 under control conditions; 0.300 ± 0.025 ΔF/F0 after PGE2 superfusion; P = NS; Figure 6C). The Ca2+ channel blocker nifedipine (1 μM)
prevented PGE2-induced WCTs (11 cells, \(n_a = 4 \); Figure 7A). In the absence of PGE2, incubation with the selective P2X1 antagonist NF449 (10 \(\mu M \)) greatly reduced the frequency of WCTs (by 98 \(\pm \) 6%; \(P < 0.001 \), two-way ANOVA, \(n_c = 18 \) cells, \(n_a = 4 \)). Upon addition of PGE2 (50 \(\mu M \)) in the presence of NF449 (10 \(\mu M \)), WCTs were observed but at a significantly lower frequency than with PGE2 alone (by 28 \(\pm \) 17%; \(P < 0.001 \), two-way ANOVA; Figure 7B,C).

Figure 3
Superfusion of PGE2 (50 \(\mu M \)) depolarizes SMCs and induces bursts of spontaneous depolarizations. (A) Over a period of 18 min, PGE2 (50 \(\mu M \)) depolarized the resting membrane potential of a SMC within a strip of mouse isolated detrusor. (B) A comparison of the spontaneous activity prior to (Ba) and during (Bb) PGE2 superfusion; PGE2 stimulated the large amplitude spontaneous depolarizations that occur in bursts. (C) Shows the PGE2-stimulated spontaneous depolarizations have slow rise times.

Figure 4
The distribution of intervals between successive spontaneous depolarizations (Aa) demonstrates that under control conditions they occur randomly, as the control distribution (solid line, black) follows the expected exponential distribution (dashed line, black). In the presence of PGE2 (50 \(\mu M \)), bursting occurs, shown by the excess of brief intervals compared with the expected exponential distribution (compare the dashed and solid grey lines). (Ab) The median intervals were also briefer in the presence of PGE2. (B) PGE2 also stimulated an increase in spontaneous depolarization frequency (a), an increase in rise time (c) and amplitude (d), and a depolarization of the RMP of SMCs (b). The data were obtained from \(n_p = 13 \) and \(n_a = 12 \) (Ab, B); *\(P < 0.05 \) and ***\(P < 0.001 \).

PGE2 and cellular coupling
PGE2 (50 \(\mu M \)) superfusion increased the frequency of WCTs, but also nearby cells responded synchronously. To determine if such apparent synchronicity was random, contingency tables were used to compare the number of times the cells responded separately against the number of times the cells responded together. In two of five pairs of cells tested there was a significant synchronous activity of WCTs after PGE2 (50 \(\mu M \)) addition compared to no significant synchronous activity under control conditions for these same pairs (\(P < 0.001 \); Fisher’s exact test; see Figure 8A and Figure S2).
To determine whether there was an effect of PGE2 (50 μM) or its vehicle (0.5% ethanol) on electrical coupling between mouse detrusor SMCs, a series of brief intracellular current injections (−0.03 to −0.15 nA of 100 ms duration) was applied. Input resistances, calculated from the linear slope of the current–voltage relationship, varied greatly between SMCs. However, there was no significant difference between the input resistance of SMCs in control conditions, 212 MΩ (median; range 115 to 660 MΩ) and following superfusion of the vehicle (0.5% ethanol; 168 MΩ; range 84 to 769 MΩ; Wilcoxon matched two-tailed pairs test, $P = $ NS, $n_a = 5$).

Similarly, PGE2 (50 μM) did not change the input resistance (median control 181 MΩ; range 115 to 1060; PGE2 median 209 MΩ; range 98 to 1045; Wilcoxon matched two-tailed pairs test, $P = $ NS, $n_a = 6$).

Discussion and conclusions

In the urinary bladder, PGE2 is implicated in physiological and pathophysiological conditions (Khan et al., 1999; Schröder et al., 2004; Masunaga et al., 2006). Previous studies have shown that PGE2 causes bladder overactivity when instilled intravesically (Schussler, 1990; Lee et al., 2008) and causes contraction of isolated bladder tissue (Palea et al., 1998). However, it is unclear whether PG’s effects are neuronal or on the SMCs themselves, an issue the present study addresses.

PGE2 (50 μM)-induced activity included an increased frequency of phasic contractions (85% increase), increased frequency of WCTs (72% increase) and a 66% increase in spontaneous depolarizations. To the authors’ knowledge, this is the first study to show cellular electrical and Ca$^{2+}$ responses to PGE2 in the bladder.

Table 1

Descriptive statistics of the effects of PGE2 and the purinoceptor P2X1 antagonist NF449 (10 μM) on properties of SMCs and their spontaneous depolarizations (sDep).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>RMP (mV)</th>
<th>sDep Frequency (Hz)</th>
<th>sDep Amplitude (mV)</th>
<th>sDep Interval (s)</th>
<th>sDep Rise Time (ms)</th>
<th>No. events</th>
<th>n_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>−40.0 [−46.9 to −35.9]</td>
<td>0.5 [0.2–0.8]</td>
<td>4.6 [3.6–8.6]</td>
<td>1.6 [1.1–3.8]</td>
<td>19 [11–30]</td>
<td>724 [304–951]</td>
<td>4</td>
</tr>
<tr>
<td>PGE2 (50 μM)</td>
<td>−29.9 [−32.0 to −25.9]</td>
<td>0.6 [0.6–1.4]</td>
<td>6.4 [4.6–13.9]</td>
<td>0.9 [0.6–1.3]</td>
<td>48 [30–90]</td>
<td>688 [256–1023]</td>
<td>4</td>
</tr>
<tr>
<td>PGE2 (50 μM) + NF449 (10 μM)</td>
<td>−29.6 [−32.0 to −26.7]</td>
<td>0.7 [0.6–1.4]</td>
<td>5.1 [4.0–10.9]</td>
<td>0.9 [0.6–1.1]</td>
<td>67 [37–96]</td>
<td>601 [266–1023]</td>
<td>4</td>
</tr>
</tbody>
</table>

Data shown are median [range]. n_a, number of animals. NS denotes $P > 0.05$. **Figure 5**

PGE2 (50 μM)-induced bursts of spontaneous depolarizations are mediated by L-type Ca$^{2+}$ channels and not P2X1 receptors. (A) The P2X1 receptor antagonist NF449 (1 μM) did not affect the occurrence of PGE2 (50 μM)-induced bursts of spontaneous depolarizations. (B) The occurrence of these events was abolished by the L-type Ca$^{2+}$ channel antagonist nifedipine (1 μM).
Thus it has been suggested that EP1 receptors stimu-
ators in normal micturition (Maggi et al., 1988). In our experiments, we found that blocking L-type Ca2+
channels with nifedipine abolished all PGE2-induced phasic contractions, WCTs and sAPs. In addition, it reduced the change in tone observed after PGE2 addition (45.3 ± 6.6%). This indicates that PGE2-induced phasic contractions require smooth muscle L-type Ca2+ channels and EP receptors on smooth muscle or other nearby cells. Previous studies using the L-type Ca2+ channel antagonist verapamil showed similar effects on contraction (Morita et al., 1994); together, these findings suggest that PGE2 acts to increase Ca2+ influx into the cell. There is evidence that the signal transduction of EP1 involves extracellular Ca2+ entry through a pathway independent of phospholipase C activation (Katoh et al., 1995). Given the PGE2-induced depolarization we now report, it seems that this slow depolarization causes bursts of L-type Ca2+ channel-dependent smooth muscle action potentials. The remaining questions are how such a slow depolarization is initiated by PGE2 and how the residual contraction observed on blocking L-type Ca2+ channels is mediated.

Table 2

The effects of PGE2 (50 μM) and the L-type Ca2+ channel antagonist nifedipine (1 μM) on properties of SMCs and their spontaneous depolarizations (sDep)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>PGE2 (50 μM) + nifedipine (1 μM)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMP (mV)</td>
<td>-43.8 [-60.7 to -36.5]</td>
<td>-33.5 [-55.8 to -24.9]</td>
<td><0.01</td>
</tr>
<tr>
<td>sDep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>0.3 [0.1–0.7]</td>
<td>0.2 [0.0–0.6]</td>
<td>NS (0.29)</td>
</tr>
<tr>
<td>Amplitude (mV)</td>
<td>4.7 [3.3–5.4]</td>
<td>3.9 [3.4–5.4]</td>
<td>NS (0.08)</td>
</tr>
<tr>
<td>Interval (s)</td>
<td>2.6 [1.1–6.3]</td>
<td>2.9 [1.1–7.2]</td>
<td>NS (0.11)</td>
</tr>
<tr>
<td>Rise time (ms)</td>
<td>19 [12–25]</td>
<td>18 [9–21]</td>
<td>NS (0.29)</td>
</tr>
<tr>
<td>No. events</td>
<td>301 [148–2602]</td>
<td>569 [102–688]</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Data shown are median [range]. n, number of animals. NS denotes P > 0.05.
PGE₂-induced phasic contractions are not neurogenic

There is evidence for EP₃ receptors on some cholinergic parasympathetic nerve terminals (Reinheimer et al., 1998; Spicuzza et al., 1998), facilitation of parasympathetic neurotransmitter release through EP₁ receptors (Jadhav et al., 2009) and direct depolarization of intrinsic cardiac neurons by PGE₂ through SKᵥ₃ channel inhibition (Jelson et al., 2003). All of these findings led to the suggestion that PGE₂ induces similar facilitatory effects in the urinary bladder. However, none of the observed effects of PGE₂ in the mouse bladder were prevented by TTX, which is known to abolish field-stimulation-induced contraction in the mouse bladder (Holt et al., 1985), indicating that action potential generation in efferent nerves was not required. This observation is consis-

Figure 6
PGE₂ increases the frequency of WCTs, but not their amplitude. (A) A sample trace of the frequency of WCTs. This trace is a concatenated composite of shorter 19.8 s recording segments taken every minute. The scale bar indicates the time over the whole experiment so is not valid within each segment. The trace shows the presence of WCTs under control conditions and after addition of PGE₂ (50 μM). The positive-going spikes on the trace are WCTs, shown throughout the course of an experiment for a typical preparation; slow changes in the baseline represent focal plane drift while imaging and are hence an artefact of this non-ratioable Ca²⁺ indicator. (B) The effect of PGE₂ (50 μM) on WCT frequency. (C) The effect of PGE₂ (50 μM) on WCT amplitude. **P < 0.01.

Figure 7
PGE₂-induced increase in frequency of WCTs is abolished by nifedipine and reduced by NF449. (A) WCTs after the addition of PGE₂ (50 μM) alone and in the presence of nifedipine (1 μM). The spikes on the trace represent WCTs, against time, in one preparation. (B) The frequency of WCTs after superfusion with PGE₂ (50 μM) in the presence and absence of NF449 (10 μM). Each trace is a concatenated composite of shorter 13.7 s recording segments taken every minute. (C) A comparison of the frequency of WCTs under different conditions. *P < 0.05 and **P < 0.01.
WCTs occur simultaneously across multiple neighbouring smooth muscle cells in the presence of PGE₂. (A) A region of a mouse isolated bladder detrusor (loaded with the Ca²⁺ indicator Oregon Green 488 BAPTA-1 AM) showing four smooth muscle cells (denoted by asterisks). Time frames are 198 ms apart, arranged horizontally. The total number of frames sampled was 350. All cells responded to PGE₂ and the cells labelled a and b were analysed to test if the probability of a WCT occurring synchronously in both cells was increased after PGE₂ addition. (B) The frequency of synchronous and asynchronous WCTs under control conditions and after the addition of PGE₂. *P < 0.05 (contingency tables and Fisher’s exact test). Only in the presence of PGE₂ were synchronous WCTs detected at a rate greater than that predicted by chance.

PGE₂ induces bursts of spontaneous activity

The synchronicity of WCTs in the presence of PGE₂ led to the investigation of whether PGE₂ increased electrical coupling between the cells. However, no significant fall in the input resistance (which represents a mixture of membrane resistance and gap junction resistance) was observed. It seems likely that the SMCs become functionally coupled not because of changes in gap junction resistance, but because of their depolarization. As cells depolarize (in this case by 11 mV), they move closer to their threshold for action potential generation and hence require less depolarizing current to initiate and propagate action potentials. In this way, depolarization directly increases functional action potential coupling, and hence co-ordinates micromotion or phasic contractions, without any change in the electrical resistance between cells.

K⁺ channel inhibition may be responsible for the depolarization and the shift from stochastic action potential occurrence to bursting observed in the current study, similar to that observed in the guinea-pig bladder when small conductance Ca²⁺-activated K⁺ (SK) channels are inhibited with apamin (Hashitani et al., 2004a). In the mouse urinary bladder, apamin can increase the frequency of spontaneous depolarizations without changing the resting membrane potential (Hayase et al., 2009), while suppression of SK channels in mice increases the frequency of non-voiding contrac-
Interstitial cells and the role of PGs

Interstitial cells of Cajal (ICCs) are of great contemporary interest in urogenital physiology because of the close association of the cells with SMCs and nerves, and because of the presence of a large suburothelial plexus in the lamina propria (Brading and McCloskey, 2005). During the present study we were unable to identify cells with a morphology typical of ICCs, which responded to PGs with a change in Ca2+, although quiescent cells with this morphology were observed in some series (see Figure S3 for an example). The experimental protocol was not optimized to investigate such cells, in part because viewing from the serosal side means that the lamina propria layer of ICCs (ICC-LP) cannot be seen. The more scattered detrusor ICCs, typically located at the edge of muscle bundles (see McCloskey, 2010 for a review) are difficult to differentiate morphologically from both Schwann cells and fibroblasts, and this study was adequately designed appropriately to study these cells. A vital staining method for ICCs would greatly facilitate such experiments. Thus, it is possible that some of the effects of PGE\textsubscript{2} could have been through an indirect effect on another cell type (such as ICCs, urothelial cells or Schwann cells) releasing a paracrine factor, or coupling through gap junctions, which influenced SMCs (rather than the nerves). However, while there is strong evidence of active calcium transients and electrical activity in ICCs, these are not temporally coupled with either contraction of the smooth muscle, smooth muscle Ca2+ activity or smooth muscle electrical activity (Hashitani et al., 2004b). Therefore, at the current time the involvement of ICCs is speculative.

ICCs may also act as a source of PGE\textsubscript{2}, as they are known to release PGs in the urogenital tract under some conditions (Hashitani, 2006). This may mediate urothelial to SMC signalling.

Implications of this study

PGE\textsubscript{2} is thought to play a role in bladder overactivity. In situ, the bladder's afferent nerves can stimulate spinal cord-mediated reflexes through C-fibre afferent nerves; PGs could act as neuromodulators to induce this excitability and bladder overactivity, for example in the case of spinal cord injury (Maggi et al., 1988).

Our experiments suggest that in addition to this reflex pathway there is a direct local action of PGE\textsubscript{2} in the bladder that does not require an increase in cholinergic or purinergic parasymptomatic activation. It is known that EP, KO mice do not develop bladder hyperactivity after bladder outlet obstruction but that WT mice do (Schroeder et al., 2004), highlighting the importance of prostanoid signalling for the pathogenesis of bladder overactivity.

Thus, we confirmed that PGE\textsubscript{2} (50 \textmu M) increases smooth muscle activity in mouse bladder strips in vitro, as seen in other species (Maggi et al., 1988). This was seen as an increase in phasic contraction, mediated by SMC depolarization and L-type Ca2+ channel-dependent action potentials (observed with both electrophysiology and Ca2+ imaging). Our studies also demonstrated that more than one EP receptor subtype can generate such spontaneous activity. Depolarization, rather than a fall in gap junction resistance, increases the functional coupling of SMCs. While the effects of prostanoids on afferent C-fibres are undoubtedly important, the direct effects of PGE\textsubscript{2} on the isolated bladder (which do not require neurotransmitter release from the efferent parasympathetic nerves) implies that rational therapies for such overactivity should not focus solely on the spinal cord reflex arc, but should also prevent PG's direct action on bladder smooth muscle. These muscle-mediated effects could produce the detrusor overactivity that follows outlet obstruction and spinal cord injury, which are both associated with increases in PGE\textsubscript{2} production (Masick et al., 2001; Masunaga et al., 2006).

Acknowledgements

This work is supported by a Wellcome Trust Career Development Research Fellowship (074128 to KLB); a Wellcome Trust VIP award supported JSY, who is currently funded by an Age UK research fellowship.

Conflicts of interest

None.

References

British Journal of Pharmacology (2012) 165 401–413 411

Supporting information

Additional Supporting Information may be found in the online version of this article:

Figure S1 In addition to the effects on WCTs, PGE\(_2\) appeared to increase the frequency of subcellular Ca\(^{2+}\) transients, including waves. Some of these subcellular Ca\(^{2+}\) transients also appear to be periodic. A control series of recordings and a subsequent recording from the same field of view in the presence of PGE\(_2\) (50 \(\mu\)M) are shown. The scale bar represents 5 \(\mu\)m; for display purposes this movie plays at twice the sampling rate.

Figure S2 PGE\(_2\)-induced coupled WCTs in smooth muscle cells. A series of confocal images showing WCTs temporally synchronized in neighbouring cells – those shown in Figure 8A. Each frame is 50 \(\mu\)m across; for display purposes this movie plays at twice the sampling rate.

Figure S3 Labelling of spindle-shaped cells reminiscent of ICCs. In most experiments, only smooth muscle (sm) cells were identified; in some experimental series, spindle-shaped cells reminiscent of ICCs, Schwann cells or fibroblasts (IC?) could be identified, brightly labelled with the Ca\(^{2+}\) indicator. To date, such cells have been unresponsive to physiological stimuli. The field size is 100 \(\mu\)m.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.