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Abstract

As antimicrobial resistance increases, it is crucial to develop new treatment strategies to

counter the emerging threat. In this paper, we consider combination therapies involving con-

ventional antibiotics and debridement, coupled with a novel anti-adhesion therapy, and their

use in the treatment of antimicrobial resistant burn wound infections. Our models predict

that anti-adhesion–antibiotic–debridement combination therapies can eliminate a bacterial

infection in cases where each treatment in isolation would fail. Antibiotics are assumed to

have a bactericidal mode of action, killing bacteria, while debridement involves physically

cleaning a wound (e.g. with a cloth); removing free bacteria. Anti-adhesion therapy can take

a number of forms. Here we consider adhesion inhibitors consisting of polystyrene microbe-

ads chemically coupled to a protein known as multivalent adhesion molecule 7, an adhesin

which mediates the initial stages of attachment of many bacterial species to host cells.

Adhesion inhibitors competitively inhibit bacteria from binding to host cells, thus rendering

them susceptible to removal through debridement. An ordinary differential equation model is

developed and the antibiotic-related parameters are fitted against new in vitro data gathered

for the present study. The model is used to predict treatment outcomes and to suggest opti-

mal treatment strategies. Our model predicts that anti-adhesion and antibiotic therapies will

combine synergistically, producing a combined effect which is often greater than the sum of

their individual effects, and that anti-adhesion–antibiotic–debridement combination therapy

will be more effective than any of the treatment strategies used in isolation. Further, the use

of inhibitors significantly reduces the minimum dose of antibiotics required to eliminate an

infection, reducing the chances that bacteria will develop increased resistance. Lastly, we

use our model to suggest treatment regimens capable of eliminating bacterial infections

within clinically relevant timescales.
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Author summary

Since the development of the first antibiotics, bacteria have utilised and developed resis-

tance mechanisms, helping them to avoid being eliminated and to survive within a host.

Traditionally, the solution to this problem has been to treat with multiple antibiotics,

switching to a new type when the one currently in use proves ineffective. However, the

development of antibiotics has slowed significantly in the past two decades, while multi-

drug resistant strains, otherwise known as ‘super bugs’, are on the rise. In answer to this

challenge, alternative approaches, such as anti-adhesion therapy, are being developed as a

complement or alternative to traditional antimicrobials. In this paper we formulate and

analyse a mathematical model of a combination therapy, applied in the context of an

infected burn wound, bringing together antibiotics, anti-adhesion therapy and debride-

ment (the physical cleaning of a wound). We use our models to make sense of how these

treatments interact to combat a bacterial infection, to predict treatment outcomes for a

range of strategies and to suggest optimal treatment regimens. It is hoped that this study

will guide future experimental and clinical research, helping biomedical researchers to

identify the most promising approaches to treatment.

Introduction

Antimicrobial resistance (AMR) is on the rise [1–3] and with it the need to develop and apply

novel treatment strategies [4, 5]. In this paper, we formulate and analyse mathematical models

of combination therapies, bringing together traditional antibiotics and debridement with a

new anti-adhesion treatment, seeking to determine if a combination therapy could succeed in

eliminating an AMR infection in cases where antibiotics alone would fail.

It has been predicted that unless steps are taken to combat its rise, AMR could lead to as

many as 10 million deaths per annum by the year 2050 [1]. Antibiotics are the standard treat-

ment option for microbial infections. They may be classified into two broad categories: bacte-

ricidal and bacteriostatic [6]. Bactericidal antibiotics act by killing bacteria, while bacteriostatic

antibiotics inhibit their growth (we note that some antibiotics may exhibit both modes of

action). While effective in general, antibiotic use has the unfortunate consequence of selecting

for those members of a bacterial population which are resistant to the antibiotic being applied.

Resistance then spreads through the bacterial population via vertical (parent to daughter) and/

or horizontal (cell to cell) gene transfer, until the resistant phenotype comes to dominate [7–

9]. One solution to this problem is to use multiple antibiotics; however, this runs the risk of

selecting for multi-drug resistant bacteria, or ‘super bugs’ [10]. An alternative approach is to

use a class of treatments known as anti-virulence therapies, either in place of, or in addition to,

antibiotics. Anti-virulence therapies are diverse [11–13]; however, they have the common aim

of preventing or limiting disease in the host [6]. By using these therapies in combination with

more traditional treatments, such as antibiotics and debridement (physical clearance of a

wound e.g. with a cloth), it is hoped that bacteria can be cleared from a host more rapidly,

while reducing the risk of resistant phenotypes emerging [14, 15].

In this paper we shall consider a particular form of anti-virulence therapy, known as anti-

adhesion therapy, which operates by preventing bacteria from binding to the cells of an infected

host, thus rendering them more susceptible to physical clearance [13]. Krachler et al. [12] have

developed an anti-adhesion treatment based upon a protein, discovered earlier by the same

group, which they named multivalent adhesion molecule (MAM) 7 [16]. MAM7 is anchored

in the extracellular side of the outer membrane of many Gram-negative bacteria, where it is
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responsible for mediating the initial stages of attachment to host cells [16, 17]. By chemically

coupling polystyrene microbeads to MAM7, adhesion inhibitors (henceforth inhibitors) can be

constructed which, when applied to an infection site, competitively inhibit the binding of bacte-

ria to host cells [18]. Burn wound infections provide a promising application of this treatment

[18–20]. Nosocomial (hospital-acquired) infections pose a major challenge in the treatment of

burn wound patients, as these wounds create a significant opportunity for bacteria to penetrate

host defences [21–25]. Here we consider the potential of an anti-adhesion–antibiotic–debride-

ment combination therapy to clear an infection, preventing further tissue damage and sepsis.

The mathematical model developed in the present study extends our earlier model in Rob-

erts et al. [26], which considered the response of a purely susceptible bacterial infection to

treatment with inhibitors and debridement. Our models predicted that, when combined with

debridement, the bacterial burden could be significantly reduced and, in some cases, elimi-

nated. The present study extends this model by considering mixed susceptible and resistant

infections and an augmented treatment strategy, combining inhibitors and debridement with

antibiotics. This is the first mathematical modelling study: (i) to consider the effects of antibi-

otic in a situation where bacteria can exist in either bound or unbound states in the absence of

a biofilm ([27] and [28], noted below, do not include antibiotic treatment); (ii) to consider a

treatment combining antibiotics with anti-adhesion therapy, or (iii) to predict optimal antibi-

otic-inhibitor-debridement treatment regimens.

As in [26], the present mathematical model is based upon the in vivo rat burn wound model

described in Huebinger et al. [18]. In each experiment, a burn wound was administered to the

back of a rat and a portion of the resulting necrotic tissue later excised. An inoculum of the

Gram-negative Pseudomonas aeruginosa (P. aeruginosa) bacteria was then applied to the

wound, together with an active or inactive form of the inhibitor. The bacterial burden was moni-

tored for six days, after which each rat was euthanised (see [18] for further details). The treat-

ment was found to effect a marked reduction in the total bacterial burden compared to controls.

A mathematical model of a generalised anti-virulence treatment combined with antibiotics

was proposed by Ternant et al. [29]. This ODE model conceived of anti-virulence treatment as

providing a boost to the immune system, though it did not consider an anti-adhesion therapy

specifically. The model predicted that antibiotics and anti-virulence treatments could be effec-

tive when used in combination, in cases where neither is effective in isolation, provided the

therapies are administered in staggered doses. A number of modelling studies have considered

bacterial infections of burn wounds [30–35], the binding of bacteria to surfaces [27, 28] and

anti-virulence treatments which interfere with quorum sensing [33, 36–42]. There is also a

large literature on the mathematical modelling of antibiotic therapy (see [43–48] for reviews).

In this paper we develop an ODE model to describe and predict the bacterial population

dynamics in an infected burn wound, under treatment regimens combining antibiotic, inhibi-

tor and debridement therapies. We fit our antibiotic-associated parameters to new in vitro
data collected for this study. We use our models to gain insight into how these combination

therapies operate, to predict treatment outcomes and to suggest ways in which therapy could

be optimised in a clinical setting. Crucially, it is found that anti-adhesion–antibiotic-debride-

ment combination therapies can eliminate bacterial infections in situations where each treat-

ment would fail when used in isolation.

Materials and methods

Model development

We construct a mathematical model of an infected burn wound, focussing upon the bacterial

population and the treatment strategies employed to clear an infection. For our purposes a

Model predicts combination therapies can clear an antibiotic resistant infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007211 July 23, 2019 3 / 39

https://doi.org/10.1371/journal.pcbi.1007211


burn wound consists of a layer of host cells, over which lies a fluid layer, exuded by the host

cells, called the exudate. The exudate is partially covered by a layer of necrotic tissue, except in

the region of a surgical excision, where it is exposed to the air and from which fluid may leak.

If left undisturbed, a scab forms across the excision after 24 hr, preventing further fluid loss

(see Fig 1(a)). The environment-dependent parameters used in this paper were fitted to an in
vivo rat model with the bacterial species P. aeruginosa in [26]; however, this model is also of

relevance to burn wounds in humans and for any bacterial species for which host cell attach-

ment is partly mediated by MAM7. See the ‘Experimental set-up’ and ‘Model formulation’ sec-

tions of [26] for more details.

Our model considers three types of species: bacteria, inhibitors and antibiotics. Both bacte-

ria and inhibitors may exist in one of two physical states, either swimming/floating freely in

Fig 1. Wound geometry and model structure. (a) The wound is pictured in the transverse plane. The (liquid) exudate overlies the

host cells, while a layer of necrotic tissue covers the wound, except at the excision where the exudate is exposed to the air. (b) The

processes described in the mathematical model as they relate to the wound geometry (the diagram does not distinguish between

susceptible and resistant bacteria, nor does it depict conjugation or segregation). (c) A representation of the model topology (Eqs 1–

11). BFS
: free susceptible bacteria, BFR

: free resistant bacteria, BBS
: bound susceptible bacteria, BBR

: bound resistant bacteria, IF: free

inhibitors, IB: bound inhibitors, and A: antibiotic. Antibiotic directly inhibits bacteria by killing them, while inhibitors indirectly

inhibit bacteria by limiting their ability to bind to host cells. The intrinsic growth rate of susceptible bacteria is greater than that of

resistant bacteria, while the maximum killing rate of susceptible bacteria by antibiotic is greater than that for resistant bacteria. This is

represented by thicker arrows/inhibition symbols in each case. See Table 1 for variable descriptions and units, and Tables 2–4 for

parameter descriptions and units.

https://doi.org/10.1371/journal.pcbi.1007211.g001
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the exudate or bound to the host cells, while antibiotics remain in solution in the exudate at all

times. Further, bacteria come in two varieties: those which are more vulnerable to antibiotic

(susceptible bacteria) and those which have developed resistance to the antibiotic (resistant

bacteria). In this study we model a bactericidal antibiotic, employing parameter values fitted

to newly measured in vitro kill curves for P. aeruginosa using the antibiotic meropenem (see

Parameter fitting and justification and S1 Text for more details). Meropenem is commonly

used to treat P. aeruginosa burn wound infections [49] and can be administered intravenously;

thus, it is a natural choice for this study. Inhibitors are applied directly to the exudate, whereas

antibiotics are applied systemically, entering the wound through the host cell layer, having

reached the wound via the bloodstream.

Assuming, as in [26], that the system is well-mixed, we define an ordinary differential equa-

tion (ODE) model for free susceptible bacteria density, BFS
ðtÞ (cells cm−3), free resistant bacte-

ria density, BFR
ðtÞ (cells cm−3), bound susceptible bacteria density, BBS

ðtÞ (cells cm−2), bound

resistant bacteria density, BBR
ðtÞ (cells cm−2), free inhibitor concentration, IF(t) (inhib. cm−3),

bound inhibitor concentration, IB(t) (inhib. cm−2), and antibiotic concentration A(t) (μg

cm−3), over time, t (hr) (the dependent and independent variables are summarised in Table 1).

It is assumed that the total binding site density on the host cells, consisting of both free and

occupied sites, is conserved, such that the free binding site density EðtÞ ¼ Etotal � �BacðBBS
ðtÞ þ

BBR
ðtÞÞ � �IIBðtÞ (sites cm−2), where Etotal (sites cm−2) is the total density of binding sites (both

free and bound), and ϕBac (sites cell−1) and ϕI (sites inhib.−1) are the number of binding sites

occupied by a bacterium or an inhibitor respectively.

The model, summarised in Fig 1(b) and 1(c), is described by the following governing equa-

tions

dBFS

dt
¼ ½rFSBFS

HðVBFS
� 1Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
logistic growth

þ rBFR
HðVBFR

� 1ÞHðKF � BFS
� BFR

Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

segregation

� 1 �
BFS
þ BFR

KF

� �

þ ð1 � ZðEÞÞHðKB � BBS
� BBR

Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
daughter cells freed from host cells upon division

�
1

h
½rBSBBS

HðArBBS
� 1Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
logistic growth

þ rBBR
HðArBBR

� 1Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

segregation

� 1 �
BBS
þ BBR

KB

� �

� aBacArBFS
E

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
binding to host cells

þ
bBac

h
BBS

|fflfflffl{zfflfflffl}
unbinding from host cells

�
ES
maxA

AS
50 þ A

BFS
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
killing by antibiotic

� lBFS
BFR|fflfflfflffl{zfflfflfflffl}

conjugation

� cBacðtÞBFS|fflfflfflfflfflffl{zfflfflfflfflfflffl}
natural clearance

;

ð1Þ

Table 1. Dependent and independent variables for Eqs 1–11.

Variable Description (Units)

BFS
Free susceptible bacteria density (cells cm−3)

BFR
Free resistant bacteria density (cells cm−3)

BBS
Bound susceptible bacteria density (cells cm−2)

BBR
Bound resistant bacteria density (cells cm−2)

IF Free inhibitor concentration (inhib. cm−3)

IB Bound inhibitor concentration (inhib. cm−2)

A Antibiotic concentration (μg cm−3)

t Time (hr)

https://doi.org/10.1371/journal.pcbi.1007211.t001
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dBFR

dt
¼ ½ð1 � cHðKF � BFS

� BFR
ÞÞrFSBFR|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

logistic growth

� rBFR
HðKF � BFS

� BFR
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
segregation

�

� 1 �
BFS
þ BFR

KF

� �

HðVBFR
� 1Þ

þ ð1 � ZðEÞÞHðKB � BBS
� BBR

Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
daughter cells freed from host cells upon division

�
1

h
½ð1 � cÞrBSBBR|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

logistic growth

� rBBR|ffl{zffl}
segregation

� 1 �
BBS
þ BBR

KB

� �

HðArBBR
� 1Þ

� aBacArBFR
E

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
binding to host cells

þ
bBac

h
BBR

|fflfflffl{zfflfflffl}
unbinding from host cells

�
ER
maxA

AR
50
þ A

BFR

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
killing by antibiotic

þ lBFS
BFR|fflfflfflffl{zfflfflfflffl}

conjugation

� cBacðtÞBFR|fflfflfflfflfflffl{zfflfflfflfflfflffl}
natural clearance

;

ð2Þ

dBBS

dt
¼ ½1þ ðZðEÞ � 1ÞHðKB � BBS

� BBR
Þ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a proportion; Z; remain attached

� ½rBSBBS
HðArBBS

� 1Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

logistic growth

þ rBBR
HðArBBR

� 1ÞHðKB � BBS
� BBR

Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

segregation

�

� 1 �
BBS
þ BBR

KB

� �

þ aBacVBFS
E

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
binding to host cells

� bBacBBS|fflfflffl{zfflfflffl}
unbinding from host cells

� dBBBS|ffl{zffl}
phagocytosis

� o
ES
maxA

AS
50 þ A

BBS
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
killing by antibiotic

;

ð3Þ

dBBR

dt
¼ ½1þ ðZðEÞ � 1ÞHðKB � BBS

� BBR
Þ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a proportion; Z; remain attached

� ½ð1 � cHðKB � BBS
� BBR

ÞÞrBSBBR|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
logistic growth

� rBBR
HðKB � BBS

� BBR
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
segregation

�

� 1 �
BBS
þ BBR

KB

� �

HðArBBR
� 1Þ

þ aBacVBFR
E

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
binding to host cells

� bBacBBR|fflfflffl{zfflfflffl}
unbinding from host cells

� dBBBR|fflffl{zfflffl}
phagocytosis

� o
ER
maxA

AR
50
þ A

BBR

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
killing by antibiotic

;

ð4Þ

dIF
dt

¼ � aIArIFE|fflfflfflffl{zfflfflfflffl}
binding to host cells

þ
bI

h
IB

|{z}
unbinding from host cells

� cIðtÞIF|fflfflffl{zfflfflffl}
natural clearance

;
ð5Þ

dIB
dt

¼ aIVIFE|fflfflffl{zfflfflffl}
binding to host cells

� bIIB|{z}
unbinding from host cells

;
ð6Þ

dA
dt

¼

� dAA|{z}
elimination

discrete dosing;

0 constant concentration;

8
><

>:
ð7Þ

where parameter definitions and values are given in Tables 2–4. See Parameter fitting and jus-

tification for details on how the parameter values were obtained.
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We note that this model differs from that presented in [26] in the following respects:

• it includes antibiotic concentration, resulting in an additional ODE (Eq 7);

• both the free and bound bacterial compartments are split into susceptible and resistant sub-

compartments (having been tacitly susceptible in [26]), such that the two ODEs describing

free and bound bacterial dynamics are replaced with four ODEs for free susceptible, free

resistant, bound susceptible and bound resistant bacteria (Eqs 1–4);

• it includes parameters and terms for fitness cost to resistant bacteria, conjugation, segrega-

tion, killing of bacteria by antibiotic and the factor difference in antibiotic potency against

bound bacteria compared with free bacteria (see below for more details);

• it includes terms to prevent the regrowth of bacteria once their population size goes beneath

one (see below).

These key extensions to our model in [26] facilitate investigation into how the combination

therapies presented here can best be employed to tackle an otherwise untreatable antibiotic

resistant infection.

Table 2. Parameter values fitted to in vivo data for Eqs 1–11.

Parameter Description (Units) Value

Case A Case B Case C Case D

rFS Intrinsic growth rate of free susceptible bacteria (hr−1) 8.37×10−2 3.97×10−2 5.57×10−3 2.57×10−1

rBS Intrinsic growth rate of bound susceptible bacteria (hr−1) 1.10×10−1 1.60 8.81×10−2 5.55

KF Carrying capacity of free bacteria (cells cm−3) 1.17×107 8.23×106 1.95×107 1.85×106

KB Carrying capacity of bound bacteria (cells cm−2) 9.96×105 4.15×105 1.79×106 1.43×106

αBac Binding rate of bacteria to host cells (hr−1 sites−1) 1.34×10−9 1.88×10−11 6.47×10−10 3.34×10−11

βBac Unbinding rate of bacteria from host cells (hr−1) 1.97×10−1 2.02×10−3 2.48×10−10 5.79×10−6

δB Rate of phagocytosis of bacteria by neutrophils (hr−1) 1.06×10−3 1.90×10−6 2.95×10−5 3.02×10−5

ηmax Maximum proportion of daughters of bound cells that can enter the bound compartment

(dimensionless)

2.95×10−2 1.23×10−8 3.37×10−2 1.52×10−2

γ Concentration of binding sites at which η = ηmax/2 (sites cm−2) 3.12×104 1.89×105 1.05×104 1.65×106

~cBac
Natural clearance rate of bacteria (hr−1) 1.42×10−1 7.28×10−2 1.39×10−3 5.01×10−1

αI Binding rate of inhibitors to host cells (hr−1 sites−1) 1.46×10−6 1.77×10−10 6.47×10−10 5.51×10−9

βI Unbinding rate of inhibitors from host cells (hr−1) 6.35×10−8 4.48×10−6 3.92×10−3 4.43×10−1

~c I
Natural clearance rate of inhibitors (hr−1) 4.39×10−8 5.17×10−4 5.29×10−3 1.75×10−5

Values are given to an accuracy of 3 significant figures. All parameter values in this table are taken from [26].

https://doi.org/10.1371/journal.pcbi.1007211.t002

Table 3. Parameter values fitted to in vitro data for Eqs 1–11.

Parameter Description (Units) Value

c Fitness cost (dimensionless) 0.328

ES
max Maximum killing rate of susceptible bacteria by antibiotics (hr−1) 0.133

ER
max Maximum killing rate of resistant bacteria by antibiotics (hr−1) 8.62×10−2

AS
50

Antibiotic concentration at which killing rate of susceptible bacteria is half maximal (μg

cm−3)

7.30×10−2

AR
50

Antibiotic concentration at which killing rate of resistant bacteria is half maximal (μg

cm−3)

14.2

Values are given to an accuracy of 3 significant figures. All parameter values in this table were fitted as part of the

present study as described in Parameter fitting and justification and S1 Text.

https://doi.org/10.1371/journal.pcbi.1007211.t003
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Both free and bound bacteria are assumed to grow logistically with carrying capacities KF

(cells cm−3) and KB (cells cm−2) respectively. In our model, the carrying capacities represent

the maximum number of bacteria that can be sustained by available nutrients and are such

that bacterial division is negligible when BFS
ðtÞ þ BFR

ðtÞ ¼ KF or BBS
ðtÞ þ BBR

ðtÞ ¼ KB (see

[62, 63]). It is important to note that the number of bacteria that can be supported by nutrients

near the host cells is not in general equal to the number of available binding sites on the host

cells (KB 6¼ Etotal/ϕBac), indeed KB< Etotal/ϕBac for all parameter sets considered here (see

Tables 2 and 4).

Susceptible bacteria have intrinsic growth rates rFS (hr−1) (free) and rBS (hr−1) (bound),

while resistant bacteria incur a fitness cost, 0< c< 1 (dimensionless), such that their intrinsic

growth rates are ð1 � cÞrFS (hr−1) (free) and ð1 � cÞrBS (hr−1) (bound). This fitness cost only

operates when the logistic terms represent bacterial growth. If the density of free cells,

BFS
ðtÞ þ BFR

ðtÞ, exceeds the free carrying capacity, KF, then the free logistic growth term

becomes a death term, and likewise for bound bacteria. In this case the intrinsic growth rates

of resistant bacteria revert to those of susceptible bacteria, since resistant bacteria are assumed

to die at the same rate as susceptible bacteria. This is achieved through the use of Heaviside

step functions, HðKF � BFS
ðtÞ � BFR

ðtÞÞ and HðKB � BBS
ðtÞ � BBR

ðtÞÞ, in Eqs 2 and 4, where

HðxÞ ≔
0 if x < 0;

1 if x � 0:

(

ð8Þ

Further, the growth of any bacterial subtype (free-susceptible/free-resistant/bound-susceptible/

bound-resistant) ceases once the number of bacteria in that subtype falls beneath one, since at

least one cell is required in order for division to be possible. This is achieved using the Heaviside

Table 4. Measured, calculated, literature-derived and estimated parameter values for Eqs 1–11.

Parameter Description (Units) Value Source

ϕBac Number of binding sites occupied by a bacterium (sites cell−1) 1 Estimated

ϕI Number of binding sites occupied by an inhibitor (sites inhib.−1) 1 Calculated

V Volume of the exudate (cm3) 4.9 Calculated

Ar Area of the burn wound (cm2) 49 Measured

h Height of the exudate (cm) 0.1 Measured

n Hill coefficient (dimensionless) 1 Estimated

λ Conjugation rate (cm3cell−1hr−1) 0 (10−14–10−9) [50–53]

ρ Segregation rate (hr−1) 0 (10−4) [52, 54]

δA Elimination rate of antibiotic (hr−1) 0 or 1 [29, 55–58]

ω Factor difference in antibiotic potency against bound bacteria compared with free bacteria (dimensionless) 1 (0.5–2) Estimate

BFSinit
Initial density of free susceptible bacteria (cells cm−3) 1.00×106 Estimated

BFRinit
Initial density of free resistant bacteria (cells cm−3) 2.04×104 Estimated

IFinit Initial concentration of free inhibitors (inhib. cm−3) 0 or 6.12×107 Measured

Ainit Initial concentration of antibiotic (μg cm−3) 0 or 8 [59–61]

Etotal Total density of binding sites (sites cm−2) 2.57×106 Calculated

Measured values are those which have been measured directly, calculated values are those which have been calculated using values which were measured directly,

literature-derived values are taken directly from the literature and estimated values are those which could not be measured, calculated or obtained from the literature.

Where multiple values are given, those without brackets are typical values, while those within brackets denote biologically realistic ranges (λ and ρ) or ranges used in

sensitivity analyses (ω). Values are given to an accuracy of 3 significant figures.

https://doi.org/10.1371/journal.pcbi.1007211.t004
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step functions HðVBFS
ðtÞ � 1Þ, HðVBFR

ðtÞ � 1Þ, HðArBBS
ðtÞ � 1Þ and HðArBBR

ðtÞ � 1Þ, in Eqs

1–4, where H is defined in Eq 8.

Daughter cells derived from bound bacteria may enter either the bound compartment (in

the proportion 0� η(E(t))� 1 (dimensionless)) or the free compartment (1 − η(E(t))), the

proportion entering the bound compartment increasing as the density of free binding sites,

E(t), increases. We model this dependence using a Hill function as follows

ZðEÞ ¼
ZmaxEn

gn þ En
; ð9Þ

where ηmax (dimensionless) is the maximum proportion of daughter cells which may

remain bound to the surface, γ (sites cm−2) is the binding site density at which η(E) =

ηmax/2 and n (dimensionless) is the Hill coefficient. We use a Heaviside step function,

HðKB � BBS
ðtÞ � BBR

ðtÞÞ, in Eqs 1–4 to restrict cell death due to the bound logistic growth

term to the bound compartment when BBS
ðtÞ þ BBR

ðtÞ > KB, where H is defined in Eq 8.

The resistant strain of P. aeruginosa used in our in vitro experiments, PA1004 Evo10, trans-

fers resistance genes vertically, but not horizontally. Therefore, throughout most of this study

we neglect horizontal gene transfer and segregation. We include conjugation and segregation

terms in Eqs 1–11 so as to make our model relevant to a wider class of infections, performing a

sensitivity analysis on these parameters in Sensitivity analysis. In those cases where horizontal

gene transfer does occur, resistant bacteria transfer plasmids conferring resistance to suscepti-

ble bacteria via conjugation at a rate λ (cm3cell−1hr−1). It is assumed that this process occurs

within the free compartment, but not within the bound compartment or between the two

compartments, since bound bacteria are typically physically separated from each other and

free bacteria are unlikely to interact with bound bacteria. Horizontal gene transfer can also

occur via transformation and transduction; however, we consider only conjugation here since

it is the most common of the three mechanisms [10]. When a bacterium divides, its plasmids

are segregated (divided) between the resulting daughter cells. A portion of the daughter cells of

resistant bacteria produced upon division fail to inherit the resistance plasmid, leading to the

production of susceptible offspring (by resistant bacteria) at a rate ρ (hr−1) (see [53] for an

example). Similarly to the processes described above, segregation only occurs where the num-

ber of free or bound bacteria are below carrying capacity and where the number of free or

bound resistant bacteria is greater than one. This is achieved through the use of Heaviside

step functions, HðKF � BFS
ðtÞ � BFR

ðtÞÞ, HðKB � BBS
ðtÞ � BBR

ðtÞÞ, HðVBFR
ðtÞ � 1Þ and

HðArBBR
ðtÞ � 1Þ, in Eqs 1–4, where H is defined in Eq 8.

Bacteria and inhibitors bind to and unbind from the host cells with respective binding rates

αBac (hr−1 sites−1) and αI (hr−1 sites−1), and unbinding rates βBac (hr−1) and βI (hr−1), in accor-

dance with the law of mass action.

Neutrophils are present only on the surface of the host cells and are fully upregulated

throughout an infection, such that bound bacteria can be assumed to decay exponentially at

rate δB (hr−1), where δB accounts for neutrophil density.

We use Michaelis-Menten terms for the killing rates of susceptible and resistant bacteria by

antibiotics to capture the saturating effects of increased antibiotic concentration. The maxi-

mum killing rates are given by ES
max (hr−1) (susceptible) and ER

max (hr−1) (resistant), where

ES
max > ER

max, while the Michaelis constants AS
50

(μg cm−3) (susceptible) and AR
50

(μg cm−3)

(resistant) give the antibiotic concentrations at which the killing rate is half-maximal, where

AR
50
> AS

50
(see Table 3). We multiply the bound bacteria antibiotic killing terms by a factor

ω (dimensionless), to account for the potential difference in the antibiotic potency against

bound bacteria as compared with free bacteria. Bound bacteria may be less vulnerable to
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antibiotic than free bacteria, in which case ω< 1; however, they may also be exposed to higher

concentrations of antibiotic, which enters the wound through the host cell layer, in which case

they may be more vulnerable, such that ω> 1. If bound bacteria are equally as vulnerable to

antibiotic as free bacteria then ω = 1.

The clearance of bacteria and inhibitors (ψBac(t) (hr−1) and ψI(t) (hr−1)) is assumed to occur

at a constant rate for the first 24 hours, after which it ceases when a scab forms over the exci-

sion. Therefore, clearance occurs at rates

cBacðtÞ ¼ ~cBacHð24 � tÞ and cIðtÞ ¼ ~cIHð24 � tÞ; ð10Þ

where ~cBac (hr−1) and ~cI (hr−1) are the constant clearance rates which apply in the first 24

hours, and H is a Heaviside step function (see Eq 8).

Antibiotics may either be administered in discrete doses or applied continuously, such that

the antibiotic concentration remains fixed. In the former case, antibiotic is assumed to be elim-

inated from the system (e.g. through degradation and clearance into the bloodstream and sur-

rounding tissues) at a rate δA (hr−1) following a dosing event. It is assumed that the loss of

antibiotic through its interaction with bacteria is negligible in comparison to its elimination

rate, and hence we do not include it in the model. Further, we do not include an antibiotic

clearance term, similar to those given in Eq 10 for bacteria and inhibitors, since, while some

antibiotic will leave the wound within the leaking exudate, this will not affect the antibiotic

concentration in the remaining exudate (which is replenished via passage cross the host cell

layer). It is assumed that inhibitor degradation, if it occurs, is sufficiently gradual that it can be

neglected.

Several of the terms in Eqs 1–7 contain the exudate height, h, or volume, V, or the wound

area, Ar, as a factor in order to ensure dimensional consistency. We retain them in explicit

form in the interests of clarity, though we note they could have been combined with their mul-

tipliers to create new parameters.

Bacteria are applied to the burn wound, following the excision, at time t = 0 (hr). This is

also the first occasion upon which inhibitor or antibiotic treatment may be applied. Therefore,

initially

BFS
ð0Þ ¼ BFSinit

;BFR
ð0Þ ¼ BFRinit

;BBS
ð0Þ ¼ 0;BBR

ð0Þ ¼ 0;

IFð0Þ ¼ IFinit ; IBð0Þ ¼ 0;Að0Þ ¼ Ainit;
ð11Þ

where BFSinit
, BFRinit

, IFinit and Ainit are constants. The bound compartments are empty initially,

since bacteria and inhibitors have not had an opportunity to bind to the host cells. See Tables

2–4 for parameter values. We note that we retain equations in dimensional form to ease bio-

logical interpretation.

Treatment types

Previously we considered a susceptible only bacterial population, treated using inhibitors and

debridement [26]. There the focus was upon optimising inhibitor properties to improve treat-

ment. Here we consider how to optimally combine antibiotic, inhibitor and debridement ther-

apies so as to eliminate a mixed susceptible-resistant population of bacteria.

Antibiotics are applied systemically and may be administered either in discrete doses (e.g.

administered orally as tablets) or continuously (e.g. administered intravenously via a drip). In

the continuous case the antibiotic concentration is held at a constant value such that A� Ainit.

Hellinger et al. [59] have shown that meropenem dosages as high as 6 g day−1 can be used in

humans without increasing the frequency of adverse effects, a result which has been confirmed
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by other groups [60, 61]. Furthermore, Roberts et al. [60] found that continuous dosing of

meropenem at 3 g day−1 in humans resulted in subcutaneous tissue concentrations of 4 μg

cm−3. Therefore, since the daily dosage could be up to twice this value, we can infer (assuming

a linear scaling) that subcutaneous tissue (and hence burn wound) concentrations up to 8 μg

cm−3 are achievable. In the discrete dosing case, antibiotic degrades and is cleared from the

body following each dosing event. We assume that discrete doses may not exceed tissue con-

centrations of 8 μg cm−3, consistent with the continuous case. We take the dosing frequency to

be once a day, at the same times at which inhibitors are applied (see below), thus ensuring that

our treatment regimens are feasible to implement clinically.

Inhibitors are applied topically to the wound. There is no hard limit on how frequently

inhibitors may be applied; however, twice daily is a reasonable upper limit (that is, at 0, 12, 24,

36, . . . hr), fixing the frequency at daily dosing in the present study for simplicity. We take the

dose used by Huebinger et al. [18] in their experiments, that is 3×108 inhibitors (which, when

added to the exudate, corresponds to a concentration of 6.12×107 inhib. cm−3), as standard.

The total number of inhibitors in the system (free and bound) is conserved in the absence of

debridement, except during the first 24 hr (after the necrotic tissue is first excised), when free

inhibitors are lost through leakage of the exudate.

Debridement involves the mechanical cleansing of a wound, for example with a cloth. In

our model this corresponds to the instantaneous removal of the exudate and with it all of the

free bacteria and inhibitors. The exudate is quickly replenished (on the timescale of a few min-

utes) such that its volume fluctuation can be neglected. Debridement can be administered at

most once daily, starting from the first day after the excision is made (that is at 24, 48, 72, . . .

hr). In those cases where debridement and dosing with inhibitors coincides, debridement

is performed first, to avoid immediately removing the newly administered inhibitors. Since

debridement involves the removal of the scab that forms over the wound, clearance of bacteria

and inhibitors is re-established in the first 24 hr after each debridement event.

Parameter fitting and justification

The parameters in Table 3 were fitted to newly gathered in vitro data. Susceptible, PA1004

WT, and resistant, PA1004 Evo10, strains of P. aeruginosa were grown both in the absence of

antibiotic and in the presence of a range of concentrations of meropenem. Simplified equa-

tions, containing only logistic growth and antibiotic killing terms were then fitted to the data

using the Matlab routine fminsearch, providing fits for c, ES
max, E

R
max, A

S
50

and AR
50

. See S1

Text for further details.

The parameters in Table 2 come from [26] where they were fitted to in vivo data from the

rat burn wound model described in [18]. Twelve valid parameter sets were identified, which

were grouped into four qualitatively distinct cases (Case A–Case D). Treatment with inhibitors

is effective in Cases A and B, worsens an infection in Case C and has little effect in Case D.

Each parameter set gave an equally good fit to the data, while insufficient experimental data is

currently available to distinguish between them. In the present work we use a single parameter

set from each case, Set 2 from Case A, Set 6 from Case B, Set 10 from Case C and Set 12 from

Case D. Set 2 was chosen as it is the most biologically realistic parameter set in Case A, Sets 6

and 10 were chosen since they are the most resistant to treatment, allowing us to consider the

worst-case-scenario, and Set 12 was chosen since it is the only parameter set in Case D. We

note that we used Sets 3 and 8, rather than Sets 6 and 10, in the main text of [26] in Cases B

and C respectively.

The combination of the parameters fitted to in vitro data in Table 3 with the parameters fit-

ted to in vivo data in Table 2 is valid, both since the effects and processes with which each set
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of parameters are associated are independent from each other, and because the in vitro data

were gathered using the same bacterial species (P. aeruginosa) as the in vivo data and using a

growth medium which replicates the nutrient levels in a burn wound exudate (see S1 Text).

Each of the parameters in Table 4 were either measured, calculated, derived from the litera-

ture or estimated, as indicated in the fourth column. The parameters ϕBac, ϕI, V, Ar, h, n and

Etotal are justified in [26] (where Etotal is written as Einit), while IFinit and Ainit are justified above

in Treatment types.

We set the conjugation and segregation rates, λ and ρ, to zero unless otherwise stated. This

is because the resistance genes to meropenem in the PA1004 Evo10 strain of P. aeruginosa
under consideration are chromosomal and hence cannot be transferred by conjugation or lost

through segregation, which requires the resistance gene to be carried on a plasmid. While we

have the PA1004 Evo10 strain in mind throughout this study, we have included terms for con-

jugation and segregation in order to make our model sufficiently general to account for other

bacterial strains. In S3 Text we perform a sensitivity analysis to investigate the effect of these

parameters on the bacterial dynamics, using values informed by the literature as described

below.

Hall et al. [50] measured the intraspecific conjugation rates of P. fluorescens and P. putida
to be 10−11±0.2 cell−1hr−1 and 10−14±0.4 cell−1hr−1 respectively (these values must be multiplied

by V = 4.9 cm3 to make them dimensionally consistent with our model), which fall within the

range of values measured by [51–53], while Simonsen et al. [51] have measured conjugation

rates as high as 10−9 cm3 cell−1hr−1 in E. coli.
Smets et al. [52] measured a plasmid loss rate of 2.52×10−4hr−1 which informed the value of

1×10−4hr−1 used in [50, 53] and falls within the range of values measured by [54].

The antibiotic elimination rate, δA, has been measured to lie in the range 0.62–1.72 hr−1 for

meropenem in both humans and pigs [55–57], thus we choose δA = 1 hr−1 as a typical value.

The factor difference in antibiotic potency against bound bacteria ω is assumed to be one

(i.e. no difference) by default and in the absence of further information. We perform a sensitiv-

ity analysis on ω in Sensitivity analysis, varying it within the range ω 2 [0.5, 2].

The initial bacterial burden is taken to be 5×106 CFU (colony-forming units), correspond-

ing to an initial free density (all bacteria are free initially) of 1.02×106 cells cm−3, in accordance

with the in vivo model in [18]. The initial ratio of susceptible to resistant bacteria may vary;

however, susceptible bacteria will be in the majority prior to treatment with antibiotic due

to the resistance-associated fitness cost. Therefore, we assume that only 2% (2.04×104 cells

cm−3) of the initial bacterial population exhibits the resistant phenotype, the remaining 98%

(1.00×106 cells cm−3) being susceptible.

Results

In each of the results presented below, we consider the behaviour of the model, given by Eqs

1–11, for each of the parameter sets denoted as Cases A–D (see Parameter fitting and justifica-

tion). Rather than provide plots for each of the dependent variables, we typically plot some

combination of the total number of free bacteria, BF ¼ VðBFS
þ BFR

Þ, the total number of

bound bacteria, BB ¼ ArðBBS
þ BBR

Þ, or the total number of bacteria, BT = BF + BB, since these

are the quantities of greatest interest. We begin with a steady-state analysis of the system to

determine the number of steady-states and their stability properties. Next, simulations of the

full time-dependent problem under a range of treatment regimens are discussed. We then con-

sider a series of sensitivity analyses to determine the effect of the size of the inhibitor and anti-

biotic doses, together with other key parameters, upon the bacterial population dynamics.

Lastly, we use our model to predict optimal treatment regimens. We note that a treatment is
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considered to have eliminated the bacterial burden if the total number of bacteria, BT, is

reduced beneath one.

Steady-state analysis

We begin by considering a steady-state analysis of Eqs 1–10, performed using Maple, to deter-

mine the number of steady-states exhibited by the system under various conditions, together

with their stability properties. While the system may take a long while to approach steady-state

in practice, depending upon the choice of parameters and initial conditions, this analysis is

instructive for at least two reasons. Firstly, it allows us to ensure that we are not overlooking

any potential stable steady-state solutions in the time-dependent simulations presented below.

Secondly, it allows us to make more clear-cut comparisons between different scenarios, look-

ing beyond the transient dynamics resulting from the choice of initial conditions.

We consider four scenarios: untreated, antibiotic treatment only, inhibitor treatment only,

and treatment with both antibiotics and inhibitors, comparing Cases A–D in each scenario.

We use the maximum continuous concentration (8 μg cm−3) for antibiotic treatment and a

single standard dose (6.12×107 inhib. cm−3) for inhibitor treatment (see Treatment types). We

set the clearance terms to zero (~cBac ¼ 0 hr−1 and ~cI ¼ 0 hr−1) since fluid only leaks from the

wound in the first 24 hr. Further, we neglect conjugation and segregation (λ = 0 cm3cell−1hr−1

and ρ = 0 hr−1), and assume that there is no difference in the potency of antibiotics against

bound bacteria as compared with free bacteria (ω = 1) (see Parameter fitting and justification).

We also remove the Heaviside step functions preventing the logistic growth of bacteria

when their population size goes beneath one (HðVBFS
� 1Þ, HðVBFR

� 1Þ, HðArBBS
� 1Þ and

HðArBBR
� 1Þ) since these are only required in dynamic simulations to prevent biologically

unrealistic regrowth when bacteria have been eliminated. Lastly, where antibiotics are applied,

we assume a constant dose, since with a discrete dose the antibiotic concentration is zero at

steady-state, being identical to the equivalent scenario without antibiotic treatment. Following

these simplifications, the governing equations reduce to Eqs A–E in S2 Text. All remaining

parameter values are as given in Tables 2–4.

The results of the steady-state analysis are described in detail in S2 Text and summarised

here, in Table 5 and in Fig 2. In all cases except Case A under the inhibitor only treatment the

system is monostable, the number of steady-states (stable plus unstable) varying between one

and three depending upon the treatment scenario and the parameter set. In the absence of

antibiotics, resistant bacteria go extinct at the stable steady-state, while free and bound suscep-

tible bacteria survive. The situation is reversed in the presence of antibiotics, with susceptible

bacteria going extinct at the stable steady-state, while free and bound resistant bacteria survive.

There are three exceptions to this rule. The first two are for the scenario in which treatment

with both antibiotics and inhibitors is applied, in Cases B and C, for which all bacteria go

extinct at the stable steady-state. The third is Case A under the inhibitor only treatment (noted

above), for which there exist no isolated stable steady-states. Instead, there exists a region of

non-isolated steady-states [64], in which susceptible and resistant bacteria may coexist, includ-

ing the extremes (unstable steady-states) at which only one of these subtypes survives. As such,

the state to which the system settles depends upon the initial conditions. For simplicity of

exposition, we plot the unstable steady-state solution in which only susceptible bacteria survive

in Fig 2, this being the typical state in the absence of antibiotics under most parameter sets.

Treatment with antibiotics alone reduces the total number of bacteria, BT, in Cases A, C

and D; however, it slightly increases the bacterial burden in Case B (this counter-intuitive

result is discussed below in Sensitivity analysis). As was the case in [26], treatment with inhibi-

tors reduces the total number of bacteria in Cases A and B, increases the bacterial burden in
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Case C and has little effect in Case D (see Sensitivity analysis and [26] for discussion). Treat-

ment with antibiotics and inhibitors in combination is more effective than treatment with

either therapy in isolation, eliminating the bacterial burden in Cases B and C and greatly

reducing it in Cases A and D. It is evident from these results that antibiotics and inhibitors are

predicted to work together in a synergistic manner, as opposed to an additive one, their com-

bined effect reducing the total bacterial burden by a greater quantity in Cases B–D than the

sum of the reductions when applied in isolation, and by a smaller quantity in Case A.

Table 5. Steady-states and their stability properties.

Steady-state No Treatment Abio. Only Inhib. Only Abio. and Inhib.

A B C D A B C D A B C D A B C D

No Bacteria U U U U U U U U U U U U U S S U

Susceptible Only S S S� S — — — U U S S S — — — U

Resistant Only U U U� U S S S S U U U U S — — S

The steady-states and their stability properties are summarised for four treatment scenarios (no treatment, antibiotic only, inhibitors only, and antibiotics and

inhibitors), for Cases A–D. There are three types of steady-state: those in which bacteria are absent, those in which only susceptible bacteria survive and those in which

only resistant bacteria survive. S: stable steady-state, U: unstable steady-state and ‘—’: no steady-state. All steady-states are pure nodes except for those marked with a

star which are mixed nodes/spirals, where the eigenvalues include a single pair of complex conjugates.

https://doi.org/10.1371/journal.pcbi.1007211.t005

Fig 2. Steady-state solutions. Four stacked bars are plotted for each case: the first bar shows the number of free and

bound susceptible bacteria, B̂FS
¼ VBFS

and B̂BS
¼ ArBBS

, at steady-state in the untreated scenario; the second bar

shows the number of free and bound resistant bacteria, B̂FR
¼ VBFR

and B̂BR
¼ ArBBR

, at steady-state in the antibiotic

only scenario; the third bar shows the number of free and bound susceptible bacteria at steady-state in the inhibitor

only scenario, and the fourth bar shows the number of free and bound resistant bacteria at steady-state in the antibiotic

and inhibitor scenario. There are no resistant bacteria at steady-state in the absence of antibiotic, nor are there any

susceptible bacteria at steady-state in the presence of antibiotic. Thus, the combined height of the bars in each stack

gives the total number of bacteria, BT. Treatment with antibiotics alone reduces the total bacterial burden in Cases A, C

and D, and increases it in Case B. Treatment with inhibitors alone reduces the total bacterial burden in Cases A and B,

increases it in Case C and has a negligible effect in Case D. Treatment with both antibiotics and inhibitors eliminates

the bacterial burden in Cases B and C, and reduces it more than either treatment in isolation in Cases A and D. Steady-

state solutions to Eqs 1–10 were calculated using Maple, neglecting the Heaviside step functions which prevent the

logistic growth of bacteria when their population size goes beneath one. Parameter values: ~cBac ¼ 0 hr−1, ~c I ¼ 0 hr−1,

λ = 0 cm3cell−1hr−1, ρ = 0 hr−1, ω = 1, A = 0 or 8 μg cm−3, and IFinit ¼ 0 or 6.12×107 inhib. cm−3. See Tables 2–4 for the

remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g002
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Dynamic simulations

Having examined the behaviour of the system at steady-state, we consider the bacterial popula-

tion dynamics over time in response to treatment. We use the Matlab routine ode15s, a vari-

able-step, variable-order solver based upon numerical differentiation formulas, to solve the

time-dependent problem (Eqs 1–11) both here and throughout the paper. The untreated sce-

nario is compared with four treatment scenarios: regular antibiotic and inhibitor dosing with

and without regular debridement, and constant antibiotic concentration with regular inhibitor

dosing, with and without regular debridement (see Fig 3), for Cases A–D. We note that while

only the total number of bacteria, BT, is plotted for clarity, the simulations include susceptible/

resistant and free/bound bacteria. Regular antibiotic/inhibitor/debridement treatments are

performed every 24 hr, antibiotic/inhibitor dosing occurring for the first time at t = 0 hr and

Fig 3. Dynamic simulations. The total number of bacteria, BT, is shown over time for the untreated scenario and for four treatment strategies: regular

antibiotic and inhibitor dosing with and without regular debridement, and constant antibiotic concentration with regular inhibitor dosing, with and

without regular debridement. Note the log10 scale on the y-axis. Inset graphs show the number of resistant bacteria BR ¼ VBFR
þ ArBBR

. Treatment with

constant antibiotics together with regular inhibitor dosing and debridement is most effective, eliminating the bacterial population in all cases (A–D),

while regular antibiotic and inhibitor dosing without debridement is least effective, failing to eliminate the bacterial burden in all cases. The remaining

two treatment strategies are intermediate in their efficacy, eliminating the bacterial population in some, but not all cases. Eqs 1–11 were solved using

ode15s. Parameter values: λ = 0 cm3cell−1hr−1, ρ = 0 hr−1 and ω = 1. Antibiotics doses: 8 μg cm−3, inhibitor doses: 6.12×107 inhib. cm−3, constant

antibiotic scenarios: A = 8 μg cm−3. See Tables 2–4 for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g003
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debridement being performed for the first time at t = 24 hr. Antibiotic doses of 8 μg cm−3 and

standard inhibitor doses of 6.12×107 inhib. cm−3 are used in all cases, while each debridement

event results in the removal of all free bacteria and inhibitors. The antibiotic concentration is

held fixed at A = 8 μg cm−3 in the constant antibiotic scenarios (see Treatment types for more

details).

Constant antibiotic concentration with regular inhibitor dosing and debridement is the

most effective treatment, eliminating the bacterial burden in all cases and doing so more rap-

idly than the other strategies. Constant antibiotic concentration with regular inhibitor dosing

and no debridement eliminates the bacterial population in Cases B and C, but has a more

modest effect in Cases A and D. Regular antibiotic and inhibitor dosing with debridement

eliminates all bacteria in Cases A and B, but is ineffective in Cases C and D. Lastly, regular

antibiotic and inhibitor dosing without debridement is the least effective strategy, having

little effect in Cases A–D. We note that while constant antibiotic concentration with regular

inhibitor dosing and debridement reduces the number of antibiotic resistant bacteria,

BR ¼ VBFR
þ ArBBR

, in all cases (see inset graphs, Fig 3), the remaining strategies increase BR

above untreated levels in some cases; indeed, regular antibiotic and inhibitor dosing without

debridement does so in all cases.

A comparison between regular inhibitor and debridement treatment, which is the most

effective therapy in the absence of antibiotics (see [26]), and treatment which combines regular

inhibitor and debridement therapy with a constant antibiotic dose, shows that the combined

therapy is significantly more effective (see Fig. A in S3 Text). Inhibitors and debridement

alone eliminate the bacterial burden in Case A only, whereas, when combined with antibiotics,

the bacterial burden is eliminated in all four cases (A–D).

Sensitivity analysis

In the results that follow we consider the effect of varying the antibiotic and inhibitor doses,

and other key parameters, upon the bacterial population dynamics and their steady-state val-

ues. In the cases where time-dependent simulations are employed, the solutions are shown at 4

weeks (672 hr), with solutions at 1 week (168 hr) and 1 year (365 days = 8760 hr) provided in

S3 Text. Results are given at 1 week since ideally we would like to clear an infection within this

time, while results are shown at 4 weeks and 1 year to demonstrate the dynamics of more per-

sistent infections and since the sensitivity of the system to changes in parameter values varies

over time.

Antibiotic and inhibitor doses. Fig 4 shows the effect of varying the antibiotic concentra-

tion, A, upon the total number of bacteria, BT, the number of free bacteria, BF, and the number

of bound bacteria, BB, at steady-state, in the absence of inhibitors (we note that, except in a

very narrow region around A = 0 μg ml−1, all bacteria are resistant at steady-state in the pres-

ence of antibiotic, see Steady-state analysis). Eqs 1–10 were solved using the Matlab routine

fsolve, employing the Trust-Region-Dogleg algorithm, in the same form and with the same

parameter values as in Steady-state analysis, but with A 2 [0, 50] μg ml−1. This range of antibi-

otic values goes well above the maximum concentration discussed in Treatment types. We use

a wider range here in order to elucidate the theoretical effect of increased antibiotic concentra-

tions in isolation.

It can be seen that BB is a monotone decreasing function of A in all cases (A–D), as are

BF and BT in Case A. However, in Cases B–D, we have the counter-intuitive result that BF

increases initially as A is increased above zero, before reaching a maximum and decreasing,

causing a similar behaviour in BT. The increase in BF, and hence in BT, is caused by an increase

in the logistic growth rate of bound bacteria, occurring as a result of a decrease in the number
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of bound bacteria, the majority of the daughter cells from bound bacteria entering the exudate

since ηmax� 1 in all cases. Given the quadratic dependence of the bound logistic growth rate

upon the number of bound bacteria, a change to the system resulting in a reduction in the

number of bound bacteria has the potential to increase the bound growth rate provided the

original bound bacterial population is greater than half the bound carrying capacity, KB/2 (see

[26] for more details). Since the increase in the number of free bacteria outweighs the decrease

in bound bacteria, this also increases the total bacterial burden. All bacteria are eliminated

for sufficiently high antibiotic concentrations in Case A–C, while the antibiotic killing effect

Fig 4. Steady-state sensitivity analysis for antibiotic concentration. The number of bound bacteria, BB, is a monotone decreasing function of

the antibiotic concentration, A, in all cases, as are the number of free bacteria, BF, and the total number of bacteria, BT, in Case A. In Cases B–D

the free and total bacterial burdens increase initially, before decreasing with increasing antibiotic concentration. (Note that, except near A = 0 μg

ml−1, all bacteria are resistant at steady-state in the presence of antibiotic, see Steady-state analysis). Steady-state solutions to Eqs 1–10 were

calculated using fsolve, neglecting the Heaviside step functions which prevent the logistic growth of bacteria when their population size goes

beneath one. Parameter values: ~cBac ¼ 0 hr−1, ~c I ¼ 0 hr−1, λ = 0 cm3cell−1hr−1, ρ = 0 hr−1, ω = 1 and IFinit ¼ 0 inhib. cm−3. See Tables 2–4 for the

remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g004
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saturates in Case D such that BT does not drop far below 2 × 107 as the antibiotic concentration

is increased beyond 50 μg ml−1.

Fig 5 shows the effect of varying the (single) inhibitor dose, IFinit , upon the total number of

bacteria, the number of free bacteria and the number of bound bacteria at steady-state, in the

absence of antibiotic (we note that all bacteria are susceptible at steady-state in the absence of

antibiotic, see Steady-state analysis). As discussed in Steady-state analysis there are inhibitor

Fig 5. Steady-state sensitivity analysis for inhibitor doses. Note that inhibitor treatments are plotted as multiples of the standard dose

(6.12×107 inhib. cm−3). In Cases A and B the number of bound bacteria, BB, is a monotone decreasing function of the inhibitor dose, IFinit , while

the number of free bacteria, BF, increases initially, before decreasing with increasing inhibitor dose. The total number of bacteria, BT, is a

monotone decreasing function of the inhibitor dose in Case A, while it increases initially, before decreasing with increasing inhibitor dose, in

Case B. In Case C both free and bound bacterial numbers, and hence the total number of bacteria, are increasing functions of the inhibitor dose

within the range IFinit 2 ½0; 6:12� 107� inhib. cm−3, while in Case D inhibitors have little effect on the steady-state bacterial numbers within this

range. The insets in the lower panels show the steady-state behaviour for higher inhibitor doses. Eqs 1–11 were solved using ode15s, allowing

the system to evolve until it reached steady-state and neglecting the Heaviside step functions which prevent the logistic growth of bacteria when

their population size goes beneath one. Parameter values: ~cBac ¼ 0 hr−1, ~c I ¼ 0 hr−1, λ = 0 cm3cell−1hr−1, ρ = 0 hr−1, ω = 1 and A = 0 μg cm−3.

See Tables 2–4 for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g005
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concentrations at which the system does not possess an isolated steady-state in Case A; there-

fore, in this case, we plot the steady-state for which only susceptible bacteria survive across all

values of IFinit for consistency. The Matlab routine ode15s was used to solve the time-depen-

dent problem (Eqs 1–11), allowing the system to evolve until it reached steady-state (fsolve
struggles to find the steady-state solution when inhibitors are included due to the difficulty in

choosing an initial guess that will converge to the desired steady-state). Aside from using the

time-dependent form of the equations, the same assumptions were made as in Steady-state

analysis, but with IFinit 2 ½0; 6:12�107� inhib. cm−3, the maximum dose being the standard dose

as discussed in Treatment types.

It can be seen that BB is a monotone decreasing function of IFinit in Cases A and B, while the

number of free bacteria increases initially as IFinit is increased above zero, before reaching a

maximum and decreasing. This rather surprising increase in the number of free bacteria

results from the same phenomenon as that described above for antibiotic treatment, whereby a

decrease in the number of bound bacteria results in an increase in their growth rate and hence

in the rate of their contribution of daughter cells to the exudate. In Case B this causes the total

number of bacteria to increase for intermediate vales of IFinit , while in Case A the reduction in

bound bacteria is greater than the increase in free bacteria such that the total number of bacte-

ria is a monotone decreasing function of IFinit . In both Cases A and B, further increases in IFinit
above about half the standard dose have relatively little effect on the steady-state bacterial

population.

Case C gives the highly counter-intuitive prediction that the addition of inhibitors will

increase both the number of free and bound bacteria, and, therefore, the total bacterial burden,

within the range IFinit 2 ½0; 6:12� 107� inhib. cm−3. This cannot be due to the phenomenon

described above since BB is close to its carrying capacity, KB, in the absence of inhibitors

and comes to slightly exceed it as IFinit is increased. Rather, the addition of inhibitors greatly

decreases the free binding site density, E, such that the number of free bacteria can greatly

increase before the bacterial binding terms in Eqs 1–2, which act as a sink on free bacteria,

achieve a similar magnitude to that in the inhibitor free case. Indeed, since the increase in free

bacterial numbers results in an increase in the growth rate of free bacteria, the magnitude of

the bacterial binding terms can exceed that in the untreated case before the growth and bind-

ing terms balance in Eqs 1–2. Consequently, the bacterial binding terms, which act as a source

in Eqs 3–4, make a greater contribution to the number of bound bacteria, increasing the

bound bacterial burden beyond that in the untreated case. Lastly, in Case D, the addition of

inhibitors has a negligible effect within the range IFinit 2 ½0; 6:12� 107� inhib. cm−3. The inset

graphs for Cases C and D show that at higher inhibitor doses BB falls, while BF and BT rise and

fall. We note that this behaviour only occurs for unrealistically high doses, thousands of times

higher than the standard dose.

Fig 6 shows the effect of varying the antibiotic concentration and inhibitor dose upon the

total number of bacteria at t = 672 hr (4 weeks). The full model (Eqs 1–11) was solved with a

constant antibiotic concentration and with ~cBac ¼ 0 hr−1, ~cI ¼ 0 hr−1, λ = 0 cm3cell−1hr−1, ρ =

0 hr−1 and ω = 1, for A 2 [0, 16] μg ml−1 and IFinit 2 ½0; 8:57�108� inhib. cm−3, where the antibi-

otic upper bound is twice the maximum concentration that could be applied constantly, while

the inhibitor upper bound is fourteen times the standard dose. The white curves are the con-

tours along which BT(672) = 1, separating regions in which bacteria survive from those in

which they are eliminated. Treatment has a relatively minor effect in Cases A and D; however,

the bacterial burden can be eliminated in Cases B and C, provided the antibiotic concentration

and inhibitor dose are high enough, corresponding to the region above-right of the white
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contours. Note that the use of a modest dose of inhibitors is sufficient to dramatically reduce

the antibiotic concentration required to eliminate the bacterial burden in these cases. The

equivalent results at 1 week and 1 year are given in Figs B and C in S3 Text. Treatment is less

effective after 1 week than after 4 weeks in Cases B and C, but more effective in Cases A and D,

while treatment is more effective in Cases B and C after 1 year than after 4 weeks and there is

little change in Cases A and D over this period.

Fig 7 shows the effect of varying the antibiotic concentration and inhibitor dose upon the

total number of bacteria at t = 672 hr (4 weeks) when daily debridement is included. The

model details are the same as for Fig 6, except for the inclusion of debridement and the clear-

ance of free bacteria and inhibitors (~cBac > 0 and ~cI > 0). Treatment is more effective in

Cases A and B than in the antibiotic and inhibitor only scenario (Fig 6) and less effective in

Fig 6. Sensitivity analysis for antibiotic concentration and inhibitor dose—4 weeks. The log10 of the total number of bacteria at 4 weeks (672 hr),

BT(672), is plotted for a range of antibiotic concentrations and inhibitor doses. Note that inhibitor treatments are plotted as multiples of the standard

dose (6.12×107 inhib. cm−3) and that values of BT(672)< 1 are plotted as BT(672) = 1 to maximise visual clarity. The white curves are the contours along

which BT(672) = 1; hence, BT(672)< 1 above-right of these contours. The effect of treatment is relatively minor in Cases A and D; however, the

bacterial burden may be eliminated for sufficiently high antibiotic concentrations and inhibitor doses in Cases B and C. Eqs 1–11 were solved using

ode15s and with a constant antibiotic concentration. Parameter values: ~cBac ¼ 0 hr−1, ~c I ¼ 0 hr−1, λ = 0 cm3cell−1hr−1, ρ = 0 hr−1 and ω = 1. See

Tables 2–4 for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g006
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Cases C and D. The equivalent results at 1 week and 1 year are given in Figs D and E in S3

Text. Treatment is less effective after 1 week than after 4 weeks in Cases A–C, but more effec-

tive in Case D. Comparing the results at 4 weeks with those at 1 year, bacteria are always elimi-

nated in Case A at both times, while there is little change in Case D over this period. In Cases

B and C, bacteria are eliminated for a larger range of inhibitor doses and antibiotic concentra-

tions at 1 year; however, in those regions of parameter space where bacteria are not eliminated,

BT increases over this period.

Conjugation and segregation. The system is insensitive to variation in the rates of conju-

gation and segregation within realistic ranges. The results are presented and discussed in S3

Text and Figs F–K therein. For this reason and the reasons stated in Parameter fitting and

Fig 7. Sensitivity analysis for antibiotic concentration and inhibitor dose with debridement—4 weeks. The log10 of the total number of bacteria at 4

weeks (672 hr), BT(672), is plotted for a range of antibiotic concentrations and inhibitor doses. Note that inhibitor treatments are plotted as multiples of

the standard dose (6.12×107 inhib. cm−3) and that values of BT(672)< 1 are plotted as BT(672) = 1 to maximise visual clarity. The white curves are the

contours along which BT(672) = 1; hence, BT(672)< 1 above-right of these contours. All bacteria are eliminated for all antibiotic concentrations and

inhibitor doses tested in Case A, except where they are both absent. The bacterial burden can also be eliminated in Cases B and C for sufficiently high

antibiotic concentrations and inhibitor doses. Treatment has relatively little effect in Case D, reducing the bacterial population by no more than a factor

of five. Eqs 1–11 were solved using ode15s and with a constant antibiotic concentration. Debridement takes place at the start of each day, occurring

for the first time at t = 24 hr, effecting the removal of all free bacteria and inhibitors. Parameter values: λ = 0 cm3cell−1hr−1, ρ = 0 hr−1 and ω = 1. See

Tables 2–4 for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g007
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justification, we will continue to neglect conjugation and segregation in the remainder of this

paper.

Factor difference in antibiotic potency against bound bacteria compared with free bac-

teria. We have assumed until now that antibiotics are equally potent against bound and free

bacteria, that is ω = 1. Fig 8 shows the effect of varying ω upon the total number of bacteria,

BT, the number of free bacteria, BF, and the number of bound bacteria, BB, at t = 672 hr (4

weeks) (we note that the majority of bacteria are resistant in all cases, such that a plot of the

susceptible bacterial population size would almost always lie along the x-axis at this scale). The

full model (Eqs 1–11) was solved with a constant antibiotic dose of A = 8 μg ml−1 and without

Fig 8. Sensitivity analysis for the factor difference in antibiotic potency against bound bacteria compared with free bacteria—4 weeks. The

total number of bacteria and the numbers of free and bound bacteria at 4 weeks (672 hr), BT(672), BF(672) and BB(672) respectively, are plotted

for a range of values of the potency factor, ω. Note the log2 scale on the x-axis. In all cases both BT(672) and BB(672) decrease monotonically with

increasing ω, while BF(672) is monotone decreasing in Cases A–C and increases before decreasing in Case D. The effect is particularly

pronounced in Case C, where the bacterial burden is almost eliminated (BT = O(10)) as ω approaches 2. Eqs 1–11 were solved using ode15s,

with a constant antibiotic dose and without inhibitors. Parameter values: A = 8 μg ml−1, ~cBac ¼ 0 hr−1, ~c I ¼ 0 hr−1, λ = 0 cm3cell−1hr−1 and ρ =

0 hr−1. See Tables 2–4 for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g008

Model predicts combination therapies can clear an antibiotic resistant infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007211 July 23, 2019 22 / 39

https://doi.org/10.1371/journal.pcbi.1007211.g008
https://doi.org/10.1371/journal.pcbi.1007211


inhibitors, where ~cBac ¼ 0 hr−1, ~cI ¼ 0 hr−1, λ = 0 cm3cell−1hr−1 and ρ = 0 hr−1. The factor dif-

ference in antibiotic potency was varied in the range ω 2 [0.5, 2]. Both BB and BT are mono-

tone decreasing functions of ω in all cases within the range examined, while BF is monotone

decreasing in Cases A–C and increases initially, before decreasing, in Case D. The system is

sensitive in all cases, and particularly in Case C, for which BF, BB and BT are O(10) when ω = 2.

Figs L and M in S3 Text show the equivalent results at 1 week and 1 year. The behaviour is sim-

ilar to that at 4 weeks, with BT, BF and BB monotone decreasing in most cases.

Optimising treatment

Informed by the preceding sensitivity analyses, we used our mathematical model to predict the

optimum treatment regimens in Cases A–D under certain constraints.

Two sets of initial conditions were considered, each consisting of a mixture of susceptible

and antibiotic resistant bacteria. The first set is the standard initial conditions given in

Table 4, which corresponds to a new infection in which bacteria have not yet had time to

bind to host cells. The second set corresponds to an established infection. Here we chose the

initial conditions to be the untreated steady-states for each parameter set (Cases A–D), in

which all surviving bacteria are susceptible, modified so that 2% of the free and bound bacte-

ria are resistant.

We chose to optimise the treatment over the period of a week—this being a standard

period over which to treat a bacterial infection and also reducing the number of regimens

over which to search compared with longer periods—exploring combination therapies

including antibiotics, inhibitors and debridement. We assume continuous dosing with anti-

biotics, fixing the concentration at its maximum value of A = 8 μg ml−1 since this was found

to have the greatest effect against bound bacteria (see Fig 4), while free bacteria can be

removed using debridement. Debridement may be applied at the beginning of days 2–7, but

not at the start of the first day (see Treatment types), giving 26 = 64 possible treatment regi-

mens. Lastly, we assume that inhibitors may be applied in multiples of the standard dose

(6.12×107 inhib. cm−3), using exactly seven standard doses worth of inhibitors over the week

(4.28×108 inhib. cm−3), and that inhibitors may only be applied at t = 0 hr and immediately

following a debridement event. This brings the total number of possible treatment regimens

to 14,407. We note that in preliminary work we used a genetic algorithm approach to investi-

gate optimum solutions; however, there is no guarantee of identifying the global optimum

via this method. Rather, by accounting for the clinical constraints on the treatment regimen

(as described above), we sample the complete space of possible treatment regimens, enabling

us to identify the global optimum, subject to these constraints. While the clinical constraints

imposed on our optimisation limit the options to a discrete set of points in decision space,

we note that the theoretical range of treatment options lies on a continuum (e.g. the timing

and concentration of inhibitor doses).

Four separate optimisations were performed for each of Cases A–D and for each set of ini-

tial conditions, each using a different objective function which we sought to minimise. The

first objective function gives the final number of bound bacteria, BB(168), the second gives the

final total number of bacteria, BT(168), the third gives the mean number of bound bacteria

over the week, hBBi, while the fourth gives the mean total number of bacteria over the week,

hBTi. We seek to optimise for each objective function individually, rather than performing a

multi-objective optimisation, since we wish to find the regimens which fully-optimise each cri-

teria and to compare between these. A unique optimal regimen can always be found under the

first two optimality criteria. In those cases where multiple treatment regimens are equally opti-

mal under the third and fourth criteria, we designate that regimen which gives the lowest final
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value of BB (for the hBBi criterion) or BT (for the hBTi criterion) as being optimal. We per-

formed separate optimisations for the bound bacterial burden since it is bound bacteria, rather

than free bacteria, that actively damage host tissue. Therefore, it may be more important to

remove bound bacteria than free bacteria. Further, we performed separate optimisations for

the final and mean number of bacteria since we aim both to eliminate the bacterial burden

as rapidly as possible (final), while also keeping the bacterial burden low during treatment

(mean). In each case we search through the full set of 14,407 possible treatment regimens. We

note that, unlike in the steady-state and sensitivity analyses above (with the exception of Fig 7),

clearance of free bacteria and free inhibitors is included in these simulations, occurring both

in the first 24 hr and in the first 24 hr after each debridement event.

Fig 9 shows the optimum treatment regimens for the BB(168) and BT(168) objective func-

tions (columns) and for each parameter set (rows) in the new infection scenario. It is predicted

to be optimal to apply all of the inhibitors at the start of the first day under both optimality

conditions in Cases A–C and to distribute inhibitors more evenly across the week in Case D.

Further, it is predicted to be optimal to debride every day (days 2–7) under both optimality

conditions in Cases A and D, and to debride only on some of the later days in Cases B and C.

The results under the hBBi and hBTi criteria are similar (see Fig 10).

Fig 11 shows the dynamics of BB and BT under the optimal BB(168) and BT(168) treatment

regimens in the new infection scenario. The total bacterial burden is eliminated by the end of

the week in Case A, is reduced to O(10) in Case B, to O(102) in Case C and to just below 103

in Case D (where BT(168) = O(107) to O(108) in the untreated scenario in Cases A–D). The

results under the hBBi and hBTi criteria are presented in Fig 12. The difference in the bacterial

dynamics between the different optimisation regimens is minor. Both here and in Figs 15 and

16 we plot just the total number of bacteria and the number of bound bacteria for clarity. In

both cases the majority of bacteria are susceptible for approximately the first 2 days, after

which antibiotic resistant bacteria dominate.

Fig 13 shows the optimum treatment regimens for the BB(168) and BT(168) objective func-

tions (columns) and for each parameter set (rows) in the case of an established infection. It is

predicted to be optimal to apply all or most of the inhibitors at the start of the first day under

both optimality conditions in Cases B–D and to distribute inhibitors more evenly across the

week in Case A. In this respect the optimal debridement is similar to the new infection sce-

nario for Cases B and C, differing in Case A, where all inhibitors were used on the first day,

and Case D, where inhibitor doses were distributed throughout the week. The predicted opti-

mal debridement patterns differ markedly from the new infection scenario, with debridement

being less frequent in all cases and entirely absent in Cases C and D under the BB(168) crite-

rion. The results under the hBBi and hBTi criteria differ from all of those discussed above (see

Fig 14). Here, it is predicted to be optimal to use all inhibitors at the start of day 1 for Cases A–

D under the hBBi criterion and in Case B under the hBTi criterion, while it is better to distrib-

ute inhibitors across multiple days in Cases A, C and D under the hBTi criterion. Further it is

predicted to be optimal to debride every day in Cases A–D under the hBTi criterion, not at all

in Cases A and D under the hBBi criterion and only on some later days in Cases B and C under

the hBBi criterion.

Fig 15 shows the dynamics of BB and BT under the optimal BB(168) and BT(168) treatment

regimens in the case of an established infection. Here the efficacy is more modest in compari-

son with the new infection scenario, as would be expected. The total bacterial burden is elimi-

nated by the end of the week in Case A, is reduced to O(102) in Case B, to O(104)–O(105) in

Case C and to O(105)–O(106) in Case D (where BT(168) = O(107) to O(108) in the untreated

scenario in Cases A–D), lower values corresponding to the BT(168) optimality condition and

higher values to the BB(168) optimality condition where ranges are given. The results under
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the hBBi and hBTi criteria are presented in Fig 16. The difference in the bacterial dynamics

between the different optimisation regimens is minor, except under the hBBi optimum regi-

men in Case A, for which the total bacterial burden is not eliminated since debridement is not

employed.

Fig 9. Optimum treatment regimens—minimising final bacterial burdens with a new infection. For each parameter set (rows) the optimum

regimen of inhibitor doses and debridement is shown, where we minimise either the final number of bound bacteria, BB(168) (left-hand column), or the

final total number of bacteria, BT(168) (right-hand column). Note that inhibitor treatments are plotted as multiples of the standard dose (6.12×107

inhib. cm−3). Using all of the inhibitors on the first day is optimal in Cases A–C under both optimality conditions, whereas inhibitor doses should be

distributed across the week in Case D. It is optimal to debride every day in Cases A and D, and only on some of the later days in Case B and C. Eqs 1–11

were solved using ode15s, with a constant antibiotic dose. Parameter values: A = 8 μg ml−1, λ = 0 cm3cell−1hr−1, ρ = 0 hr−1 and ω = 1. See Tables 2–4

for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g009
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Discussion

The rise in antimicrobial resistance (AMR) poses a real and increasing challenge in treating

microbial infections. Anti-adhesion therapy provides one way of meeting this challenge, pre-

venting bacteria from binding to the cells of an infected host, thus rendering them more

Fig 10. Optimum treatment regimens—minimising mean bacterial burdens with a new infection. For each parameter set (rows) the optimum

regimen of inhibitor doses and debridement is shown, where we minimise either the mean number of bound bacteria, hBBi (left-hand column), or the

mean total number of bacteria, hBTi (right-hand column). Note that inhibitor treatments are plotted as multiples of the standard dose (6.12×107 inhib.

cm−3). Using most of the inhibitors on the first day is optimal in all instances. It is optimal to debride every day in all cases (A–D), except in Case C

under the hBBi criterion, where it is optimal to debride on days 6 and 7 only. Eqs 1–11 were solved using ode15s, with a constant antibiotic dose.

Parameter values: A = 8 μg ml−1, λ = 0 cm3cell−1hr−1, ρ = 0 hr−1 and ω = 1. See Tables 2–4 for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g010
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susceptible to physical clearance e.g. through debridement, and less harmful to the host. In this

paper we have used mathematical modelling to elucidate and predict the effects of therapies

combining traditional treatments, namely antibiotics and debridement, with anti-adhesion

therapy to treat antimicrobial resistant infections. We consider the particular context of a burn

wound, infected by a mixture of antibiotic-resistant and antibiotic-susceptible strains of P.

Fig 11. Optimum treatment outcomes—minimising final bacterial burdens with a new infection. Graphs show the dynamics of the bound and total

bacterial burdens, BB and BT respectively (columns), in the untreated case and under the optimal treatment regimens (see Fig 9) for each parameter set

(rows). Note the log10 scale on the y-axis. The bacterial burden is eliminated (BT(168)< 1) under the optimal treatment regimens in Case A and is

significantly reduced in Cases B–D (to O(10) in Case B, O(102) in Case C and just below 103 in Case D). There is little difference in the effects of the

optimum treatments under the different optimality conditions for any given case. Note that the discontinuities in BT are caused by the instantaneous

removal of free bacteria upon debridement (similarly in Figs 12, 15 and 16, see Treatment types). Eqs 1–11 were solved using ode15s, with a constant

antibiotic dose. Parameter values: A = 8 μg ml−1, λ = 0 cm3cell−1hr−1, ρ = 0 hr−1 and ω = 1. See Tables 2–4 for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g011

Model predicts combination therapies can clear an antibiotic resistant infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007211 July 23, 2019 27 / 39

https://doi.org/10.1371/journal.pcbi.1007211.g011
https://doi.org/10.1371/journal.pcbi.1007211


aeruginosa, using the bactericidal antibiotic meropenem; fitting the antibiotic-associated

parameters in our ODE model to in vitro data, collected as part of this study. While the param-

eters used in the model are specific to P. aeruginosa and meropenem in a rat burn wound, the

model structure can also be used to model burn wound infections in other species (e.g. in

humans), with other bactericidal antibiotics and with any bacterial species that uses MAM7 to

Fig 12. Optimum treatment outcomes—minimising mean bacterial burdens with a new infection. Graphs show the dynamics of the bound and

total bacterial burdens, BB and BT respectively (columns), in the untreated case and under the optimal treatment regimens (see Fig 10) for each

parameter set (rows). Note the log10 scale on the y-axis. The bacterial burden is eliminated (BT(168)< 1) under the optimal treatment regimen in Case

A and almost eliminated in Cases B and C, where BT(168) = O(10) and O(102) respectively, while BT(168) = O(104) in Case D. There is little difference

in the effects of the optimum regimens under the different optimality conditions for any given case. Eqs 1–11 were solved using ode15s, with a

constant antibiotic dose. Parameter values: A = 8 μg ml−1, λ = 0 cm3cell−1hr−1, ρ = 0 hr−1 and ω = 1. See Tables 2–4 for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g012
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enable it to bind to host cells (e.g. Vibrio parahaemolyticus, Yersinia pseudotuberculosis and

Vibrio cholerae [16]).

We begin by providing a brief summary of our key results, before discussing them in more

detail below:

Fig 13. Optimum treatment regimens—minimising final bacterial burdens with an established infection. For each parameter set (rows) the

optimum regimen of inhibitor doses and debridement is shown, where we minimise either the final number of bound bacteria, BB(168) (left-hand

column), or the final total number of bacteria, BT(168) (right-hand column). Note that inhibitor treatments are plotted as multiples of the standard dose

(6.12×107 inhib. cm−3). Using most or all of the inhibitors on the first day is optimal in Cases B–D, whereas inhibitor doses should be distributed across

the week in Case A. It is optimal to debride on most days in Case A, on the last three days in Case B and either once on the last day (BT(168) optimum)

or not at all (BB(168) optimum) in Cases C and D. Eqs 1–11 were solved using ode15s, with a constant antibiotic dose. Parameter values: A = 8 μg

ml−1, λ = 0 cm3cell−1hr−1, ρ = 0 hr−1 and ω = 1. The initial conditions are the untreated steady-states for each parameter set, modified so that 2% of the

free and bound bacteria are resistant. See Tables 2–4 for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g013
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Fig 14. Optimum treatment regimens—minimising mean bacterial burdens with an established infection. For each parameter set (rows) the

optimum regimen of inhibitor doses and debridement is shown, where we minimise either the mean number of bound bacteria, hBBi (left-hand

column), or the mean total number of bacteria, hBTi (right-hand column). Note that inhibitor treatments are plotted as multiples of the standard dose

(6.12×107 inhib. cm−3). Using all of the inhibitors on the first day is optimal for all cases under the hBBi criterion and in Case B under the hBTi criterion,

while it is optimal to distribute inhibitor treatment across more of the week in Cases A, C and D under the hBTi criterion. It is optimal to debride every

day in all cases under the hBTi criterion, while under the hBBi criterion it is optimal to debride less frequently or not at all. Eqs 1–11 were solved using

ode15s, with a constant antibiotic dose. Parameter values: A = 8 μg ml−1, λ = 0 cm3cell−1hr−1, ρ = 0 hr−1 and ω = 1. The initial conditions are the

untreated steady-states for each parameter set, modified so that 2% of the free and bound bacteria are resistant. See Tables 2–4 for the remaining

parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g014
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• Treatment with antibiotic in isolation can increase the bacterial burden in some cases (a

result of having distinct free and bound compartments);

• Maintaining a constant antibiotic dose is more effective than regular dosing;

• Treatment with antibiotics and inhibitors in combination is more effective than treatment

with either therapy in isolation, their combined effect being synergistic (rather than additive);

Fig 15. Optimum treatment outcomes—minimising final bacterial burdens with an established infection. Graphs show the dynamics of the bound

and total bacterial burdens, BB and BT respectively (columns), in the untreated case and under the optimal treatment regimens (see Fig 13) for each

parameter set (rows). Note the log10 scale on the y-axis. The bacterial burden is eliminated (BT(168)< 1) under the optimal treatment regimens in Case

A and is significantly reduced in Cases B–D (to O(102) in Case B, O(104)–O(105) in Case C and O(105)–O(106) in Case D, lower values corresponding to

the BT(168) optimality condition and higher values to the BB(168) optimality condition where ranges are given). Eqs 1–11 were solved using ode15s,

with a constant antibiotic dose. Parameter values: A = 8 μg ml−1, λ = 0 cm3cell−1hr−1, ρ = 0 hr−1 and ω = 1. The initial conditions are the untreated

steady-states for each parameter set, modified so that 2% of the free and bound bacteria are resistant. See Tables 2–4 for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g015
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• The use of inhibitors significantly reduces the minimum antibiotic dose required to clear an

infection, thus reducing the chances that bacteria will develop resistance to antibiotic therapies;

• Combining antibiotic and inhibitor therapy with regular debridement further increases

treatment efficacy;

Fig 16. Optimum treatment outcomes—minimising mean bacterial burdens with an established infection. Graphs show the dynamics of the bound

and total bacterial burdens, BB and BT respectively (columns), in the untreated case and under the optimal treatment regimens (see Fig 14) for each

parameter set (rows). Note the log10 scale on the y-axis. The bacterial burden is eliminated (BT(168)< 1) under the hBTi optimal treatment regimen in

Case A, wile BT(168) = O(106) under the hBBi regimen. Both regimens achieve BT(168) = O(104) in Cases B and C, and BT(168) = O(106) in Case D. There

is little difference in the effects of the optimum regimens under the different optimality conditions for Cases B–D. Eqs 1–11 were solved using ode15s,

with a constant antibiotic dose. Parameter values: A = 8 μg ml−1, λ = 0 cm3cell−1hr−1, ρ = 0 hr−1 and ω = 1. The initial conditions are the untreated steady-

states for each parameter set, modified so that 2% of the free and bound bacteria are resistant. See Tables 2–4 for the remaining parameter values.

https://doi.org/10.1371/journal.pcbi.1007211.g016
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• To optimise treatment: keep the antibiotic concentration at its maximum level and

• New infection scenario: use the full inhibitor quota at the start of the first day and debride

every subsequent day;

• Established infection scenario: use the full inhibitor quota at the start of the first day and

delay debridement for as long as possible, or, if debridement must be conducted more reg-

ularly, either use the full inhibitor quota at the start of the first day (Case A and B) or dis-

tribute inhibitor doses evenly across the week (Cases C and D).

In each of the results presented we considered four parameter sets, denoted as Cases A–D,

each of which provides a good fit to the experimental data, but qualitatively different behaviour

beyond the time frame of the experimental results (see Parameter fitting and justification

and [26] for details). Steady-state analysis demonstrated that the system is monostable for all

parameter sets considered, with one exception (see Steady-state analysis). In the absence of

antibiotic, susceptible bacteria survive while antibiotic resistant bacteria go extinct due to the

fitness cost associated with resistance. However, in the presence of (sufficient quantities of)

antibiotic, resistant bacteria survive and susceptible bacteria go extinct, since the asymmetric

killing rate of susceptible and resistant bacteria by antibiotic outweighs the fitness cost experi-

enced by resistant bacteria. Treatment with antibiotics and inhibitors in combination is more

effective than treatment with either therapy in isolation, eliminating the bacterial population

in Cases B and C, and significantly reducing it in Cases A and D. Interestingly, the combined

effect is synergistic, as opposed to additive, effecting a greater reduction in the bacterial burden

than the sum of the reductions achieved through either therapy in isolation in Cases B–D and

a lesser reduction in Case A. Indeed, the elimination of bacteria in Cases B and C is surprising

given that antibiotics alone increase the total bacterial burden, BT, in Case B, while inhibitors

alone significantly increase BT in Case C. While these results are encouraging, it is important

to note that it can take on the order of days to months for the system to approach steady-state.

Therefore, it is important to consider the dynamic behaviour of the system.

Simulations of the full time-dependent problem revealed that a constant antibiotic concen-

tration is more effective, often significantly so, than regular dosing at the same concentration.

This is to be expected, in part, since the antibiotic killing rate is maintained at a high level in

the constant concentration scenario, whereas it drops off as antibiotic is eliminated from the

body in the regular dosing scenario. However, the difference in efficacy is more significant

that might be expected. Combination therapy, combining a constant antibiotic concentration

with regular inhibitor dosing and debridement, was the most effective treatment strategy con-

sidered, eliminating the bacterial population in Cases A–D in times ranging between 1–30

days. While all bacteria, including the resistant subpopulation, were eliminated in this latter

therapy, other strategies were found to increase the number of resistant bacteria, compared

with the untreated scenario, in some cases. This highlights the fact that the choice of treatment

regimen can have a significant effect on the spread of AMR within a host.

Steady-state sensitivity analyses for antibiotic and inhibitor doses (A and IFinit respectively)

applied in isolation show that these treatments can both decrease and (surprisingly) increase

BT, depending upon the dosage used and upon the parameter set under consideration. The

increase in BT is caused either by an increase in the logistic growth rate of bound bacteria (Fig

4 Cases B–D and Fig 5 Case B) or by a decrease in the per-bacteria binding rate of free bacteria

to host cells (Fig 5 Case C, see Sensitivity analysis for a detailed discussion). Each treatment is

effective in reducing the total bacterial burden when used in isolation, provided the dosage is

sufficiently large; however, our model predicts that the antibiotic dose would have to be made

infeasibly large in Case B to be effective in isolation (A> 10 μg cm−3) and similarly for the
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inhibitor dose in Cases C and D (hundreds to thousands of times the standard dose). Further

experimental studies are required to test these predictions to determine under what circum-

stances they hold.

Sensitivity analysis for antibiotic and inhibitor combination therapy without debridement

predicts that the bacterial burden can be eliminated within four weeks in Case C using realistic

doses and significantly reduced in Case B, whereas BT can be reduced by at most an order of

magnitude for realistic doses in Cases A and D, which are less sensitive to treatment. We fur-

ther predicted that treatment efficacy can be enhanced by including debridement, eliminating

bacteria in Cases A–C using realistic levels of antibiotic and inhibitor, and clearing an infection

more rapidly. Importantly, our model predicts that the use of inhibitors significantly reduces

the antibiotic dose required to clear an infection, both in terms of the maximum antibiotic

concentration required and also in terms of the total quantity of antibiotic administered

over the course of an infection, given that combination therapy may clear an infection more

quickly. We speculate that this could also reduce the chances of bacteria developing resistance

to antibiotic therapies.

The model is insensitive to the rates of conjugation and segregation (λ and ρ respectively)

within realistic ranges; hence, it is reasonable to neglect these processes from the model. By

contrast, the system is sensitive to the factor difference in antibiotic potency against bound

bacteria compared with free bacteria, ω, an increase in this parameter effecting a decrease

in BT. We have assumed that ω = 1 in the present work; however, it would be valuable to mea-

sure this parameter experientially for different bacterial species, antibiotics and infection sites

to determine its true value in a variety of contexts, and thus to incorporate this into future

models.

Optimal treatment regimens, combining antibiotics and inhibitors with debridement

over the period of a week, were predicted for Cases A–D. For each case, two scenarios were

considered: the first, corresponding to a new infection, in which bacteria have not yet had an

opportunity to bind to host cells and the second, corresponding to an established infection,

including both bound and free bacteria. Both scenarios consisted of mixed populations of

susceptible and resistant bacteria. The inhibitor dosing and debridement regimens were

allowed to vary, while the antibiotic concentration was assumed to take its maximum value

based upon the preceding sensitivity analyses. Four separate optimisations were performed for

each parameter set and scenario using different optimality criteria: minimising the final bound

bacterial burden, BB(168), minimising the final total bacterial burden, BT(168), minimising the

mean bound bacterial burden, hBBi, and minimising the mean total bacterial burden, hBTi. We

focused upon bound bacteria in particular, since it is bound bacteria, rather than free bacteria,

that damage host cells.

In the new infection scenario it is almost always optimal to use the full weekly quota of

inhibitors at the beginning of the first day in Cases A–C and to distribute inhibitor dosing

more evenly across the week in Case D, while it is best to debride every day to minimise hBBi

and hBTi in most cases, the optimal debridement regimen varying between parameter sets

under the BB(168) and BT(168) criteria. Given that the bound and total bacterial burdens

evolve similarly in Cases A–D under each of the optimal regimens, we suggest that, in the new

infection scenario, it would be best to use the full inhibitor quota at the beginning of the first

day and to debride every day in a clinical setting. The optimal treatment regimens are pre-

dicted to eliminate the bacterial burden within a week in Case A and to significantly reduce

the bacterial burden in Cases B–D. Further experimental studies are required to test these

predictions.

In the established infection scenario optimal treatment regimens vary greatly between

parameter sets and optimality criteria. Since it is most important that we eliminate the bound
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bacterial burden, we suggest that a regimen which minimises BB(168) or hBBi would be best.

Under these criteria it is almost always optimal to use the full inhibitor quota at the beginning

of the first day of treatment and to delay the first debridement event for as long as possible to

allow inhibitors time to outcompete bacteria for binding sites before debridement removes

their free contingent. If daily debridement is required then the optimal strategy will depend

upon the parameter set. In Cases A and B, the ratio of bacterial binding to unbinding rates,

αBac/βbac, is lower than the ratio of inhibitor binding to unbinding rates, αI/βI. Therefore,

inhibitors quickly outcompete bacteria for binding sites, such that using the full inhibitor dose

at the start of the first day would be a good strategy. In Cases C and D, αBac/βbac> αI/βI. There-

fore, it takes inhibitors longer to displace bacteria, such that distributing inhibitor doses evenly

across the week would be a good strategy.

In future work we will develop our mathematical modelling in a number of new directions.

This will include the development of partial differential equation models to account for the

spatial distribution of bacteria, antibiotics, inhibitors and binding sites (ODE models being

incapable of adequately accounting for non-uniform distributions or diffusive/migratory

processes), allowing us to investigate issues such as how a localised application of inhibitors

would affect treatment efficacy; the development of stochastic and cellular automata models to

account for the random behaviour of the system at a more finely-resolved spatial scale; and a

more detailed stability analysis of ODE systems involving treatment with inhibitors and antibi-

otics. Future models could also consider the use of bacteriostatic antibiotics, quorum sensing

and biofilm formation. Possible future experimental studies are noted in the discussion above.

In conclusion, our model predicts that antibiotics and inhibitors have a synergistic effect

when used together, that combination therapy is more effective than either treatment in isola-

tion and that treatment may be further enhanced through the use of debridement. Further,

our model predicts that, in general, when treating over the period of a week, the optimal strat-

egy is to maintain a constant antibiotic dose at the maximum allowable concentration, to use

the full quota of inhibitors at the beginning of the first day of treatment and to debride daily,

though this could be further enhanced if a patient-specific parameter set is identified. Lastly,

our models predict that using inhibitors lowers the minimum antibiotic dose required in

order to eliminate a bacterial infection, reducing the selection pressure and, potentially, the

probability that bacteria will develop resistance to the antibiotic.
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