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management of plug-in hybrid electric vehicles

Ji Li, Quan Zhou, Yinglong He, Bin Shuai, Ziyang Li, Huw Williams, Hongming Xu⁎
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H I G H L I G H T S

• Dual-loop online intelligent programming is proposed for HEV energy management.

• Deep fuzzy predictor is created for speed forecast via fuzzy granulation technology.

• The optimized predictive control strategy is validated by a driver-in-the-loop test.

• Up to 9% total energy can be saved by the proposed algorithm over real-world driving.

A R T I C L E I N F O
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A B S T R A C T

This paper investigates an online predictive control strategy for series-parallel plug-in hybrid electric vehicles
(PHEVs), resulting in a novel online optimization methodology named the dual-loop online intelligent pro-
gramming (DOIP) that is proposed for velocity prediction and energy-flow control. By reconsidering the change
of driving behaviours at each look-ahead step, this methodology guarantees the effectiveness of optimal control
sequence in the energy-saving efficiency of online predictive energy management. The design procedure starts
with the simulation of a series-parallel PHEV using a systematic control-oriented model and the definition of a
cost function. Inspired by fuzzy granulation technology, a deep fuzzy predictor is created to achieve driver-
oriented velocity prediction, and a finite-state Markov chain is exploited to learn transition probabilities between
vehicle speed and acceleration. To determine the optimal control behaviours and power distribution between
two energy sources, chaos-enhanced accelerated swarm optimization is developed for the DOIP algorithm. The
prediction capability of the deep fuzzy predictor is evaluated by comparing with two existing predictors over the
WLTP-based driving cycle. The proposed control strategy is contrasted with short-sighted and dynamic pro-
gramming based counterparts, and validated by a driver-in-the-loop test. The results demonstrate that the deep
fuzzy predictor can effectively recognize driving behaviour and reduce at least 19% errors compared to involved
Markov chain based predictors. Online predictive control strategy using the DOIP algorithm is able to sig-
nificantly reduce 9.37% fuel consumption from the baseline and shorten computational time.

1. Introduction

Hybrid technology is a solution to environmental pollution that
makes it possible to improve fuel economy and reduce exhaust emis-
sions of vehicles [1,2]. Optimal energy management strategies are cri-
tical for hybrid electric vehicles (HEVs) to achieve best performance
and greatest energy efficiency through power-split control [3]. Driver

behaviours are another primary element that affects energy consump-
tion, emissions, and driving safety of a road vehicle. A study [4] of
driver feedback, driver attitudes, and the adoption of eco-driving be-
haviours finds that drivers with high levels of technical proficiency can
achieve a reduction of about 4.4% in fuel consumption. Thus, vehicle
control strategies that seek highly optimized performance need to op-
timize the system composed of both the vehicle and the driver.
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In 2015, a real-world driving emissions testing procedure [5] was
proposed to further restrict vehicle emissions under on-road conditions.
Classical control strategies have difficulty in meeting the requirements
of this standard, because the driver's information is not easy to exploit
in real time. Model predictive control (MPC) appears to be suitable for
this purpose, and it can repeatedly optimize a control sequence over a
receding horizon by exploiting a model to predict the future system
behaviour [6]. Because of the capability of achieving high performance
in multivariable systems subject to constraints, MPC has attracted
considerable interest in the automotive industry (see reviews, [7–9] and
references therein). However, the performance of MPC is also de-
termined by the precision of future velocity or power forecasts and its
prediction model is hard formulated due to strong randomness and
uncertainty [10]. The authors have proposed a real-time nonlinear
model-based predictive energy management method, which makes it
possible to carry on online nonlinear control optimization with ad-
vanced predictive models [11]. This research will develop advanced
driver behaviour prediction methods to further improve the vehicle
efficiency with online nonlinear model-based predictive control.

To optimize the overall system composed of vehicle and driver,
prediction models of the MPC must capture the driver behaviour. In
some applications on vehicle control systems, Markov chain (MC)
models have been utilized to predict the vehicle speed or torque de-
mand signal as follows. Ref. [12] employs the K-means to classify
driving behaviours with rigid boundaries but the uncertainty of driving
behaviour is not considered. Ref. [13] integrates MC models and dy-
namic programming (DP) to implement stochastic model predictive
control for plug-in hybrid electric buses. In fact, some dramatic driving
states may be homogenized into a very low probability distribution or
even ignored altogether in the training process of a MC model. Ref. [14]
proposes a velocity predictor with fuzzy encoding to improve its pre-
diction accuracy. But such learning-based prediction methods rely on
previous driving data, wherein once it is finished the training, the

structure and weight of the prediction model cannot be changed. To
recognize the driving pattern, a fuzzy logic pattern recognition [15,16]
has been widely used for the adaptive energy management of HEVs, in
which different driving cycle patterns are represented by a fuzzy
membership function and thus characterizes the driving pattern. In Ref.
[17], a radial basis function neural network is introduced for time series
forecasting and it is trained based on pedal position and historical ve-
locity. As another industrial application for driving pattern classifiers in
Ref. [18] driven by neural networks are employed to identify driving
patterns in real time. Other types of artificial intelligence-based pre-
dictive model contain Bayesian algorithms [19], fuzzy cognitive maps
[20], and auto-regressive models [21,22]: these algorithms can be used
for modelling, learning, and predicting. If the driving behaviours ex-
hibit dramatic changes, however, the prediction will become poor so
that online updates need to be considered.

In the field of HEV energy consumption optimization, there has
been much research into improving the efficiency and adaptability of
HEV energy management. In Refs. [23,24], a reinforcement learning
algorithm is employed to optimally control HEVs using MC-based pre-
dictors. Compared with Ref. [23], the main improvement of Ref. [24] is
to utilize an online updating policy for updating the transition prob-
ability of the MC models. Ref. [25] proposes a co-design optimization of
the plant and controller parameters, where Gaussian mixture models
are used to classify driving styles. However, for computational reasons,
it can fail to work if the dimensionality of the clustering problem is too
high. Particle swarm algorithms [26] with the fast convergence speed
are widely used for solving optimal control sequence in the HEV energy
management, which is adopted by Refs. [16,27]. Actually, the classical
particle swarm optimization algorithm may easy result in a local op-
timum in high-dimensional space and has a low convergence rate in its
iterative scheme. In Ref. [28], a genetic algorithm (GA) is used to op-
timize the power threshold at which engine is turned on, which makes
the engine work more efficiently and thus reduces the fuel-

Nomenclature

M gross mass
Af windward area
Rwh tire rolling radius
Cd air drag coefficient
i0 reducer ratio
ig transmission ratio
Ft traction force
Ff accelerative resistance force
Fw aerodynamic resistance force
Fi grade resistance force
Fj rolling resistance force
θ road slope
ua vehicle speed in km/h
Pd demand power
Td demand torque
nd demand rotation speed
nmot motor rotation speed
Tmot motor torque
TICE ICE torque
nICE ICE rotation speed
PISG ISG power
Pbra braking power
Efuel fuel consumption
kend driving cycle ending time
J optimization target
w weight coefficient
Svel pedal actions
k sampling time

v vehicle velocity
a vehicle acceleration
p transition probability
H transition counts
λ probability vector
∏ transition probability matrix
Φ fuzzy subsets
μ membership function
O probability vector
z possibility vector
c̄ membership function centroid
V̄ membership function volume
ϑr AR coefficients
K order of AR model
εk i.i.d noise
τ sample period
γ vector of speed interval samples
ω membership criterion
C cluster centre
x position of each particle
i index of iterations
j index of the particle
g best position in iterations
β attraction parameter
α convergence parameter
∊ random number

∗g itermax_ , best position at the end iteration
R record matrix
Rmirror mirror matrix
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consumption. The DP as a representative of global optimization algo-
rithms usually depends on a model to provide a provably optimal
control strategy by searching all state and control grids exhaustively
[15]. However, DP or GA is not applicable to real-time problems since
the exact future driving information is seldom known in the real world
[29].

To help improve the energy-saving efficiency of online predictive
energy management, this paper proposes a dual-loop online intelligent
programming (DOIP) to guarantee the effectiveness of optimal control
sequence for HEV systems. By reconsidering the change of driving be-
haviours at each look-ahead step, the new methodology with higher
precision of predicted velocity trajectories involves two online iteration
loops to simultaneously update the predictive model and optimize the
control sequence. Firstly, a PHEV under research is analysed and its
optimal problem is formulated. Subsequently, inspired by the authors’
past research [30], interval fuzzy and deep fuzzy prediction methods
are developed and compared, in terms of the performance of velocity
prediction; meanwhile, a finite-state MC is exploited to learn transition
probabilities from the vehicle speed to acceleration. The chaos-en-
hanced accelerated particle swarm optimization (CASPO) algorithm is
harnessed to realize the predictive optimal control for increasing fuel
economy and maintaining battery charge level. Finally, the perfor-
mance of different predictors is compared over the WLTP-based driving
cycle and the DOIP-driven predict control strategy is contrasted with
the benchmarking DP to validate its effectiveness. In addition, the
DOIP-driven control strategy is verified through a driver-in-the-loop
(DiL) experiment over the real world driving. Three perspectives are
contributed to the related literature.

(1) Design methodology of a novel online predictor is presented, and its
performance is compared with the existing MC-based predictors.

(2) A comparison between the DOIP-based optimal control and DP-
based one is presented.

(3) A DiL experiment is carried out to demonstrate the performance of
the proposed energy management strategy and its online compu-
tational efficiency.

In Section 2, the configuration of the series-parallel PHEV is pre-
sented, and its optimal control problem is formulated. The mechanism
of the proposed DOIP is described in Section 3, where two fuzzy-based
prediction approaches and CAPSO algorithm are applied. Section 4

defines the testing cycle, including the human driver who created it as
well as the DiL experimental platform. Section 5 sets out a comparative
study of different predictors and control policies for the PHEV energy
management. Conclusions are summarized in Section 6.

2. Vehicle configuration and problem formulation

2.1. PHEV configuration

The series-parallel PHEV powertrain architecture includes one ga-
soline engine, one integrated starter-generator (ISG), one trans-motor
and two energy sources of fuel and electricity as shown in Fig. 1. In this
case, the post-transmission powers of an internal combustion engine
(ICE) and a trans-motor are combined by coupling their speeds, while
the speeds of the two power plants are decoupled to be chosen freely
[31]. The peak power of the trans-motor is =∗P 75 kWmot with
270 Nm peak torque. The peak power of the gasoline engine is

=∗P 63 kWICE with 140 Nm peak torque. The peak power of the ISG is
=∗P 32 kWISG . The data for all the components is provided by AD-

VISOR software for vehicle driveline system analysis and optimization.
The main parameters of the PHEV model are shown in Table 1.

In the series-parallel PHEV dynamics model, the traction force Ft
needs to overcome various resistances for keeping the force balance in
the vehicle. The traction force Ft and resistances can be sequentially
expressed as:

= + + +F F F F Ft f w i j

Fig. 1. The architecture of series-parallel PHEV powertrain.

Table 1
Main parameters of the PHEV model.

Symbol Parameters Values

M Gross mass 1500 kg
Af Windward area 2m2

Rwh Tire rolling radius 0.3m
Cd Air drag coefficient 0.3
i0 Reducer ratio 3.75
ig Transmission ratio 3.55/1.96/1.30/0.89/0.71
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where F F F F, , ,f w i j are accelerative, aerodynamic, grade and rolling
resistance forces respectively; f is the rolling resistance coefficient; θ is
the road slope; ua is the vehicle speed in km/h; δ is the vehicle rotating
quality conversion coefficient; a is the vehicle acceleration; u is the
vehicle velocity. Derived by Eq. (1), the demand power Pd of the vehicle
can be calculated as given by
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In which the demand torque Td after a reducer is calculated as given
by:

⎜ ⎟= ⎛
⎝
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⎠

T Mgf θ
C A

u Mg θ δMa R
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ηcos
21.15
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a
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0
0 (3)

where Rwh is tire rolling radius; i0 is a reducer ratio; and =η 0.95i0 is the
efficiency of the worm-gear speed reducer.

2.2. Multi-objective problem formulation

2.2.1. Search area and constrains
The rotation speed of the motor (the relative speed of the rotor to

the stator) and the power of the ISG are two optimization variables
involved in this research, their boundary conditions need to be con-
strained as given by:

⎧
⎨⎩

< <
− < <

∗

∗

n k n
P P k

0 ( )
( ) 0

mot mot

ISG ISG (4)

Due to the limitation of peak powers and the layout of the PHEV
powertrain, it is necessary to constrain for ICE, ISG and the traction
motor during the optimization, which are formulated as:

⎧

⎨

⎪
⎪

⎩
⎪
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= < <
= < <

= − − < <

= <−
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∗
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ICE d ICE ICE
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bra
T k n k T k n k

bra

( )· ( )
9550

9550
( )

( )· ( ) ( )· ( )
9550

mot mot
ICE

d d mot mot

(5)

where Tmot is the torque of the motor; TICE is the torque of the engine;
nICE is the rotation speed of the engine; Pbra is the braking torque; nd is
the demand speed. To ensure the BP is performing in proper condition
and protect the BP from over discharge, the battery’s state of charge
should obey [32]:

≤ ≤SoC k0.2 ( ) 0.8 (6)

The total power generated by the powertrain needs to meet:

= + +P T k n k T k n k P k( )· ( ) ( )· ( )
9550

( )d
mot mot ICE ICE

bra (7)

2.2.2. Cost function
Two main targets are mainly concerned in this paper, one is the final

fuel consumption from the fuel tank and the BP, and another is the BP’s
SoC. These optimization targets are defined as:

Fig. 2. Mechanism of dual-loop online intelligent programming.
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where, Efuel denotes the instantaneous fuel consumption at k time-step;
kend is the ending time of the driving cycle.

To convert the multi-objective optimization problem into a single
objective optimization for CAPSO algorithm, in the present work, the
multi-objective optimization is formulated by using the weighted sum
method [33]. Therefore, the optimal energy-flow control problem is
described as:
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where w is a weight coefficient; ∗J1 and ∗J2 are scaling coefficients of
optimization targets J1, J2. Here, the optimization target J2 is formulated
as the penalty function in the cost function.

3. Dual-loop online intelligent programming

Dual-loop online intelligent programming (DOIP) involves one
driver-oriented velocity predictor and one intelligent power splitter,
which takes over the real-time optimal control system of the vehicle.
Real pedal actions Svel by the human driver and the vehicle state data
are sent to the DOIP algorithm for online optimization, then a real
optimal control signal will be sent back to the powertrain for the energy
distribution. 0.1 s is chosen according to [29] as the sampling time k,
which is approved to be able to track the system dynamics while re-
serving enough time slot for algorithm computing. The mechanism of
the DOIP for the PHEV system is shown in Fig. 2.

3.1. Interval fuzzy predictor

In this paper, the vehicle velocity and acceleration are described as
a finite-state MC [34], its state space is denoted as

= = ⋯ ⊂ ⊂V v i M X R| 1, ,i , and = = ⋯ ⊂ ⊂W a j N Y R| 1, ,j . The tran-
sition probabilities may be estimated from the frequencies of observed
transitions as given by

⎧

⎨
⎩

= = = =

= ∑

+

=

p P a a v v

H H

( | )ij j i
H
H

i j
N

ij1

ij

i

(10)

where v is the present velocity; +a is the next step acceleration; pij is the
transition probability from vi to aj; Hij indicates the transition counts
from vi to aj; Hi is the total transition counts initiated from vi; the
transition probability matrix ∏ is filled with elements pij. Motivated by
(10), the probability vector of the next state is defined as

∏ ∏= =+λ a λ v( ( )) ( ( ))T T
j

T

(11)

where = ⋯ ⋯λ v( ) [0 1 0]T is an N-dimensional probability vector with
the jth element, to indicate a discrete state aj in disjoint intervals

=I j N, 1, ...,j ; ∏j
T denotes the jth row of the transition probability

matrix ∏. In the fuzzy encoding technique, X and Y are divided into
finite sets separately with fuzzy subsets =i MΦ , 1, ...,i and

=j NΦ , 1, ...,j . The fuzzy subset Φi and Φj are pairs of X μ( , (·))i and
Y μ( , (·))j , where μ (·)i , μ (·)j are Lebesgue measurable membership
functions that satisfy the following property:

⎧
⎨⎩

→ ∀ ∈ ∃ ≤ ≤ >
→ ∀ ∈ ∃ ≤ ≤ >

μ X s t v X i i M μ v
μ Y s t a Y j j N μ a

: [0, 1] . . , , 1 , ( ) 0
: [0, 1] . . , , 1 , ( ) 0

i i

j j (12)

where μ v( )i reflects the degree of membership of ∈v X in μi;
μ a( )j reflects the degree of membership of ∈a Y in μj. Based on the
theory of approximate reasoning [35], the transformation with nor-
malization allocates an M-dimensional probability vector for each

∈v X as follows:

= ⎡

⎣
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⋯
∑
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= = =
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1

1

2

1 1 (13)

This transformation is used to do normative fuzzification and map
velocity in the space X to vector in M-dimensional probability vector
space X̄ , and the sum of the elements in the probability vector ∼ O v( )
equals to 1. The probability distribution of the next state in Ȳ is com-
puted based on Eq. (11), then aggregated with membership function
μ a( ) to decode vectors in Ȳ back to the space Y as given by:

Fig. 3. Fuzzy granulation evolution for MC models.
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∏= =+ +z a O v μ a O v μ a( ) ( ( )) ( ) ( ( )) ( )T T (14)

where the element pij in the transition probability matrix Π is inter-
preted as a transition probability between Φi and Φj. The membership
function μ a( ) is used to encode the probability vector of the next state
in the space Y .

In this paper, it is assumed that membership functions have the
same volume from which it follows that ∑ == p 1j

N
ij1 and ∑ == O v( ) 1i

M
i1 ,

and the next one-step-ahead velocity is calculated and simplified to

⎧
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where c̄i and V̄j are the centroid and volume of the membership function
μ v( )j .

3.2. Deep fuzzy predictor

As driver-oriented predict models, the deep fuzzy predictor (DFP) is
created with multi-dimensional fuzzification to improve the precision
of future velocity predictions by reconsidering driving behaviours for
each look-ahead step. Unlike a single MC model with fuzzy encoding,
the DFP involves five driver-oriented MC models, which are classified
by fuzzy C-mean clustering algorithm. A membership criterion vector
solved by clustering is utilized as weighted sum coefficients to ag-
gregate the predicted accelerations of the five driver-oriented MC
models. The fuzzy granulation evolution for the MC models is drawn in
Fig. 3 and the production process of the DFP is presented as follows.

The auto-regression (AR) model is a proven tool for generalizing the
signal’s average time regressive pattern and predicting by following the
dynamic. The AR model used in this study follows the structure de-
scribed in [21]:

∑= − +
=

v k v k r ε( ) ϑ ( )
r

K
r k1 (16)

where ϑr are the AR coefficients; K is the order of AR model; εk refers to
the i.i.d noise; v k( ) is the vehicle speed at time step k, with sample

period =τ 0.1 s in this study.
Due to real-world driving involving frequent transitions in the

driver behaviour, the AR model is used in the moving horizon way to
extract driver-oriented velocity information, in which parameters of
past measurement horizon length and the AR model order R need to be
investigated. AR models of horizons ranging from 10 to 500 s and with
orders from 1st to 4th have been tested on 9000 s WLTP-based driving
cycles. Second order AR models with 200 s horizons show consistent
advantage judged by the Corrected Akaike Information Criterion [36].
Its result is described as data vector γr of speed interval samples, which
contains four sets of information as given by

=γ a a[ ϑ ϑ ]r r r r avg r maxR1 2 _ _ (17)

where the AR coefficient set ϑ provides the trend of sampling speed
change; average acceleration rate ar avg_ marks the average state and the
maximum acceleration range ar maxR_ marks the range of acceleration
changes.

Considering the computation efficiency and prediction accuracy, 5-
layer Markov-chain model is reliable for training purpose as has been
proved by Ref. [21]. In this paper, the AR model coefficient sets are
classified into 5 clusters representing different acceleration states to
label the estimated AR models to some specific driver states. The five
clusters are fuzzified to reflect the acceleration range relationship
among different driving behaviours, the driving behaviours are noted as
1. Very Gentle, 2. Gentle, 3. Normal, 4. Aggressive, 5. Very Aggressive.
As there is no prior information on the predicted vehicle’s performance
or the driver’s preference, the fuzzy C-mean method with unsupervised
learning process is recommended for dividing information with less
strict internal borders and unpredictable external borders. It is more
sensitive to the isolated point i.e. dramatic driving state. The method
uses a membership criterion ωk n, and the Euclidean distance from data

∈ …x k A( {1, , })k to identify multiple cluster centres ∈ …C n B( {1, , })n .
The cluster centers Cn are iterated till the total distance is minimized
[37]:

Fig. 4. Workflow of dual-loop online intelligent programming.
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where, parameter m (m > 1) controls the fuzziness of cluster over-
lapping, which is set at =m 2 in this study. The classification results
provide data’s membership distributions with respect to all of the
clusters. According to driving behaviour classification, the transition
probability matrix ∏ in Eq. (11) is expanded into five transition
probability matrixes as given by

∏ ∏ ∏ ∏ ∏1 2 3 4 5 (20)

where the transition probability matrix with customized division can
more accurately reflect the probability distribution of acceleration
under different driving behaviours. Therefore, the next one-step-ahead
accelerations by driver-oriented clustering (Fig. 3b) can be translated to

∏=+a O v c( ( )) ¯n n
T

n n (21)

Here, the membership criterion is utilized as weighted sum coeffi-
cient to aggregate predict acceleration of five driver-oriented MC
models. Based on Eq. (21), the next one-step-ahead velocity is calcu-
lated as given by

⎧
⎨⎩

= ∑ ∏
= +

+
=

+ +

a O v c ω v
v v a

( ( )) ¯ · ( )n
B

n
T

n n n1

(22)

where, the membership criterion vector ω v( )n corresponds to the data
vector γr of the speed interval sample.

3.3. Intelligent power splitter and DOIP workflow

In this section, an intelligent power splitter is designed based on
CAPSO algorithm, which has three main procedures, namely, in-
itialization, main iteration, and optimal position retrieving. The details
and principle of the CAPSO algorithm working procedure are discussed
in the author’s previous work in [11]. To solve the optimization pro-
blem in Eq. (9) online, the algorithm is customized and modified in the
following aspects. At the initialization procedure, the position of each
particle is defined as:

=x n P[ ]i j
mot

i j
ISG

i j( , ) ( , ) ( , ) (23)

Here, the superscript i is an index of iterations, for a swarm in-
telligent algorithm that has =M 15 iterations, = ⋯i M[1, 2, 3 ]. The
superscript j is the index of the particle, for swarm that has =N 20
particles, = ⋯j N[1, 2, 3 ]. n P,mot

i j
ISG

i j( , ) ( , ) are the rotation speed of motor
and the demand power of an ISG in the jth agent and ith iteration. For
the CAPSO, the particles position updates with the following equation:

= − + + ∊+ ∗x β x β g α(1 )· · ·i j i j i i i j( 1, ) ( , ) ( , ) ( ) ( , ) (24)

In Eq. (24), ∗g i( , ) is the best position in theith iteration, β is the
attraction parameters of CAPSO, α is the convergence parameters of
CAPSO and ∊ is the [0, 1] random number. Here, α and β could be up-
dated respectively in each iteration as:

⎧
⎨⎩

=
= −+

α α γ
β a β β

·
· ·(1 )

i i

i i i

( ) (0)

( 1) ( ) ( ) (25)

where the setting range of α(0) and γ are =α 0.9(0) , =γ 0.95 in this
paper; the attraction parameter is mapped by the logistic map [38], in
which the initial value =β 0.6(1) and =a 4 are used. When →β 0 in any
step, the algorithm may lead to slow changes. After the convergence has
been achieved, the algorithm ends the main iteration and outputs the
best position at the end iteration ∗g itermax_ , as the global optimal solu-
tion.

The proposed DOIP has two online iteration loops for updating

Fig. 5. Driving scenario with traffic provided by IPG CarMaker.

Table 2
Specification of real-world driving cycle.

Human driver Traffic type Driving time (s) Driving distance (km)

A Urban 1880 11.6
B Urban 1590 17.9
C Urban 940 8.1
D Highway 1350 22.5
E Highway 2240 40.0

Fig. 6. Driving simulator used in this research.

Fig. 7. Clustering results of driving behaviour by the DFP.
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predict model and optimizing control sequence, which can obtain a
real-time optimal control signal for energy flow distribution. Inspired
by fuzzy granulation technology, the DOIP algorithm improves the
precision of future velocity by reconsidering driving behaviours for
each look-ahead step to guarantee the effectiveness of the optimal
control sequence solved by CAPSO algorithm. The DOIP workflow (at k
sampling time) is shown in Fig. 4.

In the prediction process of the DOIP algorithm, a recording matrix
and its mirror matrix are involved and used as short-term length
moving windows for driving data collection. Although the size of the
training data is limited by length of moving windows, the DOIP algo-
rithm will continuously motivate the training data to keep fresh all the
time. It can be described as given by:

= = ⋯− −R R γ γ γ[ , , , ]mirror k k k
T

1 5000 (26)

where γk indicates data vector of the moving memory horizon at sam-
pling time k; the update frequency of recording matrix R is 5 s; the
update frequency of mirror matrix Rmirror is consistent with the com-
munication frequency of the real-time PHEV system (0.1 s).

Between two updates of the record matrix R, the mirror matrix
Rmirror will participate in the iterative calculation of multi-step

prediction and its procedure is as follows. Based on Eq. (22), the new
data vector +γk 1 related to the next one-step-ahead velocity +v k( 1) is
calculated and used to squeeze out the last data vector −γk 5000 in the
mirror matrix. Therefore, the mirror matrix Rmirror is replaced to Rmirror

'

as given by

= ⋯+ −R γ γ γ[ , , , ]mirror k k k
T'

1 4999 (27)

Based on the new mirror matrix Rmirror
' , the membership criterion of

the next one-step-ahead +γu ( )n k 1 is calculated as the weighted sum
coefficient to aggregate the next two-step-ahead velocity from predict
results of five driver-oriented Markov models. The next-two-step velo-
city +v k( 2) can be calculated as given by

⎧
⎨⎩

+ = ∑ + ∏ +
+ = + + +
=a k O v k c ω v k

v k v k a k
( 2) ( ( ( 1))) ¯ · ( ( 1))

( 2) ( 1) ( 2)
n
B

n
T

n n n1

(28)

After iterative calculation, the future horizon velocity
+ + ⋯ +v k v k v k( 1), ( 2), , ( 100) is obtained, then used in the second

iteration loop for optimizing the control sequence via the CAPSO al-
gorithm. Finally, the first fifty elements of the control sequence

+ + ⋯ +u u uk k k( 1), ( 2), , ( 100) will be sent back to the powertrain
of the PHEV system for real-time energy management. Once the next
updating trigger comes, the recording matrix R and the mirror matrix
Rmirror will both be updated following which the driver-oriented MC
models ∏n will be re-learned respectively.

4. Testing and validation set-up

4.1. Real-world driving cycles

In this paper, experimental studies are conducted on the cockpit

Fig. 8. Velocity prediction result of three MC-based predictors.

Table 3
Velocity prediction comparison of three MC-based predictors.

Predictor Driving behaviour
recognition

Maximum
error

ITAE (10 )5 Reduce (%)

NNP NA 14.81% 3.3412 –
FEP NA 4.81% 2.7074 18.97%
DFP Yes 2.22% 2.4237 27.46%
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package with the same PHEV model, in which five human drivers are
invited as experimental objects to participate in 8000 s real-world
driving. The road map model used with traffic is a mixture of highway
and local roads with multiple stop signs, traffic lights, and speed limit
changes provided by IPG CarMaker as Fig. 5. The human driver is re-
quired to follow the speed limits, stop signs, traffic lights, and other
traffic regulations. It should be noted that the driver’s pedal behaviour
may be dependent on the vehicle, the pedal to its torque map, and even
the physical pedal resistance feedback. This dependence is not studied
in this research. The proposed model in this paper is for generating/
learning the drivers’ behaviour for a given vehicle. The specification of
the real-world driving cycle is shown in Table 2.

4.2. Driving simulation platform

A static system experience platform driving simulator is involved in
this research as shown in Fig. 6, which is the ideal tool for subjectively
testing vehicle functions through direct experience. It make the most of
the advantages offered by the combination of a detailed and realistic
human machine interface simulation and a real-world driving experi-
ence, coupled with the CarMaker open integration and test platform
[39]. There is one cockpit package supported by a Thrustmaster
T500RS and one host PC with I5-6500 3.2 GHz processor and 8 GB
RAM. Their communication relies on a 3.0 USB cable, in which sam-
pling frequency of the PHEV system and pedal data acquisition are both
10 Hz. All online programming is encoded as Matlab m-code and it
operates on the PC host to obtain an optimal control signal for the PHEV

system in real time, in which m-code can be recognized directly under
the CarMaker simulation environment.

5. Results and discussion

5.1. Velocity prediction comparison

Existing MC-based predictors including the nearest neighbour pre-
dictor (NNP) [40] and the fuzzy encoding predictor (FEP) i.e. the in-
terval fuzzy predictor [14] is considered in this paper and compared
with the proposed DFP. As the unique ability, the DFP can efficiently
differentiate driving behaviours at each driving state using fuzzy C-
mean clustering algorithm. In Fig. 7, it can be seen that five-level
driving behaviours are clearly discriminated through deep fuzzy gran-
ulation, in which the driver with more aggressive actions have more
wide operation range. Especially at deceleration range [−6, −3], the
DFP differentiates the operation border of each driving behaviour.

Fig. 8 presents 5-s velocity prediction result of three predictors on
WLTP-based cycles. In fact, it is very hard for the NNP to make a good
prediction in the low-speed area because the transition probability of
this area is very small by using one discrete MC model. Through fuzzy
granulation, the FEP fixes the problem from the low-speed area but to
treat different driving habits in a unified way makes its prediction
performance in the medium-high-speed area still unsatisfied. Compared
with both MC-based predictors of the NNP and the FEP, it is apparent
that the DFP can achieve more excellent accuracy because the training
database of the predictive model is continuously updating during real-

Fig. 9. Vehicle system performance comparison when initial battery SoC=0.8.
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world driving. The prediction model can realize more personalized
prediction in time-series through driver-oriented continuous adjusting
among 5-layer Markov-chain models. The ITAE in DFP ( ×2.4237 105) is
less than that in NNP ( ×3.3412 105) and FEP ( ×2.7074 105), in which
the maximum error in DFP decreases 2.59% compared to that in FEP.
More comparison detail is shown in Table 3.

5.2. Performance over cycle-based driving

Here, the DOIP-based online control strategy using the DFP (10-
second look ahead) is further compared with DP-based one and a rule-
based control strategy over the WLTP-based driving cycle. Fig. 9 illus-
trates the vehicle system performance comparison when initial
SoC=0.8. It can be discerned that the power split trajectory in the
DOIP-based online control strategy is close to that of DP-based control

strategy and clearly differs from the rule-based control. Especially
during the hybrid mode, the rule-based control strategy more often let
the engine work at maximum power. Relatively, the DP and DOIP based
control strategies let engine keep working in a high-efficiency region for
fuel saving.

An analogous result also can be observed in Fig. 10 when initial
SoC=0.2. Obviously, the fuel consumption under the DOIP-based
online control strategy is closest to that of the DP-based control, 9.18%
and 11.8% energy-saving from the rule-based control strategy at
SoC=0.8 and SoC=0.2. Compared to the rule-based control strategy,
the DP and DOIP based them have a higher SoC level during the entire
journey as backup energy for the potential high power requirements.
Compared with when the initial battery SoC=0.2, energy-saving per-
formance of productive control strategies is more significant when the
initial battery SoC=0.8. The vehicle performance with different con-
trol strategies is summarized in Table 4.

5.3. Performance over real-world driving

All the experiments here were conducted on the driving simulation
platform. Fig. 11 shows the DiL experiment result operated by five
human drivers in simulation driving scenarios, where each driver's in-
dependently driven section is separated by a black dotted line. After
600-second initialization of the recording matrix, the DFP starts to
produce 10 s look-ahead horizon and its prediction models are real-time
updating per five seconds. The predicted velocity feature relies on last-
one-step driving behaviour not related to the driver's change. This

Fig. 10. Vehicle system performance comparison when initial battery SoC=0.2.

Table 4
Vehicle system performance over WLTP-based driving.

Optimization
strategy

Initial SoC Final SoC Used fuel energy
(10 J8 )

Savings (%)

Rule-based 0.8 0.2893 2.2730 –
DP 0.8 0.3339 2.0146 11.37%
DOIP 0.8 0.3093 2.0644 9.18%
Rule-based 0.2 0.2893 3.0951 –
DP 0.2 0.3891 2.6383 14.76%
DOIP 0.2 0.3348 2.7300 11.80%
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Fig. 11. Online prediction results over real-world driving.

Fig. 12. Vehicle performance over real-world driving when initial battery SoC=0.8.
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means that if the driving behaviour of a single driver has changed
dramatically, its predicted velocity will be adjusted adaptively ac-
cording to a new pedal action (shown in magnified views). It is em-
phasized that the recording matrix of the DFP will be completely re-
placed within 600 s so that to relearn a new driver behaviour takes up
to 10min whenever the driver changes.

Fig. 12 indicates when BP’s SoC is high, the DOIP-based control

strategy allows the engine to compensate for the total power demand
for low power. Fig. 13 indicates when BP’s SoC is low, this control
strategy will give the engine a priority in compensating the total power
demand compared to the generator to compensate the BP. Compared
with the rule-based strategy, Up to 9.37% total energy can be saved
while maintain the higher SoC value by the DOIP-based control
strategy. During the real-world driving, the DOIP algorithm breaks the
bondage of conventional rule-based strategy and freely explore the
more efficient way for the PHEV’s energy-split. Due to no prior in-
formation on the predicted vehicle’s performance or the driver’s pre-
ference, global optimal algorithms i.e. the DP-based control strategy is
no longer suitable for online optimization of the HEV energy manage-
ment. More specification comparison over real-world driving is re-
ported in Table 5.

The computational time of the DOIP algorithm in the DiL experi-
ment is investigated and contrasted in Table 6. The solving speed of the
DOIP algorithm is affected by look-ahead horizon length and compu-
tational efficiency of the processor, where the latter will not be dis-
cussed in this paper. As an increase of look-ahead horizon length,
iterative calculations in this algorithm increase and its computational
time appears a linear upward trend. When the look-ahead horizon is
20 s, the computational time increases to 0.79 s per second but com-
puting resources still have a surplus depending on its concise solving
frame. As the rapid development of computer science, it is feasible to
operate the DOIP algorithm on the actual on-board controller of HEVs
for real-time energy saving.

Fig. 13. Vehicle performance over real-world driving when initial battery SoC=0.2.

Table 5
Online performance comparison over real world driving.

Optimization
strategy

Initial SoC Final SoC Used fuel energy
(10 J8 )

Saving (%)

Rule-based 0.8 0.2985 2.0217 –
DOIP 0.8 0.3144 1.8668 7.66%
Rule-based 0.2 0.2985 2.7638 –
DOIP 0.2 0.3123 2.5049 9.37%

Table 6
Computational time in different look-ahead horizon length.

Optimization strategy Look-ahead
horizon

Time (per
second)

Relative increase
(%)

DOIP 5 s 0.54 s –
DOIP 10 s 0.67 s 24.07%
DOIP 20 s 0.79 s 46.30%
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6. Conclusions

This paper develops an online predictive control strategy using the
proposed DOIP algorithm for series-parallel PHEVs. Its prediction per-
formance is demonstrated and compared with existing MC-based pre-
dictors. Cycle-based driving (WLTP) and real world driving are con-
ducted on the driving simulator experimental platform for vehicle
performance validation. The conclusions drawn from the investigation
are as follows:

1. The proposed DFP has the ability to differentiate driving behaviours
at each driving state in real time. Its prediction result shows ex-
cellent accuracy with the lowest maximum error (2.22%), compared
with the NNP (14.81%) and the FEP (4.81%).

2. From the cycle-based driving results, energy management efficiency
of the DOIP-based control strategy is close to DP-based control
strategy. It is clearly superior to the rule-based one over the WLTP-
based driving cycle with up to 11.80% reduction in fuel consump-
tion.

3. During real world driving, up to 9.37% total energy can be saved
compared with the rule-based control strategy. The DP-based con-
trol strategy cannot work in this online environment.

4. Whether cycle-based driving or real world driving scenarios, the
energy-saving performance of the DOIP-based control strategy is
more outstanding when the initial SoC is low (SoC=0.2).

5. The computational time of the DOIP algorithm is investigated. It is
feasible to operate the DOIP algorithm for 20 s look-ahead horizon
and computing resources still have a surplus.
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