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Abstract—Roller bearings are one of the most safety-critical 

components in many machines. Predicting the vibration-

based remaining useful life (RUL) of roller bearings allows 

operators to make informed maintenance decisions and to 

guarantee reliability and safety. The health indices (HIs) for 

degradation assessment are constructed by extracting 

feature information from the collected data, which 

significantly influences the prognosis result. Conventional HI 

construction methods rely heavily on expert knowledge and 

also have limited capacity for learning health information 

from the raw data from roller bearings. Furthermore, outlier 

regions often occur in HIs developed by those methods, and 

these can easily result in false alarms. To address these 

problems, a novel HI construction method based on a deep 

multilayer perceptron (MLP) convolution neural network 

(DMLPCNN) model, which also considers outlier regions, is 

proposed in this paper. In the proposed model, a 1-D MLP 

convolution (Mlpconv) block, consisting of a convolution 

layer and a micro network, is applied to learn features 

directly from vibrational data. The learned features are then 

mapped into an HI using a global average pooling layer and 

a logistic regression layer. Finally, an outlier region 

correction method, based on sliding thresholds, is proposed 

to detect and remove outliers in the HI. The outlier region 

correction method is able to enhance the interpretability of 

the constructed HI. The effectiveness of the proposed method 

is verified using whole-life datasets of 17 bearings. The 

experimental results demonstrate that the proposed method 

outperforms conventional methods. 

 
Index Terms—Roller bearings, RUL prediction, degradation 

assessment, deep MLP convolution neural network, outlier region 

correction method. 

I. INTRODUCTION 

oller bearings are a key component of many machines that 

potentially operate under heavy loads and changing speed 

conditions. Faults occurring in roller bearings can result in 

economic loss or even casualties. The health prognostic of a 

roller bearing can predict its remaining useful life (RUL) to 

make an optimal maintenance decision based on the bearing’s 

real operation condition and then avoid the occurrence of 

tragedies. 
 

This work was supported by the China Scholarship Council. (Corresponding 
author: Jiaqi Ye.) 

The authors are with the Department of Electronic, Electrical and Systems 

Engineering, University of Birmingham, Birmingham B15 2TT, UK. (e-mail: 
railcm@contact.bham.ac.uk). 

Machinery health prognosis has three stages as shown in Fig.  

1. Degradation assessment plays a significant role in the health 

prognosis of roller bearings through constructing a health index 

(HI). HI construction can identify and quantify a history and 

ongoing degradation process by extracting operational 

performance information from the collected data [1, 2]. The 

quality of the constructed HI directly impacts the accuracy of 

the health prognostic. HI construction plays a significant role in 

maintenance and is thus an area of interest for a number of 

researchers [3]. 

 
Fig.  1. Three stages of machinery health prognosis. 

 

Recent HI construction methods can be classified into two 

kinds: physics-based methods and data-driven methods [1]. In 

physics-based methods, mathematical or physical models are 

built according to a system’s underlying physics, mechanical 

damage and expert experience. However, the precise nature of 

the degradation process is difficult to determine due to system 

and operational complexity, and so it is difficult to build an 

accurate model. Data-driven methods make use of condition 

monitoring data to construct HIs without much prior knowledge 

of the system. Thus, these methods have been widely researched 

for assessment of bearing degradation. For example, the self-

organizing map (SOM) method [4, 5], the principal component 

analysis method [6, 7] and the Mahalanobis distance [8, 9] were 

all introduced to fuse multiple features into an HI to be used to 

assess degradation. 

Although the methods listed above demonstrate good 

performance, they still have some deficiencies. For instance, the 

performance of the constructed HI often relies heavily on the 

features selected. Feature selection is a manual procedure, which 

is time-consuming and requires a domain expert. Methods based 

on manual feature selection are also difficult to generalize. To 

overcome these problems, deep learning models have been 

introduced to learn features from raw data automatically [2, 10–

13]. The convolution neural network (CNN) approach, which is 

one of most used models, has the advantage that it can obtain 

spatial information from input data. Turker et al. [14] introduced 

a 1-D CNN to learn features from motor current signals, and 
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bearing faults were ultimately detected successfully. 1-D CNN 

has also been used to learn bearing features from vibration 

signals and then construct an HI in [15]. CNN has demonstrated 

its suitability for use in condition monitoring in many other 

target domains [16–19]. 

The conventional CNN model is constructed by stacking 

linear convolution blocks, including the convolutional layer and 

the pooling layer, as shown in Fig.  2 (a). The feature vectors can 

be extracted using linear convolutional filters and nonlinear 

activation functions, such as sigmoid, tanh, etc. Thus, the 

conventional CNN can work well if the latent concepts in the 

analysis signal are linearly separable. However, the abstract 

representations which are used to identify the health status of a 

bearing are highly nonlinear functions. Also, the multiple fully 

connected layers in the conventional CNN model can easily 

result in overfitting. Lin et al. [20] proposed a Network in 

Network (NiN) model which is constructed by stacking 

Mlpconv (MLP convolution) blocks as shown in Fig.  2 (b). The 

NiN approach replaces the pooling layer and the fully connected 

layer in a CNN with a micro network structure and a global 

average pooling layer, respectively. Inspired by the NiN model, 

the deep multilayer perceptron (MLP) convolution neural 

network (DMLPCNN) model is proposed in this paper for the 

construction of HIs for roller bearings. Significantly, compared 

to the NiN method, the DMLPCNN method is an “end-to-end” 

regression model and uses an additional final logistic regression 

layer. In addition, this model is directly applied to 1-D vibration 

signals rather than 2-D datasets. The effectiveness of the 

proposed model is demonstrated with real sensor data. 

 
Fig.  2. (a) Linear convolution block structure, (b) Mlpconv block structure. 

 

In addition, another problem for constructed HIs is that some 

outliers exist. In these HIs, performance for degradation 

assessment can be significantly affected. To address this 

problem, the outliers in HIs need to be identified and then 

removed. Recently, many techniques have been developed to 

detect outlier regions, including: machine learning-based 

methods, information theory-based methods and statistical 

methods [21–23]. The statistical methods are often shown to be 

both effective and efficient [24]. In particular, the 3σ (3 standard 

deviation)-based statistical method is widely applied to outlier 

detection tasks [23, 25]. For example, Guo et al. [15] proposed 

an outlier region correction method for bearing HIs using the 

3σ-based statistical method and demonstrated good results. In 

that method, the threshold for the HI is fixed and hence outliers 

with minor amplitudes may be neglected. Additionally, outliers 

with minor amplitudes or outliers in HIs with nonlinear trends 

are often not detected when using that approach. 

In order to automatically construct HIs, and then to correct 

outlier regions, this paper proposes an HI construction method 

based on a DMLPCNN model which also takes into 

consideration the removal of outliers. In the proposed method, 

the bearing features are learned using multiple Mlpconv blocks, 

and the features obtained are then mapped into an HI using both 

a global average pooling layer and a logistic regression layer. A 

novel outlier region correction method is then applied to 

remove outliers in the HIs. The HI based on the proposed 

method is referred to as an MHI (Mlpconv HI). Run-to-failure 

datasets from bearings are used to verify the effectiveness of the 

proposed method. Compared with conventional methods, the 

proposed method demonstrates advantages when considering 

evaluation indices associated with the HIs produced. In 

summary, the main contributions of this paper are: 

• The combination of Mlpconv blocks and a global average 

pooling layer with an additional final logistic regression 

layer to form an end-to-end regression model (DMLPCNN). 

The model is then used to construct a bearing HI by learning 

directly from raw vibration signals. 

• Introduction of the use of a stepwise strategy in the 

application of median-based threshold techniques for a novel 

outlier removal solution in order to improve the constructed 

HIs in terms of the evaluation indices used in the work. 

This paper is organized as follows: The DMLPCNN model 

is introduced in Section II. In Section III, a novel outlier region 

correction method is described. Construction of the evaluation 

indices for HI comparison is introduced in Section IV. Section 

V demonstrates the proposed method using the experimental 

results. Conclusions are then presented in the final section. 

II. DEEP MLP CONVOLUTION NEURAL NETWORK MODEL 

A novel deep learning model, referred to as the “Deep MLP 

Convolution Neural Network” (DMLPCNN) model”, is 

proposed in this paper to obtain the HI of roller bearings. The 

proposed model includes two 1-D Mlpconv blocks, one global 

average pooling layer and one logistic regression layer, as 

shown in Fig.  3. 

A. 1-D Mlpconv Block 

The Mlpconv block includes a convolution layer and a micro 

network forming an MLP. The micro network is a nonlinear 

structure that replaces the linear pooling layer in a CNN. Thus, 

the Mlpconv block can be used to obtain a more abstract 

representation of the input data than a standard CNN. The main 

difference between 2-D and 1-D Mlpconv blocks is that 2-D 

matrices are replaced by 1-D arrays for both kernels and feature 

maps. The 1-D Mlpconv block can be expressed as [20]: 

 

 𝑓𝑖,𝑘1
1 = max(𝜔𝑘1

1 𝑇
𝑥𝑖 + 𝑏𝑘1 , 0)

⋮

𝑓𝑖,𝑘𝑛
𝑛 = max(𝜔𝑘𝑛

𝑛 𝑇
𝑓𝑖
𝑛−1 + 𝑏𝑘𝑛 , 0)

 (1) 

(a) (b)
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where 𝑖  is the index in the feature map, 𝑥𝑖  is the input array 

section at location i, k is the channel number of the feature map, 

N is the number of layers within the micro networks (selection 

of N is analyzed in Section V), and 𝜔𝑘𝑗

𝑗
 and 𝑏𝑘𝑗  are the weight 

and the bias at the j-th layer in a micro network (𝑗 = 1,⋯ , 𝑛). In 

the paper, the activation function in the Mlpconv block is the 

tanh unit. Equation (1) shows that a parametric pooling process, 

consisting of a micro network and the pooling layer, is added 

following a normal convolution layer. The parametric pooling 

structure is able to obtain complex and learnable interactions of 

information. 

B. Global Average Pooling Layer 

In a conventional CNN, abstract feature maps are obtained 

through multiple combinations of the convolution layer and the 

pooling layer. The obtained feature maps are then fed into a 

series of fully connected layers followed by a logistic regression 

layer for classification or prediction. However, use of the fully 

connected layers can result in overfitting and thus reduce the 

generalization capabilities of the deep learning model [20]. 

Furthermore, the number of parameters in the fully connected 

layers is normally too high, leading to a time-consuming 

optimization procedure. Hence, a global average pooling layer 

is added following the Mlpconv blocks in the proposed model. 

The global average layer returns the average value of the last 

Mlpconv block’s result for each channel as follows [20]: 

 

 𝑝𝑘 = Ave{𝑓𝑖,𝑘2
2 } (2) 

 

where 𝑝𝑘 is the output of the k-th channel feature map, Ave{∎} 

represents the average operation, and 𝑓𝑖,𝑘2
2  is the result of the 

second Mlpconv block. 

C. Logistic Regression Layer 

After using the global average layer, the output for each 

channel, 𝑝𝑘 (𝑘 = 1,2,⋯ , 𝑛), can be obtained as demonstrated 

in (2). The combination of results from the global average 

pooling layers from all channels are given as P in (3). To ensure 

the value of the constructed HI is in the range 0 to 1, the last 

layer of the proposed model is a logistic regression layer, as 

described in (4). 

 

 𝑃 = [𝑝1, 𝑝2, ⋯ , 𝑝𝑛] (3) 

 

 
y̅ = 1 −

1

1 + 𝑒−(𝑊𝑃+𝑏)
 (4) 

 

where W and b are the weights and bias, respectively, and y̅ is 

the result of the DMLPCNN model, also known as the 

constructed HI. To optimize the parameters in the proposed 

model, an objective function, J, is constructed as in [15]: 

 

 

J = ∑‖𝑦𝑗 − �̅�𝑗‖1
2

𝑁

𝑗=1

 (5) 

 

where N is the number of training samples, and yj and �̅�𝑗 are the 

actual label and the expected label, respectively, for the j-th 

training sample. Optimal values for the parameters in the 

proposed model (to minimize error in label allocation) can be 

obtained by minimizing (5). 

III. OUTLIER REGION CORRECTION METHOD 

Although an HI can be constructed for a target bearing using 

the proposed model, as each new estimate of HI is based on an 

incremental variation from the previous estimate, any outliers 

in the HI would have a cumulative effect that may potentially 

result in a false alarm being generated. In order to remove the 

HI outliers, a novel outlier region correction method is 

proposed in this paper. Unlike conventional HI outlier removal 

methods, such as the 3σ-based method described in [15], a 

stepwise strategy is first applied to divide the analyzed HI into 

 
Fig.  3. Deep MLP convolution neural network model. 
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multiple sections. A robust threshold based on the median is 

then calculated (as per [26]) for each section in order to detect 

outlier regions. Hence, the outliers can be removed. 

 

The difference between HI points, dHI, is: 

 
 

𝑑𝐻𝐼𝑘 =
𝐻𝐼𝑘+1 − 𝐻𝐼𝑘

∆𝑡
 (6) 

 

where 𝐻𝐼𝑘 and 𝐻𝐼𝑘+1 are the k-th and (k+1)-th points in the HI, 

respectively. ∆𝑡 is the time interval between 𝐻𝐼𝑘 and 𝐻𝐼𝑘+1. A 

sliding window with fixed length, L, is used to divide dHI into 

multiple sections. The overlap rate, 𝛼, is set to avoid missing 

outliers. The start point, 𝑝𝑠𝑖 , and the end point, 𝑝𝑒𝑖, of the i-th 

section of dHI are shown as: 

 

 
{
𝑝𝑠𝑖 = (1 − 𝛼)𝑖𝐿
𝑝𝑒𝑖 = 𝑝𝑠𝑖 + 𝐿

 (7) 

 

A common threshold is constructed as 𝜇 ± 3𝜎. This form is 

widely used to detect outliers, where 𝜇 and 𝜎 are the mean and 

standard deviation, respectively. The value of the mean is more 

sensitive to outliers than that of the median. To construct a 

robust threshold, (8) and (9) are used, as introduced in [26]. 

 

 𝑀𝐴𝐷𝑖 = med(|𝑑𝐻𝐼𝑖 −med(𝑑𝐻𝐼𝑖)|) (8) 

 

 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 = {
𝑚𝑒𝑑𝑖 + 𝛽 ×𝑀𝐴𝐷𝑖 
𝑚𝑒𝑑𝑖 − 𝛽 ×𝑀𝐴𝐷𝑖

 (9) 

 

where med(∎) is the median operation, 𝑑𝐻𝐼𝑖  is the difference 

of HI in the i-th section, and 𝑚𝑒𝑑𝑖 and𝑀𝐴𝐷𝑖  are the median 

and median absolute deviation of 𝑑𝐻𝐼𝑖 , respectively. β is an HI 

performance parameter which is identified by analysis and is 

described in more detail in Section V. 

The points of dHI whose values are greater than the upper 

threshold are referred to as positive outliers; points of dHI 

whose values are less than the lower threshold are referred to as 

negative outliers. If a localized region of dHI points includes l 

consecutive positive outliers, and l consecutive negative 

outliers, the region is considered to be an outlier region and is 

removed from the HI in its entirety. Based on work described 

in [15], l is selected as 5. 

To evaluate the performance of the proposed method, a 

simulation experiment has been conducted with the outputs 

shown in Fig.  4. Fig.  4 (a) and (c) show linear and nonlinear 

HIs with three outlier regions (O1, O2, O3). Fig.  4 (b) and (d) 

show the incremental differences in the two HIs. Fig.  4 (b) 

indicates that O2 cannot be detected by the 3σ-based method 

because of the interference of the other outliers. However, the 

proposed method identifies the smaller outlier effectively. Fig.  

4 (d) shows that the 3σ-based method fails to identify the outlier 

regions due to the nonlinearity of the HI, but that the proposed 

method successfully identifies them. 

 
After detection of the outlier regions, (10) is introduced to 

remove the outliers [15]. 

 
 

𝑀𝐻𝐼𝑡𝑜 = 𝐻𝐼𝑡𝑠 +
𝐻𝐼𝑡𝑒 −𝐻𝐼𝑡𝑠
𝑡𝑒 − 𝑡𝑠

(𝑡𝑜 − 𝑡𝑠) (10) 

 

where to is the time in the outlier region, and ts and te are the 

start time and end time, respectively, of the outlier region. The 

details of the outlier region correction method are demonstrated 

in Algorithm 1, as shown below. 

 
Algorithm 1 outlier region correction. 

Input: health index (HI), length of HI (K), length of slide 
windows (L), overlapping rate for sub-sections (𝛼), threshold 
parameter (β). 
Initialization: numbers of negative and positive outliers in one 
region 𝑛𝑛 and𝑛𝑝, start and end points 𝑝𝑠1and 𝑝𝑒1. 

Output: MHI 
Procedures: 
1. Compute the difference of HI, dHI, according to (6) 
2. While 𝑝𝑒𝑖 ≤ 𝐾-1 do 
3. Compute the threshold in i-th section through (8) and (9) 
4. for j: = psi to pei do 

5. if 𝑑𝐻𝐼𝑗  < the lower threshold, then 𝑛𝑛,𝑖 =𝑛𝑛,𝑖 + 1 

6. else if 𝑑𝐻𝐼𝑗  > the upper threshold, then 𝑛𝑝,𝑖 =𝑛𝑝,𝑖 + 1 

7. end if 
8. end for 
9. if 𝑛𝑛,𝑖 ≥ 𝑙 and 𝑛𝑝,𝑖 ≥ 𝑙, then correct the outlier region through 

(10) 
10. end if 
11. 𝑖 = 𝑖 + 1 
12. Compute the start and the end points of the i-th section, psi 

and pei, through (7) 
13. end while 

IV. EVALUATION INDICES FOR HI CONSTRUCTION 

To assess the quality of the constructed HIs, three evaluation 

indices are introduced in [1]: monotonicity, robustness and 

trendability. The monotonicity index, demonstrated in (11), can 

be used to evaluate the monotonicity of the HI, i.e. its nature in 

respect of a continuously increasing or decreasing value. This 

kind of trend would be expected in an HI as the degradation 

process is irreversible. The robustness index, shown in (12), is 

designed to assess the stability of the HI. This is essentially a 

quantification of noise, stochasticity of the degradation process, 

 
Fig.  4. (a) Linear HI with outliers, (b) difference of HI in (a), (c) nonlinear 

HI with outliers, (d) difference of HI in (c). 

 

µ+3σ 
µ+3σ 

medi+βMADi
medi +βMADi

µ-3σ 

medi-βMADi medi-βMADi

µ-3σ 

O1

O2

O3 O1

O2 O3

(a) (c)

(b) (d)

Time Time

HI

dHI
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and other random fluctuations in the HI. Finally, given that 

roller bearings usually degrade over time and with use, 

trendability, as described as (13), is used to evaluate the 

correlation between the degradation trend of an HI and the time 

of operation. 

 

𝑀𝑜𝑛(𝐻𝐼) =
|No. of𝑑𝐻𝐼 > 0 − No. of𝑑𝐻𝐼 < 0|

𝐾 − 1
 (11) 

 

𝑅𝑜𝑏(𝐻𝐼) = 
1

𝐾
∑exp(− |

𝐻𝐼𝑘 − 𝐻𝐼𝑘
𝑇

𝐻𝐼𝑘
|)

𝐾

𝑘=1

 (12) 

 

𝑇𝑟𝑒(𝐻𝐼, 𝑡) =
|∑ (𝐻𝐼𝑘 − 𝐻𝐼̅̅̅̅ )(𝑡𝑘 − 𝑡̅)𝐾

𝑘=1 |

√∑ (𝐻𝐼𝑘 − 𝐻𝐼̅̅̅̅ )2𝐾
𝑘=1 ∑ (𝑡𝑘 − 𝑡̅)2𝐾

𝑘=1

 (13) 

 

where 𝐾  is the length of the HI, No. of𝑑𝐻𝐼 > 0  and 

No. of𝑑𝐻𝐼 < 0  are the number of positive and negative 

differences, respectively, 𝐻𝐼𝑘  is the value of the HI at time 𝑡𝑘, 

and 𝐻𝐼𝑘
𝑇  is the mean trend value of the HI at 𝑡𝑘  which is 

obtained by using an average smoothing method, 𝐻𝐼̅̅̅̅ =
(∑ 𝐻𝐼𝑘

𝐾
𝑘=1 ) 𝐾⁄ , 𝑡̅ = (∑ 𝑡𝑘

𝐾
𝑘=1 ) 𝐾⁄ . 

The three evaluation indices above assess different properties 

of the HI. In order to comprehensively evaluate an HI, a 

composite index (CI) is constructed as: 

 

 
𝐶𝐼 =

𝑀𝑜𝑛 + 𝑅𝑜𝑏 + 𝑇𝑟𝑒

3
 (14) 

V. EXPERIMENT AND DISCUSSION 

A. Data Description 

Vibrational datasets of roller bearings made openly available 

in [27] were used to verify the effectiveness of the proposed 

method. The 17 vibrational datasets were collected from an 

experimental platform known as PRONOSTIA, as shown in 

Fig.  5. The platform which is composed of a rotating part, a 

degradation generation part and a measurement part allows 

bearing degradations to be conducted in only a few hours. The 

parameters of the test bearings are shown in Table I. In the data 

collection procedure, samples were recorded every 10 s until 

failure occurred. Datasets were collected from different 

bearings operating under three different speed and load 

conditions, as shown in Table II. Information relating to the 

operating conditions is not made available to the processing in 

order that the robustness of the method can be demonstrated. 

Sixteen sets of data corresponding to test bearings were 

randomly selected and used to construct the training dataset; the 

remaining one was used as the testing dataset. It is worth noting 

that samples are normalized before being input to the proposed 

model in order to improve the training efficiency and accuracy. 

Thus, the values of mean and standard deviation for the 

normalized input samples are 0 and 1, respectively. For ease of 

manipulation, the run-to-failure dataset is labeled ranging from 

0 to 1. The first sample (normal operation) is therefore labeled 

as 0 and the last sample (failed status) is labeled as 1. 

Intermediate labels are generated by dividing the time of 

operation by the whole-life time of the bearing. This linear 

approximation is a valid starting point for HI generation using 

data-driven approaches [28, 29] and is required as the precise 

bearing degradation curve is not known. 

 

 
Fig.  5. Experimentation platform for the test. 

TABLE I 

PARAMETERS OF TEST BEARINGS 

Outer race 
diameter 

Inner race 
diameter 

Roller 
diameter 

Roller number 

32 mm 22.1 mm 3.5 mm 13 

 
TABLE II  

OPERATING CONDITIONS FOR BEARINGS 

Bearing Number Speed Load 

1–7 1800 rpm 4000 N 

8–14 1650 rpm 4200 N 

15–17 1500 rpm 5000 N 

B. HI Construction 

The number of Mlpconv blocks, N, determines the structure 

of the proposed DMLPCNN model. To identify the appropriate 

value for N, a comparison experiment using different N values 

has been conducted. The results are summarized in Fig.  6. The 

figure shows that above 30 epochs, the loss function for the 

testing dataset is minimized with 2 blocks. As the model does 

not converge until ~60 epochs and is run to 100 epochs, this 

becomes the significant portion of the curve. Hence, the number 

of Mlpconv blocks used in this work is 2. 

 
Fig.  6. Loss functions for the testing dataset for different numbers of 

Mlpconv blocks. 
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The kernel length and the width of the micro network are 

critical hyper-parameters in the proposed model, and directly 

influence the HI construction. To select the optimal value of 

kernel length, a comparison experiment is conducted using the 

proposed method with different kernel lengths. Fig.  7 is a 

boxplot showing the results of this comparison experiment. The 

figure shows that the median values of CI at kernel lengths of 

15 and 20 are similar but the CIs are more centralized at 20. 

Hence, the best performance is obtained when a kernel length 

of 20 is selected. A similar comparison experiment is used to 

select the width of the micro network with the result shown in 

Fig.  8. The figure shows that median values at widths of 16 and 

32 are similar; however, the distribution of samples is more 

concentrated at 32. Furthermore, the CI values at other widths 

have outliers. Also, the time costs for different micro network 

widths in each epoch, te, are shown in Table III. The time cost 

for the calculation required to update the model increases as the 

width of the micro network is increased, but the difference in 

time cost between widths 16 and 32 is proportionally small. 

Thus, the width of the micro network is selected as 32 in the 

proposed model. 

 

 
TABLE III 

TIME COST FOR DIFFERENT MICRO NETWORK WIDTHS 

Width 16 32 64 128 256 

te 1.08 s 1.09 s 1.17 s 1.35 s 1.71 s 

 

With the critical parameters selected, the proposed model can 

be used to construct HIs. Fig.  9 shows example HIs for the 5th 

and 6th bearings, respectively. The figure shows that the 

amplitude of the HIs generally increases with the time of 

operation until it reaches the failure point at a value of 1. 

However, some noise exists in the His, as shown in Fig.  9 (a) 

and (c). A moving average algorithm is applied to smooth the 

His, with results shown in Fig.  9 (b) and (d). This smoothed 

version is used in further processing. 

 

C. Outlier Region Correction 

HIs are generally monotonous. Thus, the outlier region 

correction method proposed in Section III can be applied. The 

result of the proposed method can, however, be influenced by 

several parameters, including the length of slide windows, L, 

the crossover rate, α, and the threshold parameter, β, in (9). 

Comparison experiments are also used to select appropriate 

values for these parameters. 

The effects of different slide window sizes and crossover 

rates are demonstrated using the boxplots shown in Fig.  10. 

The crossover rates in Fig.  10 (a), (b) and (c) are selected as 

0.50, 0.55 and 0.60, respectively. In the figure, the maximum 

medians of CI are at a length of 150, 150 and 200 when α is 0.5, 

0.55 and 0.6, respectively. However, considering minimizing 

outliers of the CI, the slide window length and the crossover 

rate are selected as 150 and 0.55, respectively. An additional 

comparison experiment is conducted to select the optimal 

threshold parameter, β. The result, displayed in Fig.  11, shows 

that the best performance is obtained when β is set to 0.3. 

Using the selected parameters, MLP-based health indices 

(MHIs) for the example bearings can be obtained using the 

proposed method. In Fig.  12, the red dashed line and the blue 

solid line represent HIs and MHIs from bearing 1 to bearing 9, 

respectively. The figure shows that some outliers in the HIs are 

removed by using the proposed method and thus MHIs have 

better interpretability. Fig.  13 shows the composite indices of 

HIs and MHIs for all of the test bearings. The figure 

demonstrates that MHIs have better performance than HIs in 

terms of the overall CI, which verifies the effectiveness of the 

proposed method. It should be noted that the CI is constructed 

from three elements, monotonicity, robustness and trendability, 

and as such is highly dependent on the shape of the HI curve. 

All bearings tested are run to failure, but the shapes of the HI 

curves vary, as shown in Fig.  12. 

 
Fig.  7. Composite index results for different kernel lengths. 

The kernel length

C
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Fig.  8. Composite index results for different widths of micro network. 
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Fig.  9. (a) and (b) HIs for the 5th bearing before and after smoothing, (c) and 
(d) HIs for the 6th bearing before and after smoothing. 
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D. Comparison 

Overfitting is a common problem in machine learning. When 

overfitting occurs, the trained model will align well with the 

training dataset, but poorly with the testing dataset. Fig. 14 (a) 

and (b) demonstrate results in terms of error between the true 

and predicted labels (J, in (5)) obtained using both the 

conventional CNN [15] and the DMLPCNN models. This error 

is referred to as “loss”. In the figure, the dashed line and the 

solid line display the changing trends of the training loss and 

the testing loss, respectively. Fig. 14 (a) shows that the gap 

between the training loss and the testing loss occurs at 

approximately the 15th epoch and then becomes greater as the 

epoch number (number of training events) increases. It also 

indicates that overfitting occurs when using the conventional 

CNN model, but not when using the proposed DMLPCNN 

model. 

 
To show the advantage of the proposed model, six other HI 

construction methods were conducted for comparison. In the 

first method, a deep learning model, a stacked autoencoder 

(SAE) with three hidden layers, is used to construct HIs, in 

which the input is the raw vibrational datasets. The second uses 

the SOM method and applies it to specifically designed features 

in order to obtain HIs [5]. In the third one, a fully connected 

(FC) neural network based on handcrafted features is utilized to 

construct HIs. The fourth method uses the conventional CNN 

model to obtain HIs [15]. Similar to the method in [15], two 

advanced versions of CNN, i.e. fully convolutional network 

[30] and residual network (ResNet) [31], are also applied to 

construct HIs for the final two comparison cases. The results of 

the comparisons in terms of indices are shown in Table IV, 

which demonstrates the obvious advantage of the DMLPCNN 

method. 

 
Fig.  10. Composite index results for different slide window lengths and 
crossover rates. (a) Crossover rate: 0.50, (b) crossover rate: 0.55, and (c) 

crossover rate: 0.60. 

  

 
Fig.  11. Composite index results for the proposed outlier region correction 

method with different values of the threshold parameter, β. 
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Fig.  12. HIs (red/dashed) and MHIs (blue/solid) from bearing 1 to bearing 9. 
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Fig.  13. Composite indices of HIs and MHIs for all test bearings. 

 

 

Fig. 14. Loss function in relation to epoch: (a) conventional CNN model, (b) 
DMLPCNN model. 
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TABLE Ⅳ 
COMPARISON RESULTS FOR DIFFERENT HI CONSTRUCTION METHODS 

Method Mon Rob Tre CI 

SAE 0.02 0.10 0.12 0.08 

SOM 0.15 0.35 0.80 0.43 

FC 0.23 0.41 0.79 0.48 
CNN 0.40 0.61 0.89 0.63 

FCN 0.31 0.53 0.80 0.55 

ResNet 0.48 0.72 0.92 0.71 
DMLPCNN 0.65 0.89 0.95 0.83 

 

To further demonstrate the superiority of the proposed outlier 

removal method, further comparisons with the 3σ-based outlier 

region correction method [15] were conducted. In the 

comparison, the HI is constructed by using the DMLPCNN 

model first, and then the proposed and 3σ-based methods are 

used to remove outliers. The results of the comparisons in terms 

of CI are shown in Fig.  15, which indicates that the proposed 

MHI method is superior in terms of overall HI quality. 

 

VI. CONCLUSION 

In this paper, the DMLPCNN model is proposed and used to 

construct HIs for roller bearings. A novel outlier region 

correction method is then proposed and applied in order to 

improve the quality of the constructed HIs. The effectiveness of 

the proposed combined method has been verified using 

comparative studies with publicly accessible run-to-failure 

datasets for example bearings. Compared with conventional 

methods, the proposed method has been shown to generate HIs 

with greater overall quality, as demonstrated through a CI made 

up of three key performance metrics. The following specific 

conclusions are drawn following consideration of the 

comparison experiments: 

(1) The 1-D Mlpconv block in the DMLPCNN model is able 

to obtain abstract features from bearing data with little prior 

information. The HIs constructed using the proposed model 

have good overall quality as indicated using a number of 

evaluation indices. In addition, the application of a global 

average pooling layer effectively avoids the problem of 

overfitting. 

(2) In the novel outlier region correction method, the use of 

sliding thresholds based on the median and median absolute 

deviation are more robust than standard thresholds based on 

mean and standard deviation. The proposed method has been 

shown to cope with minor outliers and also outliers in HIs with 

nonlinear behavior. 

(3) The overall effectiveness of the proposed method has 

been demonstrated using publicly accessible datasets for roller 

bearings collected using a test rig. The authors would next like 

to consider application of the technique to data collected from 

a real operating environment. 
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