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We examine the formulation and numerical treatment of dissipative particle dynamics 
(DPD) and momentum-conserving molecular dynamics. We show that it is possible to 
improve both the accuracy and the stability of DPD by employing a pairwise adaptive 
Langevin thermostat that precisely matches the dynamical characteristics of DPD simula-
tions (e.g., autocorrelation functions) while automatically correcting thermodynamic 
averages using a negative feedback loop. In the low friction regime, it is possible to replace 
DPD by a simpler momentum-conserving variant of the Nosé–Hoover–Langevin method 
based on thermostatting only pairwise interactions; we show that this method has an 
extra order of accuracy for an important class of observables (a superconvergence result), 
while also allowing larger timesteps than alternatives. All the methods mentioned in the 
article are easily implemented. Numerical experiments are performed in both equilibrium 
and nonequilibrium settings; using Lees–Edwards boundary conditions to induce shear 
flow.

© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Classical molecular dynamics (MD), where the motion of individual atoms is governed by Newton’s law in the micro-
canonical ensemble (where energy, i.e., the Hamiltonian of the system, is conserved), has been widely used in molecular 
simulations [1,2]. However, the constant energy setting is not relevant to a real-world laboratory environment since en-
ergy, as an extensive variable, depends on system size. In typical cases, one replaces the microcanonical ensemble by the 
canonical one, where temperature is conserved using suitable “thermostat” techniques.

One popular thermostat is Langevin dynamics, whereby each particle is subject to dissipative and collisional interactions 
with the particles of an artificial “heat bath” and modeled by supplementing the conservative Newtonian equations of mo-
tion with balanced damping and stochastic terms in such a way that the desired target system temperature is maintained. 
However, as pointed in [3], in order to be consistent with hydrodynamics, a particle model should respect Galilean invari-
ance, and, in particular, should conserve momentum, something that Langevin dynamics fails to do. Fundamentally, Langevin 
dynamics and its overdamped Brownian dynamics limit, are appropriate for modeling systems in or near thermodynamic 
equilibrium and therefore do not take into account the possibility of an underlying fluid flow, thereby precluding their use 
in situations where the flow of the soft matter system cannot be predicted beforehand (e.g., when dealing with interfaces 
or nonuniform flow). Moreover, it has been reported in [4] that, due to the violation of global momentum conservation, 
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Langevin dynamics can lead to nonphysical screening of hydrodynamic interactions with a screening length proportional to 
the inverse square root of the friction coefficient of the algorithm. In order to control simulation artifacts, one is led to use 
a very small friction coefficient, effectively reducing Langevin dynamics to Hamiltonian dynamics in the microcanonical en-
semble. Therefore, when hydrodynamics is of interest, standard thermostats should be replaced by momentum-conserving 
thermostats, in particular the so-called dissipative particle dynamics (DPD) method of Hoogerbrugge and Koelman [3].

DPD was first proposed in order to recover the properties of isotropy (and Galilean invariance) that were broken in 
the so-called lattice-gas automata method [5]. In DPD, each body is regarded as a coarse-grained particle. These particles 
interact in a soft (and short-ranged) potential, allowing larger integration timesteps than would be possible in MD, while 
simultaneously decreasing the number of degrees of freedom required. As in Langevin dynamics, a thermostat consisting 
of well-balanced damping and stochastic terms is applied to each particle. However, unlike in Langevin dynamics, both 
terms are pairwise and the damping term is based on relative velocities, leading to the conservation of both the angular 
momentum and the linear momentum. The property of Galilean invariance (i.e., the dependence on the relative velocity) 
makes DPD a profile-unbiased thermostat (PUT) [6,7] by construction and thus it is an ideal thermostat for nonequilibrium 
molecular dynamics (NEMD) [8]. The momentum is expected to propagate locally (while global momentum is conserved) 
and thus the correct hydrodynamics is expected in DPD [8], as demonstrated previously in [9]. Due to the aforementioned 
properties, DPD has been widely used to recover thermodynamic, dynamical, and rheological properties of complex fluids, 
with applications in polymer solutions [10], colloidal suspensions [11], multiphase flows [12], and biological systems [13]. 
DPD has been compared with Langevin dynamics for out-of-equilibrium simulations of polymeric systems in [14], where as 
expected the correct dynamic fluctuations of the polymers were obtained with the former but not with the latter.

Given its promising prospects from the applications perspective, and its widespread use in large scale simulations, 
the optimal design of numerical methods for DPD becomes crucially important, in particular the numerical efficiency in 
practice [15–18]. Numerous numerical schemes [15,19–24] have been proposed in the last two decades following the in-
troduction of DPD, which are intended to reduce nonphysical artifacts (especially in the large stepsize regime) induced by 
the discretization error. Recently, we have systematically examined the performance (in terms of accuracy, efficiency, and 
robustness) of a number of the most popular methods in the literature [25].

In addition, we have proposed in [25] an alternative stochastic momentum-conserving thermostat, the pairwise Nosé–
Hoover–Langevin (PNHL) thermostat. This method mimics the DPD system in the regime of low friction, however achieving 
much higher accuracy and computational efficiency. One contribution of the current article is a perturbation analysis show-
ing that averages of observables of a certain (common) form performed using a nonsymmetric splitting of the PNHL system 
(i.e., the PNHL-N method [25]) have unexpected second order accuracy (as a power of the stepsize), justifying the enhanced 
performance of PNHL observed in simulations.

The second important contribution of this article is a new pairwise adaptive Langevin (PAdL) thermostat to replace DPD 
in the regime of moderate or high friction. This method draws on work on adaptive thermostats [26–28], by supplementing 
a DPD type pairwise stochastic perturbation by an auxiliary control law (also pairwise) to maintain the thermodynamic 
state. The new method fully captures the dynamics of DPD (for example, autocorrelation functions in DPD are precisely 
reproduced) and thus can be directly applied in the setting of momentum-conserving simulations as a replacement for 
DPD. We describe a simple splitting-based numerical method for PAdL. While PAdL has similar per-timestep computational 
cost, the method is shown to generate substantially more accurate approximations to thermodynamic averages at the same 
stepsize as DPD (as much as an order of magnitude). Moreover, and perhaps more significantly, the stepsize can be increased 
by around 50% using PAdL, for similar accuracy, resulting in a much more efficient overall simulation method.

Furthermore, we discuss the proper treatment of Lees–Edwards boundary conditions in the DPD setting, an essential part 
of modeling shear flow.

The rest of the article is organized as follows. In Section 2, we review the formulation of DPD and the momentum-
conserving PNHL method, and introduce the newly proposed PAdL thermostat that mimics the dynamics of DPD. We 
investigate in Section 3 numerical methods for PNHL and PAdL and give results on the order of accuracy of various schemes, 
in particular showing that the PNHL-N method is second order in its approximation of ergodic (long time) averages of 
a certain class of observables. Section 4 presents numerical experiments in both equilibrium and nonequilibrium cases, 
comparing the performance of numerous popular numerical methods in practice. The proper treatment of Lees–Edwards 
boundary conditions in the context of momentum-conserving thermostats is also discussed in Section 4. Our findings are 
summarized in Section 5.

2. Dissipative particle dynamics and pairwise thermostats

In this section, we review the formulation of DPD and the momentum-conserving PNHL thermostat, followed by the 
introduction of the PAdL thermostat.

2.1. Dissipative particle dynamics (DPD)

The original DPD system was updated in discrete time steps and was later reformulated by Español and Warren [29] as 
a system of Itō stochastic differential equations (SDEs).
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We write the DPD system in a compact (vector) form:

dq = M−1pdt ,

dp = −∇U (q)dt − γ �(q)M−1pdt + σ�(q)dW ,
(1)

where q and p are dN-dimensional vectors, d being the underlying dimensionality of the physical space (typically d = 3) 
and N being the number of particles, representing positions and momenta of particles, respectively, M is the diagonal mass 
matrix, −∇U is the conservative force given in terms of a potential energy function U = U (q), γ is the friction coefficient 
and σ represents the strength of the random forces, W is a vector of S = dN(N − 1)/2 independent Wiener processes (note 
that, starting from the first element, every d consecutive elements are identical, intended for each interacting pair, and 
the symmetry of dWi j = dW ji is required to ensure the momentum conservation), and the matrices �(q) ∈ R

dN×dN and 
�(q) ∈ R

dN×S satisfy the following relation:

� = ��T , (2)

which can be thought of as a generalized fluctuation–dissipation relation.
The matrix �(q) may be written explicitly as

�(q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j �=1

ωD
1 jE1 j −ωD

12E12 · · · −ωD
1N E1N

−ωD
21E21

∑
j �=2

ωD
2 jE2 j · · · −ωD

2N E2N

...
...

. . .
...

−ωD
N1EN1 −ωD

N2EN2 · · ·
∑
j �=N

ωD
N jEN j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where ωD
i j =

[
ωR

i j

]2
is the weight function defined in the DPD system and Ei j = q̂i j q̂T

i j , where q̂i j = (qi − q j)/ri j is the unit 
vector with ri j = ‖qi − q j‖ being the distance between two particles, is the d by d projection matrix on particles i and j.

In the standard treatment of DPD, the conservative forces are derived from a sum of pair potentials

U (q) =
N−1∑
i=1

N∑
j=i+1

ϕ(ri j) , (4)

a typical choice of ϕ being [30]

ϕ(ri j) =

⎧⎪⎨
⎪⎩

aijrc

2

(
1 − ri j

rc

)2

, ri j < rc ;
0 , ri j ≥ rc ,

(5)

where parameters aij represent the maximum repulsion strengths between interacting pairs, and rc denotes a cutoff radius 
that is used in order to reduce the computational cost by restricting the number of pairs that need to be involved in the 
force computation.

In more recent studies, the conservative force is frequently obtained by coarse-graining procedures (e.g., [31–33]) and 
may be represented by tabled data or an interpolation thereof [34].

The weight function can be arbitrarily chosen without violating the thermal equilibrium. A simple, popular choice is

ωR
i j = ωR(ri j) =

⎧⎨
⎩1 − ri j

rc
, ri j < rc ;

0 , ri j ≥ rc .
(6)

2.2. Statistical properties of the DPD system in equilibrium

Let H represent the system Hamiltonian

H(q,p) = pT M−1p

2
+ U (q) (7)

and assume the following fluctuation–dissipation relation:

σ 2 = 2γ kBT , (8)

where kB is the Boltzmann constant and T the temperature, it is easy to show that the DPD system (1) preserves the 
momentum-constrained canonical ensemble with density
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ρβ(q,p) = Z−1 exp(−βH(q,p)) × δ

[∑
i

px
i − πx

]
δ

[∑
i

p y
i − πy

]
δ

[∑
i

pz
i − πz

]
, (9)

where Z is a suitable normalizing constant (the partition function), β−1 = kBT , and π = (πx, πy, πz) is the linear momen-
tum vector. Additional constraints should be included if the angular momentum is also conserved. In an open system model, 
DPD conserves both angular and linear momenta (due to the fact that the interactions between particles depend on relative 
velocities) thus DPD is an isotropic Galilean-invariant thermostat which also preserves hydrodynamics [8,24,35]. However, it 
should be pointed out that if periodic boundary conditions are used (even along one direction), the conservation of angular 
momentum is lost, which is also expected when Lees–Edwards boundary conditions are applied.

Due to the use of coarse-grained potentials, and depending on the choice of weight functions, the ergodicity of stochastic 
thermostats for mesoscale modeling cannot be taken for granted. The ergodicity of the DPD system has been demonstrated 
only in the case of high particle density in one dimension by Shardlow and Yan [36]. It is also worth noting that the 
simulation study of Pastorino et al. [14] appears to contradict ergodicity when (i) soft DPD potentials are used and (ii) the 
number of interactions is limited sufficiently.

2.3. Pairwise Nosé–Hoover–Langevin (PNHL) thermostat

We have recently proposed the PNHL thermostat [25] in an attempt to improve the accuracy and stability in DPD simula-
tions. Comparing to the standard formulation of DPD, in PNHL, the stochastic term was completely removed and the constant 
friction coefficient in the damping term was replaced by an additional dynamical variable that was driven by the difference 
between the instantaneous temperature based on relative velocities and the target temperature. Moreover, a Langevin ther-
mostat was applied to the auxiliary variable in order to enhance the ergodicity. As in DPD, the PNHL thermostat conserves 
the momentum and is Galilean-invariant, thus correct hydrodynamics is expected to be preserved.

The equations of motion of the PNHL thermostat are given by

dq = M−1pdt ,

dp = −∇U (q)dt − ξ�(q)M−1pdt ,

dξ = G(q,p)dt − γ̃ ξdt + σ̃dW ,

(10)

where ξ is an auxiliary dynamical variable and G(q, p) denotes the accumulated deviation of the instantaneous temperature 
away from the target temperature

G(q,p) = μ−1
[(

M−1p
)T

�(q)
(

M−1p
)

− β−1 Tr
(
�(q)M−1

)]
, (11)

where μ is a coupling parameter which is referred to as the “thermal mass”, coefficient constants γ̃ and σ̃ satisfy the 
following fluctuation–dissipation relation:

σ̃ 2 = 2γ̃ kBT /μ, (12)

and W = W(t) is a standard Wiener process.
The special case γ̃ = σ̃ = 0 of the PNHL thermostat reduces the system to the pairwise Nosé–Hoover (PNH) thermo-

stat by Allen and Schmid [24]. However, as mentioned above, ergodicity is not expected in some coarse-grained models, 
even with the addition of stochastic forces, thus, in particular, the PNH thermostat is likely to fail for many choices of 
weight functions and potentials. The inclusion of noise through the auxiliary variable has been rigorously shown to restore 
ergodicity to the system, albeit only in the case of a nonpairwise scheme [37].

The PNHL thermostat (10) preserves the canonical ensemble with a modified invariant distribution (comparing to ρβ (9)) 
in the standard DPD system

ρ̃β(q,p, ξ) = Z−1 exp (−βH(q,p)) exp
(
−βμξ2/2

)
× δ

[∑
i

px
i − πx

]
δ

[∑
i

p y
i − πy

]
δ

[∑
i

pz
i − πz

]
. (13)

We conjecture that the PNHL system is ergodic for this distribution if the weight functions have a sufficiently large support.
Two different splitting methods have been proposed in [25] for the PNHL thermostat, with the first being of a sym-

metric manner, labeled as PNHL-S, and the other nonsymmetric, PNHL-N (see details in Appendix A). Both PNHL methods 
have been compared to various popular schemes for a number of physical quantities in [25], and it turns out that both 
methods (especially the PNHL-N method) achieve significant improvements in terms of accuracy, robustness, and numerical 
efficiency over alternatives. Both mathematical theory and numerical experiment with methods for Langevin dynamics (see, 
e.g., [38]) have repeatedly shown the efficiency advantage of symmetric numerical methods, thus the numerical results re-
ported in [25] were, until now, a curious anomaly. In the next section of this article, we finally demonstrate that PNHL-N has 
a superconvergence property (an extra order of accuracy) for averages of an important class of observables, thus explaining 
its numerical performance in practice.
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The dynamical properties of the PNHL formulation correspond to those of the standard DPD system only in the low 
friction regime. In what follows, we propose a new momentum-conserving thermostat in order to have full control of the 
dynamics.

2.4. Thermodynamically-corrected and hydrodynamics-preserving pairwise adaptive Langevin (PAdL) thermostat

In order to maximize numerical efficiency (especially for large scale simulations), a large timestep is always preferred 
to discretize the system of interest. However, as already mentioned, a large timestep can result in pronounced nonphysical 
artifacts. A recent article [39] interprets the effect of the discretization error in Langevin dynamics as a means of driving the 
system away from a desired invariant distribution—excess energy is pumped into the system in the form of “shadow work” 
to prevent it from maintaining the desired temperature. Furthermore, if the forces are computed “on-the-fly” (see, e.g., [40]), 
they are likely subject to substantial errors, which would also effectively “heat” the system up (see more discussions in [27]). 
As an illustration, the hybrid quantum mechanics/molecular mechanics (QM/MM) method introduces localized heating due 
to the force-mixing at the boundary of the coupled QM and MM regions [41]. Moreover, the use of external fields in 
nonequilibrium models causes viscous heating (i.e., the energy pumped into the system leads to a temperature rise under 
steady perturbation), thus, in those cases, proper thermostats are required to drain the excess energy in order to maintain 
the correct system temperature [42].

One way to regulate excess heat in mechanical systems is via the use of negative feedback loop controls. Nosé–
Hoover [43,44] is one such feedback control system, but the observation of [26] is that feedback loop controls can be 
introduced in tandem with a Langevin thermostat (their so-called “adaptive” Langevin dynamics), benefiting from the strong 
ergodicity properties of Langevin dynamics together with an automatic regulation of the kinetic energy. These methods were 
further explored in [27,28]. Notably, in [27] it was shown that an adaptive Langevin device could be used to dissipate excess 
heat due to noisy forces, while providing statistical convergence properties very similar to those of Langevin dynamics.

It is natural to consider extending the adaptive thermostat idea to DPD, thus hopefully providing correction for thermo-
dynamic observables while mimicking, to a large extent, the properties of DPD. To this end, we propose here a momentum-
conserving PAdL thermostat, whose equations of motion are given by

dq = M−1pdt ,

dp = −∇U (q)dt − ξ�(q)M−1pdt + σ�(q)dW ,

dξ = G(q,p)dt ,

(14)

where σ is a constant coefficient as in DPD and the function G is given in (11). An additional Langevin thermostat could 
also be added on the auxiliary variable ξ as in PNHL, but it is not necessary here because of the presence of the additional 
stochastic term directly contacting the physical variables.

It can be demonstrated, modifying the argument of [26], that the PAdL system preserves the canonical ensemble with a 
modified invariant distribution

ρ̃β(q,p, ξ) = Z−1 exp (−βH(q,p))exp

(
−βμ

2
(ξ − γ̂ )2

)

× δ

[∑
i

px
i − πx

]
δ

[∑
i

p y
i − πy

]
δ

[∑
i

pz
i − πz

]
,

(15)

where γ̂ can be thought of as the “effective friction” and the following fluctuation–dissipation relation is satisfied as in 
DPD:

σ 2 = 2γ̂ kBT . (16)

The invariant distribution (15) implies that the auxiliary variable ξ is Gaussian distributed with mean γ̂ and variance 
β−1μ−1. The auxiliary variable will fluctuate around its mean value during simulation and we can tune the value of the 
effective friction in order to recover the dynamics of DPD in a wide range of friction regimes. Therefore, we can think 
of the PAdL thermostat as the standard DPD system with an adaptive friction coefficient. It can be seen that the PAdL 
thermostat inherits essential properties of DPD (such as Galilean invariance and momentum conservation) required for 
consistent hydrodynamics. In the large thermal mass limit (i.e., μ → ∞), the PAdL thermostat effectively reduces to the 
standard DPD formulation (1).

3. Numerical methods for pairwise thermostats

A great deal of effort has been devoted to developing accurate and efficient numerical methods to solve DPD and related 
systems. We have compared a number of popular schemes in [25]. In what follows we briefly review the numerical methods 
for the PNHL thermostat that will be included for further investigation in this article, followed by the derivation of the 
numerical scheme for the newly proposed PAdL thermostat. We also discuss the accuracy of equilibrium averages for those 
methods, in particular, we show the unexpected second order convergence of the PNHL-N method for certain observables.
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3.1. Numerical treatment of PNHL

Since we are unable to solve the PNHL system (10) “exactly”, we instead split the vector field of the system into pieces 
(A, B, C, D, and O)

d

⎡
⎣ q

p
ξ

⎤
⎦ =

⎡
⎣ M−1p

0
0

⎤
⎦dt

︸ ︷︷ ︸
A

+
⎡
⎣ 0

−∇U (q)

0

⎤
⎦dt

︸ ︷︷ ︸
B

+
⎡
⎣ 0

−ξ�(q)M−1p
0

⎤
⎦dt

︸ ︷︷ ︸
C

+
⎡
⎣ 0

0
G(q,p)

⎤
⎦dt

︸ ︷︷ ︸
D

+
⎡
⎣ 0

0
−γ̃ ξdt + σ̃dW

⎤
⎦

︸ ︷︷ ︸
O

, (17)

in such a way that we can solve each subsystem exactly (see more details in [25]). We can write down the generators 
associated with each piece, respectively, as

LA = M−1p · ∇q , (18)

LB = −∇U (q) · ∇p , (19)

LC = −ξ�(q)M−1p · ∇p , (20)

LD = G(q,p)
∂

∂ξ
, (21)

LO = −γ̃ ξ
∂

∂ξ
+ σ̃ 2

2

∂2

∂ξ2
, (22)

the sum of which is the generator of the PNHL system:

LPNHL = LA +LB +LC +LD +LO . (23)

The flow map (or phase space propagator) of the system is given by

Ft = etL , (24)

where the exponential map represents the solution operator. Various approximations of Ft can be obtained as products 
(taken in different arrangements) of exponentials of the splitting terms, however, it turns out in a number of studies [45–47,
25,27] that different splittings and/or combinations give dramatically different performance in practice. Two different split-
ting methods of PNHL have been proposed in [25], termed PNHL-S and PNHL-N, respectively:

ehL̂PNHL-S = e
h
2LA e

h
2LB e

h
2LC e

h
2LD ehLO e

h
2LD e

h
2LC e

h
2LB e

h
2LA , (25)

and

ehL̂PNHL-N = e
h
2LA e

h
2LB e

h
2LC e

h
2LD ehLO e

h
2LD e

h
2LC e

h
2LA e

h
2LB . (26)

The detailed integration steps of both methods can be found in Appendix A. It is important to note that the steplengths 
associated with various operations are uniform and span the interval h. Thus the O step in either of the two methods 
is taken with a steplength of h, while the other pieces with a steplength of h/2. Note also that these two integrators 
differ only from the order of integrating the last two pieces. However, an additional force calculation is required (using the 
updated positions) in the PNHL-N scheme just before updating the last B piece at the end of each integration step. The 
additional force calculation could be costly, however, it was found to be offset by a great increase in accuracy and usable 
steplength [25].

3.2. Numerical treatment of PAdL

As in PNHL schemes, we separate the vector field of the PAdL system (14) into pieces, which we label as A, B, O, and D, 
respectively:

d

⎡
⎣ q

p
ξ

⎤
⎦ =

⎡
⎣ M−1p

0
0

⎤
⎦dt

︸ ︷︷ ︸
A

+
⎡
⎣ 0

−∇U (q)

0

⎤
⎦dt

︸ ︷︷ ︸
B

+
⎡
⎣ 0

−ξ�(q)M−1pdt + σ�(q)dW
0

⎤
⎦

︸ ︷︷ ︸
O

+
⎡
⎣ 0

0
G(q,p)

⎤
⎦dt

︸ ︷︷ ︸
D

. (27)

Note that the generators of pieces A, B, and D here are exactly the same as defined in PNHL (Eqs. (18), (19), and (21), 
respectively), while the generator for the remaining piece is given by

LO = −ξ�M−1p · ∇p + σ 2

��T : ∇2
p , (28)
2
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where : denotes the Frobenius product for matrices, i.e., A : B = Tr(ATB). Note that the generator O here is different from 
that of PNHL, although they both represent Ornstein–Uhlenbeck processes. Overall, the generator for the PAdL system can 
be written as

LPAdL = LA +LB +LO +LD . (29)

It is straightforward to note that pieces A, B, and D can be solved exactly as in PNHL schemes. In fact, each interacting 
pair in O is also exactly solvable (in the sense of distributional fidelity) [48]. For each interacting pair, subtracting dv j , where 
v j is the velocity of particle j (with corresponding mass m j ), from dvi and multiplying by q̂i j on both sides yields

mijdvij = −ξωD(ri j)vijdt + σωR(ri j)dWi j , (30)

where mij = mim j/(mi + m j) is the “reduced mass” and vij = q̂i j · vi j . With ξ being a positive constant, the above equation 
is a standard Ornstein–Uhlenbeck process with the exact (in the sense of distributions) solution [49]

vij(t) = e−τ̃ t vi j(0) + σ

√
1 − e−2τ̃ t

2ξmij
Ri j , (31)

where τ̃ = ξωD/mij , vij(0) are the initial relative velocities, and Ri j are normally distributed variables with zero mean and 
unit variance. As demonstrated in [27], the exact solution above (31) is still valid for ξ < 0. When ξ = 0, one can simply 
replace (1 − e−2τ̃ t)/(2ξmij) by its well-defined asymptotic limit, in which case (31) becomes

vij(t) = vij(0) + σ(ωR/mij)
√

hRi j . (32)

Then the velocity increments can be obtained as

vij = vij(t) − vij(0) , (33)

and subsequently the corresponding momenta can be updated by

pn+1
i = pn

i + mijvijq̂
n
i j , (34)

pn+1
j = pn

j − mijvijq̂
n
i j , (35)

which defines the propagator ehLOi, j for each interacting pair.
Various splitting methods could be constructed, we propose in this article a symmetric PAdL method (alternatively, the 

“ABODOBA” method), whose propagator can be written as

ehL̂PAdL = e
h
2LA e

h
2LB e

h
2LO ehLD e

h
2LO e

h
2LB e

h
2LA , (36)

where the O part associated with interacting pairs is given by

e
h
2 L̂O = e

h
2LON−1,N · · · e

h
2LO1,3 e

h
2LO1,2 . (37)

The detailed integration steps can be found in Appendix A.

3.3. Accuracy of equilibrium averages

We have demonstrated in [25] that a symmetric splitting method gives at least second order convergence to the in-
variant measure, and similar observations would hold for the symmetric methods described above, PNHL-S (25) and the 
PAdL scheme (36). Superconvergence properties (i.e., fourth order convergence) have also been proven in both Langevin 
dynamics [45] and adaptive Langevin thermostat [27] for configurational sampling. Nonsymmetric splitting methods of geo-
metric Langevin algorithms [50] type can exhibit high order ergodic approximations, but first order convergence is generally 
expected for other nonsymmetric splitting methods. This raises the obvious question of why we observed second order 
accuracy using the PNHL-N method (26) in simulations performed in [25].

The framework of long-time Talay–Tubaro expansion has been widely used in analyzing the accuracy of ergodic averages 
(i.e., averages with respect to the invariant measure) in stochastic numerical methods [51,52,45,46,53,54,38,27,47]. There-
fore, in this section, we adopt the procedures to verify the second order convergence of the PNHL-N method for certain 
observables.

For a splitting method described by L = Lα +Lβ + · · · +Lζ , its associated effective operator L̂† with stepsize h is given 
by

exp
(

hL̂†
)

= exp
(

hL†
α

)
exp

(
hL†

β

)
. . . exp

(
hL†

ζ

)
, (38)
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which can be computed using the Baker–Campbell–Hausdorff (BCH) expansion and can thus be viewed as a perturbation of 
the exact Fokker–Planck operator L†:

L̂† = L† + hL†
1 + h2L†

2 + O (h3) (39)

for some perturbation operators L†
i .

We also define the invariant distribution ρ̂ associated with the numerical method as an approximation of the target 
invariant distribution ρβ :

ρ̂ = ρβ

[
1 + hf1 + h2 f2 + h3 f3 + O (h4)

]
(40)

for some correction functions f i satisfying 〈 f i〉 = 0, where 〈·〉 denotes the average with respect to the target invariant 
distribution.

Thus, substituting L̂† and ρ̂ into the stationary Fokker–Planck equation

L̂†ρ̂ = 0 (41)

gives (
L† + hL†

1 + h2L†
2 + O (h3)

)(
ρβ

[
1 + hf1 + h2 f2 + h3 f3 + O (h4)

])
= 0 . (42)

Since the exact Fokker–Planck operator preserves the target invariant distribution, i.e., L†ρβ = 0, we obtain

L†(ρβ f1) = −L†
1ρβ (43)

by equating first order terms in h.
We are able to find the perturbation operator L†

1 by using the BCH expansion for any particular integration scheme. 
Then we can calculate its action on ρβ . However, it is generally very hard to solve the above PDE (43) in order to obtain 
the leading correction function f1 (see examples in Langevin dynamics [45]). Note that for symmetric splitting methods, 
including the PAdL scheme (36), f1 is always equal to zero, thereby ensuring second order convergence to the invariant 
measure [27].

Consider now the PNHL-N method (26), which can be written as

exp
(

hL̂†
PNHL-N

)
= exp

(
h

2
L†

X

)
exp

(
hL†

Y

)
exp

(
h

2
L†

X

)
, (44)

where

exp

(
h

2
L†

X

)
= exp

(
h

2
L†

B

)
exp

(
h

2
L†

A

)
, (45)

and

exp
(

hL†
Y

)
= exp

(
h

2
L†

C

)
exp

(
h

2
L†

D

)
exp

(
hL†

O

)
exp

(
h

2
L†

D

)
exp

(
h

2
L†

C

)
. (46)

By using the BCH expansion, we obtain

L†
X = L†

A +L†
B − h

4

[
L†

A,L†
B

]
+ O (h2) ,

L†
Y = L†

C +L†
D +L†

O + O (h2) ,

(47)

where the notation [A, B] =AB −BA denotes the commutator of operators A and B, and subsequently

L̂†
PNHL-N = L†

A +L†
B +L†

C +L†
D +L†

O − h

4

[
L†

A,L†
B

]
+ O (h2) . (48)

Thus the leading perturbation operator of the PNHL-N scheme is

L†
1,PNHL-N = −1

4

[
L†

A,L†
B

]
, (49)

whose action on the invariant distribution of the PNHL system (13) reads (assuming M = I for simplicity)

L†
1,PNHL-Nρ̂β(q,p, ξ) = −β (

pT U (q)p − [∇U (q)]T ∇U (q)
)
ρ̂β . (50)
4
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Recall the Fokker–Planck operator of the PNHL system:

L†
PNHL = −p · ∇q + ∇U (q) · ∇p + ξ∇p · (�(q)p·) − G(q,p)

∂

∂ξ
+ γ̃

∂

∂ξ
(ξ ·) + σ̃ 2

2

∂2

∂ξ2
. (51)

Although in this case the right-hand side of the PDE (43) is relatively simple, it is still very challenging to solve the PDE 
in order to obtain the corresponding leading correction function f1,PNHL-N. However, the additional variable ξ is normally 
distributed with mean zero and variance β−1μ−1. Thus, the variance of ξ will be small if the thermal mass μ is large. 
Therefore, following [27], we consider projecting the Fokker–Planck equation and its solution by integrating with respect to 
the Gaussian distribution of ξ in the ergodic limit. That is, we apply the projection operator [55]

Pν(q,p, ξ) :=
∫
�ξ

ρ̂β(q,p, ξ)ν(q,p, ξ)dξ∫
�ξ

ρ̂β(q,p, ξ)dξ
, (52)

where ν is an arbitrary function, to the PDE (43). Effectively, this leads to the reduced equation

Ľ†(ρβ f̂1) = −ρβP
L†

1ρ̂β

ρ̂β

, (53)

where the operator Ľ†, acting on functions of q and p only, is just the operator L† reduced by the action of the projection. 
In fact, now L†

PNHL is simply reduced to

Ľ†
PNHL = −p · ∇q + ∇U (q) · ∇p , (54)

while the right-hand side is unchanged due to the fact that ξ is not present there. Finally, we can solve the reduced PDE to 
obtain the leading correction function:

f̂1,PNHL-N = β

4
pT ∇U (q) , (55)

which leads to the following proposition:

Proposition 1. For sufficiently large thermal mass, the PNHL-N method (26) exhibits second order convergence for thermodynamic 
averages of certain observables, i.e., in the form of φ(q, p) = p2kϑ(q), where k is an integer and ϑ(q) can be constant.

The class of observables includes kinetic temperature and observables that only depend on the configurations. In other 
words, for those observables, assuming the asymptotic expansion holds, the computed average (in the large thermal mass 
limit) reads

〈φ〉h = 〈φ〉 + h〈φ f̂1〉 + h2〈φ f̂2〉 + · · · = 〈φ〉 + O (h2) , (56)

which is of order two. This is fully consistent with what we have observed numerically for a number of observables in [25]
and which we further verify in the following section.

4. Numerical experiments

In this section, we conduct various numerical experiments, in both equilibrium and nonequilibrium regimes, to compare 
the newly proposed PAdL method with a number of alternative momentum-conserving schemes described in [25].

4.1. Simulation details

We adopted the simulation details used in [25], a standard parameter set commonly used in algorithms tests [30,16,17,
21–23,48]. Specifically, a system of N = 500 identical particles with unity mass was simulated in a cubic box (length L = 5) 
with periodic boundary conditions, unless otherwise stated. Particle density ρd = 4 was used with cutoff radius rc = 1 and 
kBT = 1. The initial positions of the particles were independent and identically distributed (i.i.d.) with a uniform distribution 
over the box, while the initial momenta were i.i.d. normal random variables with mean zero and variance kB T . The potential 
repulsion parameters aij were set to be 25, while a wide range of (effective) friction coefficients (0.5, 4.5, and 40.5) were 
used. Verlet neighbor lists [56] were used in each method.

In our simulations, the thermal mass in PAdL was chosen to be the same as that of PNHL (where γ̃ = 4.5 was used), 
i.e., μ = 10. When comparing different formulations, we have to make sure that similar translational diffusion properties of 
the fluid were obtained. For the PAdL thermostat, we can always tune the value of σ so that the same (effective) friction 
coefficient as in DPD was obtained, i.e., γ̂ = γ . For both the Lowe–Andersen (LA) thermostat [19] and the Nosé–Hoover–
Lowe–Andersen (NHLA) thermostat [23], the stochastic randomization frequency � was set to be 0.44 as in [17,57], which 
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corresponds to the case of γ = 4.5 in DPD. For cases of γ = 0.5 and γ = 40.5 in DPD, we used � = 0.1 and � = 4, 
respectively.

We have observed in [25] that standard DPD methods (including the DPD velocity Verlet method (DPD-VV) [15], Shard-
low’s S1 splitting method (DPD-S1) [21], and the DPD Trotter scheme (DPD-Trotter) [48]) and the Peters thermostat [22]
give almost indistinguishable performance in all the quantities that we have tested. Therefore, the DPD-S1 method was used 
to represent the standard DPD formulation, unless otherwise stated. The PNH thermostat [24] was not included for further 
comparison because of its stability issue at relatively small stepsize, which is well documented in [25]. Since the dynamics 
of the PNHL thermostat is consistent with that of DPD in the low friction regime, both PNHL methods were compared to 
alternatives only in the case of γ = 0.5.

As in [25], we measured the “numerical efficiency”, defined as the ratio of the “critical stepsize” and CPU time per step, 
of each method and then scaled it to the benchmark DPD-VV method, which is widely used in popular software packages. 
The CPU time (in milliseconds) for the main integration step (without calculating any physical quantity) is the time taken 
(on an HP Z600 Workstation with 15.7 GB RAM) with the use of Verlet neighbor lists for the integration of a single time step 
of h = 0.05 (averaged over 10000 consecutive time steps). The critical stepsize was chosen as the stepsize corresponding to 
10% relative error in computed configurational temperature [58–61], an observable function of positions whose average in 
the canonical ensemble is precisely the target temperature:

kBT =
∑

i〈‖∇i U‖2〉∑
i〈∇2

i U 〉 , (57)

where ∇i U and ∇2
i U denote the gradient and Laplacian of the potential energy U with respect to the position of particle i, 

respectively (see more discussions in [25]). We mention that this criterion was not precisely adopted in a recent article 
by Farago and Grønbech-Jensen [62], where they determined the critical stepsize based on the accuracy control of average 
potential energy but compared their results to those obtained from configurational temperature in [25]. We would also like 
to point out that the Nosé–Hoover device employed in PAdL and PNHL is straightforward to implement. In MD simulations, 
the choice of the thermal mass μ can be a technical impediment to using Nosé–Hoover controls, but we have observed 
in [37] and also in the experiments of this article that the addition of stochastic noise changes the nature of the coupling 
parameter and the results obtained are relatively insensitive to its selection.

4.2. Equilibrium

Configurational quantities, such as configurational temperature and average potential energy, were compared in Fig. 1
with (effective) friction coefficient γ = 4.5. According to the dashed order line, we can see that all the methods tested ex-
hibit second order convergence to the invariant measure for both quantities. More specifically, DPD and the LA thermostat 
show rather similar behavior, while the NHLA thermostat is slightly better than those two. Quite remarkably, the newly 
proposed PAdL method (36) achieves one order of magnitude improvement over DPD in terms of numerical accuracy for 
a fixed stepsize. For certain accuracy (i.e., a fixed relative error), the PAdL method can use doubled stepsize, thus substan-
tially improving the “numerical efficiency” defined in [25] (100% efficiency improvement = double the performance). Our 
observations were confirmed in Table 1, which shows that the PAdL method indeed has a more than 130% improvement in 
numerical efficiency over the DPD method. The results on the configurational temperature and average potential energy are 
rather similar, therefore in what follows we present only configurational temperature results.

We also explore in Fig. 2 the performance of various splitting methods of the PAdL system with a fixed value of γ̂ = 4.5. 
All the methods compared clearly display second order convergence to the invariant measure, with ABODOBA and BADODAB 
achieving one order of magnitude improvement in accuracy compared to the other methods. However, it should be noted 
that in ABODOBA, we needed to update the Verlet neighbor lists only once at each step since the update of A at the 
end was directly followed by another update of A at the beginning of next step, whereas one additional update of Verlet 
neighbor lists was required in BADODAB. In our simulation code, the cost of such an update was essentially the same as 
one force calculation, thus the ABODOBA method (36) was used throughout the current article for the PAdL system. This 
again illustrates the importance of optimal design of numerical methods.

Fig. 3 (left) compares the configurational temperature control of various methods in both low and high friction regimes. 
In the low friction regime, where both PNHL methods were included, again all the methods exhibit second order conver-
gence to the invariant measure. The NHLA, PNHL-S, and PAdL methods are rather similar to each other, all of which are 
superior to both DPD and LA methods. The PNHL-N method achieves more than one order of magnitude improvement in 
numerical accuracy over the DPD method. Although the PNHL-N method requires two force calculations at each step, it still 
achieves a more than 80% improvement as shown in Table 2. The table also reveals that the PAdL method has an almost 
50% improvement in performance compared to the DPD method.

In the high friction regime, the behavior of those methods are rather different from that of other regimes. As shown 
in Fig. 3 (right), surprisingly the most popular DPD-VV method is slightly worse than other standard DPD methods. Both 
LA and NHLA are indistinguishable from the DPD method. Superconvergence property (i.e., fourth order convergence to the 
invariant measure) was not observed for the PAdL method in this regime. Nevertheless, the PAdL method still obtains a 
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Fig. 1. Log–log plot of the relative error in computed configurational temperature (left) and average potential energy (right) against stepsize by using 
various numerical methods with (effective) friction coefficient γ = 4.5. The system was simulated for 1000 reduced time units but only the last 80% of 
the data were collected to calculate the static quantity to make sure the system was well equilibrated. Ten different runs were averaged to further reduce 
the sampling errors. The stepsizes tested began at h = 0.05 and were increased incrementally by 15% until all methods either started to show significant 
relative error (100% in configurational temperature or 10% in average potential energy) or became unstable.

Table 1
Comparisons of the computational efficiency of the various numerical methods in the moderate (effective) friction regime of γ = 4.5. “Critical stepsize” is 
the stepsize beyond which the numerical method starts to show pronounced artifacts (10% relative error in computed configurational temperature), while 
“maximal stepsize” is the stepsize stability threshold above which the method is unstable. The “numerical efficiency” of each method was scaled to that of 
the benchmark DPD-VV method. The efficiency figures above quantify the computational work in terms of the number of force computations and correctly 
take into account the fact that all the methods require one force evaluation per timestep with the sole exception of PNHL-N (included only in the low 
friction case, see Table 2) which requires two force evaluations.

Method Critical stepsize Maximal stepsize CPU time Scaled efficiency

DPD-VV 0.05 0.10 19.878 100.0%
DPD-S1 0.05 0.11 20.018 99.3%
DPD-Trotter 0.05 0.11 20.788 95.6%
Peters 0.05 0.11 20.893 95.1%
LA 0.05 0.10 17.808 111.6%
NHLA 0.07 0.13 18.513 150.3%
PAdL 0.13 0.17 22.219 232.6%

Fig. 2. Comparisons of the relative error in computed configurational temperature against stepsize by using various splitting methods of the PAdL system 
with effective friction coefficient γ̂ = 4.5. The format of the plots is the same as in Fig. 1.

dramatic improvement over all other schemes. Table 3 shows that the PAdL method has a more than 190% improvement in 
overall numerical efficiency over the benchmark DPD method.

The control of the dynamical properties of the PAdL method was also tested and plotted in Fig. 4. In particular, we com-
pared two important quantities: the velocity autocorrelation function (VAF) and the transverse momentum autocorrelation 
function (TMAF) [63,64], which characterize the translational and rotational diffusions of the system, respectively. The inte-
gral of the VAF is related to the diffusion constant, while the logarithm of the TMAF is proportional to the shear viscosity in 
the hydrodynamic limit (see more discussions in [25]). Unlike the PNHL formulation, which corresponds to the low friction 
regime, the PAdL system is able to capture the dynamics of DPD in a wide range of friction coefficients—the relaxations 
of the VAF and the TMAF of both formulations are indeed indistinguishable (only visible with the help of the on-center 
symbols).
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Fig. 3. Comparisons of the relative error in computed configurational temperature against stepsize by using various numerical methods with (effective) 
friction coefficient γ = 0.5 (left) and γ = 40.5 (right). Note that two PNHL methods, which correspond to the low friction regime of DPD, were included in 
the former case only. The format of the plots is the same as in Fig. 1.

Table 2
Comparisons of the computational efficiency of the various numerical methods in the low (effective) friction regime of γ = 0.5. The format of the table is 
the same as in Table 1.

Method Critical stepsize Maximal stepsize CPU time Scaled efficiency

DPD-VV 0.05 0.09 19.878 100.0%
DPD-S1 0.05 0.09 20.018 99.3%
DPD-Trotter 0.05 0.09 20.788 95.6%
Peters 0.05 0.09 20.893 95.1%
LA 0.05 0.09 17.808 111.6%
NHLA 0.07 0.11 18.513 150.3%
PNH 0.05 0.08 16.450 120.8%
PNHL-S 0.08 0.17 21.199 150.0%
PNHL-N 0.17 0.23 37.206 181.7%
PAdL 0.08 0.17 22.219 143.1%

Table 3
Comparisons of the computational efficiency of the various numerical methods in the high (effective) friction regime of γ = 40.5. The format of the table 
is the same as in Table 1.

Method Critical stepsize Maximal stepsize CPU time Scaled efficiency

DPD-VV 0.04 0.07 19.878 100.0%
DPD-S1 0.05 0.11 20.018 124.1%
DPD-Trotter 0.05 0.11 20.788 119.5%
Peters 0.05 0.11 20.893 118.9%
LA 0.05 0.11 17.808 139.5%
NHLA 0.05 0.11 18.513 134.2%
PAdL 0.13 0.17 22.219 290.8%

Fig. 4. (Color online.) Comparisons of velocity autocorrelation function (VAF) (left) and transverse momentum autocorrelation function (TMAF) (right) 
between the standard DPD method and the newly established PAdL scheme with three different values of the (effective) friction coefficient. The DPD-S1 
method was used for DPD with a small stepsize of h = 0.01, while h = 0.05 was used for PAdL. 100 and 100,000 different runs were averaged in the cases 
of VAF and TMAF (the wavenumber was chosen as 2π/L), respectively, to reduce the sampling errors after the system was well equilibrated.
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4.3. Nonequilibrium

It is well known that nonequilibrium methods, where a steady state is maintained under external perturbations (either 
stationary fluxes or spatial gradients of some quantities), are more efficient means than equilibrium autocorrelation func-
tions for extracting transport coefficients (e.g., rheological properties such as shear stress and shear viscosity) from fluid 
dynamics simulations (see more discussions in [1]). Thus, there has been a rapidly growing interest in NEMD [7]. For in-
stance, planar Couette flow, where a simple and steady shear flow is generated, is commonly employed as a numerical 
“viscometer” in particle-based methods to obtain transport coefficients [1,7]. Furthermore, due to the fact that it is rele-
vant to many real-life phenomena as well as for its simplicity, planar Couette flow has been widely adopted in laboratory 
experiments.

In order to measure the shear viscosity in lab experiments, a linear profile is often imposed at a fixed shear rate and 
then the resultant shear stress can be measured. However, in computer simulations, simple periodic boundary conditions 
are unable to maintain a steady linear velocity profile, resulting in problems at the boundaries of the simulation domain. 
There have been early attempts to generate momentum or energy flows in MD simulations where particles are made to 
interact with momentum or energy reservoirs (e.g., a velocity profile can be obtained by fixing the average velocity in the 
extremal slabs of a fluid) [65–68]. However, these methods are not compatible with periodic boundary conditions, and thus 
lead to surface effects. Alternatively and more appealingly, one can apply Lees–Edwards boundary conditions (LEBC) [69]
to retain periodicity but alter the position and velocity of the periodic images. In this case, a simple shear flow (with a 
constant shear rate) is generated, which allows the investigation of the dependence of the viscosity on the shear rate [70]. 
LEBC has been extensively studied in DPD and related systems to study rheological behavior in colloidal suspensions [71,
72], polymeric systems [8,14,73], as well as multiphase systems [12] (see more discussions on boundary conditions in DPD 
in [74–76]).

Before we analyze the numerical results obtained by simulating various methods under LEBC (i.e., the system is perturbed 
by a simple shear flow), we first briefly review LEBC and then discuss two important issues in NEMD: (1) the practical im-
plementation of LEBC in DPD and related momentum-conserving systems, where forces are dependent on relative velocities; 
(2) the practical measurement of system temperature in NEMD.

4.3.1. Lees–Edwards boundary conditions (LEBC)
In order to generate a simple shear flow in NEMD, the periodic boundary conditions (PBC) have to be modified. A com-

mon way to achieve that is to apply the well-known LEBC [69]. In LEBC, the primary cubic box (with lengths Lx , L y , and Lz) 
remains centered at the origin, however, a uniform shear velocity profile is expected [7]

u = γ̇ yex , (58)

where ex is the unit vector in the x-direction and γ̇ is the shear rate defined as

γ̇ = dvx

dy
. (59)

LEBC is also called the “sliding brick” boundary conditions. It is important to note that LEBC is applied only in the 
x-direction, while the other directions (y and z) remain with PBC.

Special attention has to be paid in LEBC when a particle is crossing the boundary in the y-direction. In this case, one of 
the images of the crossing particle will enter through the opposite face, but with both position and velocity modified in a 
proper way because of the streaming velocity (58).

The periodic boundary crossing is now handled as follows [1]:

NL = round(qy
i /L y) (60)

qx
i ← qx

i − NLqx (61)

qx
i ← qx

i − Lx · round(qx
i /Lx) (62)

qy
i ← qy

i − L y NL (63)

qz
i ← qz

i − Lz · round(qz
i /Lz) (64)

vx
i ← vx

i − NLγ̇ L y (65)

where NL is the “rounded” number of layers (boxes) between the current position of particle i in the y-direction and the 
origin, and qx is the displacement of the upper layer during the elapsed time t from an appropriate origin, i.e.,

qx = γ̇ L yt . (66)

The minimum image convention should now proceed as follows [1]:
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Fig. 5. Comparisons of the computed velocity profile in DPD with different values of the friction coefficient γ under Lees–Edwards boundary conditions 
with shear rate γ̇ = 0.14 “without” (left) and “with” (right) suitable modification in the relative velocity, respectively. The solid black line is the expected 
linear profile.

NL = round(qy
i j/L y) (67)

qx
i j ← qx

i j − NLqx (68)

qx
i j ← qx

i j − Lx · round(qx
i j/Lx) (69)

qy
i j ← qy

i j − L y NL (70)

qz
i j ← qz

i j − Lz · round(qz
i j/Lz) (71)

Note that when the shear rate is zero, i.e., γ̇ = 0, LEBC reduces to PBC.

4.3.2. LEBC in pairwise thermostats
A recent article of Chatterjee [77] claimed that, owing to the dependence of inter-particle forces on the relative velocities 

of the particles, it is problematic to directly apply LEBC to DPD, especially in the high friction regime. As shown in Fig. 5
(left), where exactly the same setting as in the original article [77] was used, as the friction increases, the velocity profile 
starts to (significantly) deviate away from the target linear profile. A simple remedy is to switch off the interactions of 
dissipative and random forces (i.e., the DPD thermostat) if one particle is within interacting range of an image of other 
particle near the boundaries where adjacent layers have different streaming velocities (i.e., the y-direction), as proposed 
in [77].

However, the finding of [77] directly contradicts the principle of LEBC, which is translationally invariant and is intended 
to overcome the surface effects. In fact, as pointed in [7], in no way can the particles actually sense the boundaries of 
any given box since the system is spatially homogeneous. Furthermore, our numerical experiments, which are in perfect 
agreement with theoretically expected behavior as shown in the right panel of Fig. 5 even in the high friction regime, 
suggest that LEBC might have been incorrectly implemented in [77]. One possibility is that when calculating the relative 
velocity between one particle and an image of another, which is in a layer with different streaming velocity from its origin, 
the original velocity, rather than the “modified velocity” due to the different streaming velocities in different layers, was 
used as the velocity of the image particle. By neglecting the necessary modification, we obtained the left panel of Fig. 5, 
while if the velocity of the image particle was properly modified the expected linear velocity profile was recovered in Fig. 5
(right) using otherwise exactly the same setting.

Overall, it should be emphasized that if one particle is interacting with the image of another under certain conditions, 
the relative velocity (in the x-direction) between them should be modified as follows:

NL = 0 (72)

if (fabs(qy
i j) > L y/2) NL = round(qy

i j/L y) (73)

v̂x
i j = vx

i j − NLγ̇ L y (74)

where function “fabs(·)” returns the absolute value of the argument. Note that: (1) qy
i j in (73) has to be evaluated either 

before the minimum image convention (67)–(71) or by other proper ways to determine the actual distance between two 
interacting particles; (2) vx

i j in (74) is the relative (“absolute”) velocity between the two particles and one has to take into 
account the effects of the streaming velocity as indicated.

We suspect that the necessary modification (72)–(74) was not correctly implemented in [77], resulting in the nonphysical 
behavior as shown in Fig. 5 (left). It is not surprising that by switching off the DPD thermostat on interactions that cross 
certain boundaries would recover the expected linear velocity profile as shown in [77], since it directly avoids the situation 
described in (72)–(74) where special attention has to be paid. Overall, the “workaround” does not provide any physical 
explanation, and could affect the underlying dynamics of the system, implying that it should be abandoned.
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Fig. 6. Comparisons of the relative error in computed configurational temperature against stepsize by using various numerical methods with (effective) 
friction coefficient γ = 4.5 under Lees–Edwards boundary conditions with shear rate γ̇ = 0.2 (left) and γ̇ = 2 (right). The format of the plots is the same 
as in Fig. 1.

Table 4
Comparisons of the computational efficiency of the various numerical methods in the moderate (effective) friction regime of γ = 4.5 under Lees–Edwards 
boundary conditions with shear rate γ̇ = 0.2. The format of the table is the same as in Table 1.

Method Critical stepsize Maximal stepsize CPU time Scaled efficiency

DPD-VV 0.05 0.10 20.212 100.0%
DPD-S1 0.05 0.11 20.618 98.0%
DPD-Trotter 0.05 0.11 21.451 94.2%
Peters 0.05 0.11 21.274 95.0%
LA 0.05 0.10 18.048 112.0%
NHLA 0.07 0.13 18.691 151.4%
PAdL 0.13 0.17 23.103 227.5%

4.3.3. Temperature in nonequilibrium molecular dynamics
Another interesting question in NEMD is that “What is the most appropriate way to measure the system temperature?” 

Since the streaming velocity should be subtracted from the particle velocity before calculating the kinetic temperature, the 
normal definition should be modified as follows [7]:

kB T̂k = 1

Nd

∑
i

mi(vi − u) · (vi − u) , (75)

where Nd is the number of degrees of freedom of the system and u denotes the corresponding streaming velocity at the 
location of particle i (58). In other words, if u = 0, (75) reduces to the standard form.

If we can assume that the velocity profile is linear, as in uniform shear flow, we can just calculate and subsequently sub-
tract it. However, as pointed in [6,7], at higher shear rates and/or Reynolds numbers (i.e., the ratio of the inertial and viscous 
forces), the assumption of a linear streaming velocity profile is extremely dubious, even though Lees–Edwards boundary con-
ditions are used. This issue was addressed in [6,7], where the so-called PUT was proposed. The PUT allows the simulation 
itself define the local streaming velocity (see more details in [6,7,78]). However, this is still not completely satisfactory since 
PUT assumes that the streaming velocity profile is stationary in time, whereas the profile could vary in time.

In DPD and related systems, temperature calculations can be based on relative velocities (e.g., the NHLA thermostat [23]), 
which do not rely on the relationship between the absolute particle velocity and an underlying streaming velocity. As 
discussed in [25], it is more desirable, especially in NEMD, to define the temperature solely based on the configurations, 
which leads to the configurational temperature defined in (57) (see applications in [79,80]). In addition, thermostats based 
on the configurational temperature have been widely used in NEMD with shear flows [81–83]. Therefore, the configurational 
temperature formulation (57) is used in our numerical experiments.

4.3.4. Results
Fig. 6 compares the configurational temperature control of various systems described under LEBC with different shear 

rates. As can be shown from the figure, when the shear rate is relatively small (γ̇ = 0.2, which is larger than that of 
Fig. 5), the behavior is largely similar to that of Fig. 1 (left): all the methods appear to show second order convergence to 
the invariant measure, and the newly proposed PAdL method achieves one order of magnitude improvement in numerical 
accuracy over both DPD and LA methods, both of which are slightly worse than the NHLA method. The overall numerical 
efficiency was compared in Table 4. Again the PAdL method is by far the most efficient method of all, which has an about 
130% improvement over the benchmark DPD-VV method.

When the shear rate is relatively high (γ̇ = 2), as shown in Fig. 6 (right), all the methods appear to lose the clear 
second order convergence previously observed. The LA thermostat, displaying large relative error even when the stepsize is 
relatively small, appears to be most vulnerable to the high shear rate, with the DPD method being slightly better. While 
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exhibiting some unexpected behavior, both NHLA and PAdL have better numerical accuracy control than the other two. It 
can be seen that, as the stepsize increases, the relative error of the PAdL method starts to decrease before growing as would 
be expected. We believe this unexpected decrease at the beginning is due to sampling errors, which is more likely to be 
observed in the high accuracy regime, since increasing the system size (i.e., number of particles) would resolve this issue. 
Nevertheless, the PAdL method consistently achieves an order of magnitude improvement in numerical accuracy over the 
DPD method.

5. Conclusions

The most significant contributions of this article are as follows: (i) the introduction of a new negative-feedback-loop-
controlled formulation of DPD, i.e., the PAdL thermostat, that preserves the dynamical behavior of DPD while enhancing the 
accuracy of averages, and (ii) an analysis explaining the second order convergence of the nonsymmetric PNHL method [25]
for a broad class of observables. We have, additionally, clarified the treatment of Lees–Edwards boundary conditions for 
modeling shear flow. PAdL (and PNHL, in the low friction regime) effectively double the performance of DPD, are easy to 
implement, and rest on a solid foundation of theory and previous numerical experience in the Langevin dynamics context.

PAdL and PNHL use auxiliary dynamical variables (like the “global demon” of Nosé–Hoover dynamics), whose interaction 
with the physical variables is controlled by a coupling parameter. In the deterministic case, the choice of the coupling coeffi-
cient (or “thermal mass”) can be an added complication. However, our previous experience with the Nosé–Hoover–Langevin 
method (as well as in the numerical experiments of this article) has demonstrated that, once stochastic noise is present, the 
character of the parameter dramatically changes, so that the method properties are robust to a much wider range of values.

The key idea that is exploited here in the formulation of PAdL is that the thermostat can correct for numerical errors. 
This builds on the observation of [39] that the discretization error can be interpreted as irreversible work that induces 
effective heating. What is less obvious is that the negative feedback loop controller used here, which introduces additional 
dynamics that also must be discretized, does not distort the invariant distribution, but we surmise that this is a consequence 
of the simple form of this equation and its simple discretization which maintains the form of a discrete control law.

The usefulness of the PAdL scheme will be felt most strongly in simulations that have a strong hydrodynamic character, 
e.g., nonequilibrium systems undergoing shear flow. In other cases, for example, models in the solid or gas states, one would 
expect that Langevin dynamics or the PNHL method described here will be of more value. A secondary benefit of the PAdL 
thermostat which we have not explored in this article, is its ability to correct thermodynamics automatically for errors 
through the computation of the conservative force.

DPD and PAdL would likely have similar ergodic properties which depend on the choice of weight functions and poten-
tials. It will be of interest to explore this issue further in future studies. These choices will also influence the accuracy and 
stability of the numerical methods and thus the potential efficiency improvements available. Exploration is needed of the 
numerical behavior when the potential energies arise from tabled or interpolated data.

It should be noted that the idea of “transverse” DPD [84,33] (i.e., including the transverse component of dissipative 
and random forces) could easily be incorporated into PAdL. The parallelization of the proposed method of PAdL is not 
completely trivial, but is similar to the task of parallelizing Shardlow-like schemes. The problem has recently been addressed 
by Larentzos et al. [85].
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Appendix A. Integration schemes

We list detailed integration steps for each method described in the article here. Verlet neighbor lists [56] are used 
throughout each method.

Symmetric pairwise Nosé–Hoover–Langevin thermostat: PNHL-S

For each particle i,

qn+1/2
i = qn

i + hm−1
i pn

i /2 ,

pn+1/4
i = pn

i + hFC
i (qn+1/2)/2 .

For each interacting pair within cutoff radius (ri j < rc),

pn+2/4
i = pn+1/4

i + mijvij(qn+1/2,pn+1/4, ξn)q̂n+1/2
i j /2 ,

pn+2/4
j = pn+1/4

j − mijvij(qn+1/2,pn+1/4, ξn)q̂n+1/2
i j /2 ,
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where mij = mim j/(mi + m j) and

vij = (
q̂i j · vi j

)(
exp

(
−ξωD(ri j)(h/2)/mij

)
− 1

)
.

For additional variable ξ ,

ξn+1/3 = ξn + hG(qn+1/2,pn+2/4)/2 ,

ξn+2/3 = e−γ̃ hξn+1/3 +
√

kBT (1 − e−2γ̃ h)/μR ,

ξn+1 = ξn+2/3 + hG(qn+1/2,pn+2/4)/2 ,

where

G(q,p) = μ−1
∑

i

∑
j>i

ωD(ri j)
[(

vi j · q̂i j
)2 − kBT /mij

]
and R are normally distributed variables with zero mean and unit variance.

For each interacting pair within cutoff radius (ri j < rc),

pn+3/4
i = pn+2/4

i + mijvij(qn+1/2,pn+2/4, ξn+1)q̂n+1/2
i j /2 ,

pn+3/4
j = pn+2/4

j − mijvij(qn+1/2,pn+2/4, ξn+1)q̂n+1/2
i j /2 .

For each particle i,

pn+1
i = pn+3/4

i + hFC
i (qn+1/2)/2 ,

qn+1
i = qn+1/2

i + hm−1
i pn+1

i /2 .

Nonsymmetric pairwise Nosé–Hoover–Langevin thermostat: PNHL-N

For each particle i,

qn+1/2
i = qn

i + hm−1
i pn

i /2 ,

pn+1/4
i = pn

i + hFC
i (qn+1/2)/2 .

For each interacting pair within cutoff radius (ri j < rc),

pn+2/4
i = pn+1/4

i + mijvij(qn+1/2,pn+1/4, ξn)q̂n+1/2
i j /2 ,

pn+2/4
j = pn+1/4

j − mijvij(qn+1/2,pn+1/4, ξn)q̂n+1/2
i j /2 ,

where

vij = (
q̂i j · vi j

)(
exp

(
−ξωD(ri j)(h/2)/mij

)
− 1

)
.

For additional variable ξ ,

ξn+1/3 = ξn + hG(qn+1/2,pn+2/4)/2 ,

ξn+2/3 = e−γ̃ hξn+1/3 +
√

kBT (1 − e−2γ̃ h)/μR ,

ξn+1 = ξn+2/3 + hG(qn+1/2,pn+2/4)/2 .

For each interacting pair within cutoff radius (ri j < rc),

pn+3/4
i = pn+2/4

i + mijvij(qn+1/2,pn+2/4, ξn+1)q̂n+1/2
i j /2 ,

pn+3/4
j = pn+2/4

j − mijvij(qn+1/2,pn+2/4, ξn+1)q̂n+1/2
i j /2 .

For each particle i,

qn+1
i = qn+1/2

i + hm−1
i pn+3/4

i /2 ,

pn+1
i = pn+3/4

i + hFC
i (qn+1)/2 .
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Pairwise adaptive Langevin thermostat: PAdL

For each particle i,

qn+1/2
i = qn

i + hm−1
i pn

i /2 ,

pn+1/4
i = pn

i + hFC
i (qn+1/2)/2 .

For each interacting pair within cutoff radius (ri j < rc),

pn+2/4
i = pn+1/4

i + mijvij(qn+1/2,pn+1/4, ξn)q̂n+1/2
i j ,

pn+2/4
j = pn+1/4

j − mijvij(qn+1/2,pn+1/4, ξn)q̂n+1/2
i j ,

where,
if (ξn �= 0):

vij = (
q̂i j · vi j

) (
exp(−τ̃h/2) − 1

)+ σ

√
1 − exp(−τ̃h)

2ξnmij
Ri j ,

where τ̃ = ξωD(ri j)/mij and Ri j are normally distributed variables with zero mean and unit variance;
else:

vij = σ
(
ωR(ri j)/mij

)√
h/2Ri j .

For additional variable ξ ,

ξn+1 = ξn + hG(qn+1/2,pn+2/4)/2 .

For each interacting pair within cutoff radius (ri j < rc),

pn+3/4
i = pn+2/4

i + mijvij(qn+1/2,pn+2/4, ξn+1)q̂n+1/2
i j ,

pn+3/4
j = pn+2/4

j − mijvij(qn+1/2,pn+2/4, ξn+1)q̂n+1/2
i j ,

where,
if (ξn+1 �= 0):

vij = (
q̂i j · vi j

) (
exp(−τ̃h/2) − 1

)+ σ

√
1 − exp(−τ̃h)

2ξn+1mij
Ri j .

else:

vij = σ
(
ωR(ri j)/mij

)√
h/2Ri j .

For each particle i,

pn+1
i = pn+3/4

i + hFC
i (qn+1/2)/2 ,

qn+1
i = qn+1/2

i + hm−1
i pn+1

i /2 .
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