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Abstract

In this paper, we propose a deep learning framework for unsupervised motion retar-
geting. In contrast to the existing method, we decouple the motion retargeting process
into two parts that explicitly learn poses and movements of a character. Here, the first
part retargets the pose of the character at each frame, while the second part retargets
the character’s overall movement. To realize these two processes, we develop a novel
architecture referred to as the pose-movement network (PMnet), which separately learns
frame-by-frame poses and overall movement. At each frame, to follow the pose of the
input character, PMnet learns how to make the input pose first and then adjusts it to fit
the target character’s kinematic configuration. To handle the overall movement, a nor-
malizing process is introduced to make the overall movement invariant to the size of the
character. Along with the normalizing process, PMnet regresses the overall movement
to fit the target character. We then introduce a novel loss function that allows PMnet to
properly retarget the poses and overall movement. The proposed method is verified via
several self-comparisons and outperforms the state-of-the-art (sota) method by reducing
the motion retargeting error (average joint position error) from 7.68 (sota) to 1.95 (ours).

1 Introduction
Motion retargeting is the process of applying a source motion to a new target character
with different kinematic configurations. More formally, given a motion sequence of charac-
ter A and kinematic information of another character, B, the goal is to make B imitate the
motion of A so that another motion sequence of B can be generated. For this paper, we as-
sumed that the skeletons have the same topology but different bone lengths and proportions.
Due to its reusability for motion data, motion retargeting has been studied extensively in
computer graphics [9, 11, 23, 34] and robotics [4, 6, 29, 33]. Most existing methods have
formulated motion retargeting as a constrained optimization problem. However, since they
usually rely on motion-specific constraints or manually designed kinematic constraints, these
optimization-based methods cannot generalize to a wide range of motions and characters.

c© 2019. The copyright of this document resides with its authors.
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Recent deep learning based methods [7, 10, 15, 16, 18, 25, 26, 31] have succeeded in
modeling human motion based on training using large-scale motion capture datasets [1, 17].
However, applying the deep learning framework to motion retargeting is challenging because
there is a lack of paired motion data from different characters. Thus, a supervised learning
scheme with the ground truth for the retargeted motion is impractical. Recently, Villegas et
al. [36] proposed a recurrent neural architecture for motion retargeting. By exploiting cycle
consistency [39], the possibility of unsupervised motion retargeting was presented. However,
the resulting motions showed a large number of errors in preserving the pose of the input and
also showed unrealistic motions, such as bodies floating above the ground.

In our study, to address the aforementioned limitations, we propose a novel architecture
referred to as the pose-movement network (PMnet) for unsupervised motion retargeting,
which learns frame-by-frame poses and overall movement separately. Here, the frame-by-
frame pose is referred to as the relative coordinates from the root joint position, while the
overall movement is referred to as the velocity of the root joint [15, 16]. In contrast to previ-
ous work [36], which learns the character motion in a recurrent architecture, we disentangle
the character motion into frame-by-frame poses and overall movement to learn specialized
and complementary representations from them.

The proposed method consists of two parts. The first part learns to ensure that the target
character has a pose similar to the input character. To this end, we propose a novel archi-
tecture consisting of a pose encoder and two mapping networks. At each frame, the pose
encoder encodes the skeleton invariant pose representation, and two mapping networks map
the pose representation to unit quaternions for the target character to adapt to a different
kinematic configuration than the input character. The second part learns to generate the over-
all movement of the target character, which makes the resulting motion seem realistic. To
accomplish this, we propose a movement regressor network and a normalizing process that
make the movement invariant to the size of the character. Then, to ensure that the afore-
mentioned parts work properly, we design a novel training loss. Rather than using cycle
consistency, our training loss consists of the following four loss terms: i) reconstruction, ii)
perceptual pose, iii) motion discrimination, and iv) rotation constraint. By means of the new
loss terms, PMnet implicitly learns to retarget motion while preserving the detailed pose
of the input and making realistic movements. We validate the proposed method via several
self-comparisons and show that it significantly outperforms the previous work, reducing the
motion retargeting error from 7.68 to 1.95 in the same experimental setup.

2 Related Works

2.1 Motion Retargeting

To adapt the motion from source to target, Gleicher [11] formulated a spacetime constraint
problem, then solved it numerically. Lee et al. [23] decoupled the motion retargeting prob-
lem, which solved the inverse kinematics problem for each frame and then adjusted multi-
level B-spline curves for smooth results. Choi et al. [9] presented online motion retarget-
ing technique by solving inverse kinematics problem under constraints and computing the
changes in joint angles at each frame. Tak et al. [34] proposed per-frame motion retarget-
ing framework which incorporates both kinematic constraints and dynamic constraints into
Kalman filter formulation. Motion retargeting techniques can be applied to adapting motions
from humans to humanoid robots [4, 6, 8, 28, 29, 30, 32]. While retargeting human mo-
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tion onto humanoids additionally requires considerations, they are basically based on opti-
mizations to meet specified constraints [4]. The aforementioned methods have limitations in
applying to large scale motion data since they relied on optimizations with motion-specific
constraints or manually designed kinematic constraints. Shon et al. [33] proposed Gaus-
sian Process model to learn common latent structure shared between sets of motion capture
data and corresponding poses from a humanoid robot, presenting robotic imitation of human
poses. But, this method requires a set of paired training data from two domains.

Recently, instead of numerical approaches, data-driven approaches based on deep learn-
ing framework have been proposed. Jang et al. [19] proposed a deep learning framework
that can produce 27 variations of the source motion with a set of different levels of arms,
legs, and torso lengths. However, this method requires fully-supervised training from the
corresponding data pairs based on [22]. Furthermore, it requires post-optimization process
for the latent variable to meet the valid kinematic consistency. Villegas et al. [36] proposed
Neural Kinematic Network with forward kinematics layer and cycle consistency [39] based
objectives, which suggested the possibility of unsupervised motion retargeting. However, the
quality of resulting motion has still room for improvement.

2.2 Human Motion Modeling
Modeling human motion is a long standing problem in computer vision and machine learn-
ing. Early works used Restricted Boltzmann Machines [35], Markov Models [24] and Gaus-
sian Process [13, 38], but limited to small scale of motions. The most common strategy in
recent years is a data-driven approach where postures are reconstructed based on large-scale
motion capture datasets [1, 17]. Specifically, deep learning based methods have succeeded
in synthesizing or predicting plausible human motions [7, 15, 16, 25]. However, these meth-
ods can not be applied to motion retargeting because they require re-projection onto kine-
matic constraint to avoid invalid bone length configuration as they regress on joint positions.
Several works have used human poses described through 3D joint rotations [10, 18, 26],
which used the angle loss so that they were vulnerable to small angle errors at the root joint.
Pavllo et al. [31] represented rotations with unit quaternions and presented loss function
which performs forward kinematics on a skeleton to penalize position errors instead of angle
errors. However, these methods are not applicable when joint angles are not given and only
joint positions are observed.

3 Methodology
Let xA

1:T be a source motion performed by the character A, given as T frames of 3D joint
positions. Motion retargeting is the process of generating the motion xB

1:T which is the same
action sequence performed by another character B. Assuming that the kinematic configura-
tion of the target character is given as a T-pose skeleton, namely, re fB, Villegas et al. [36]
formulated motion retargeting problem as outputting 3D rotations for each joint parameter-
ized by unit quaternions and applying them to re fB. To this end, forward kinematics layer was
presented to compute the resulting joint positions from the joint rotations and re fB. Resulting
Neural Kinematic Network (NKN) with forward kinematics layer was trained based on cy-
cle consistency objectives and suggested the possibility of unsupervised motion retargeting.
However, NKN shows unsatisfactory results in preserving the details of input motions, and
it even shows unrealistic motions such as body floating or sinking when input motions have
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Figure 1: Overview of the proposed method.

dynamic movements. This is because cycle consistency is insufficient to capture the proper
pose representation. Also, there is a lack of consideration for the overall movements of the
character. Our research focuses on solving the aforementioned problems.

The motion capture data is often decomposed into two parts, the relative coordinates
from the root joint position and the the root joint’s velocities and direction (rotation with
respect to the axis perpendicular to the ground) [15, 16]. In this paper, we viewed the former
as frame-by-frame poses and the latter as a overall movement.

As shown in Figure 1, the input motion data xA
1:T is decomposed into frame-by-frame

poses pA
1:T and the overall movement vA

1:T (see [16] for more details). Then, we decouple
the process to handle the pose and the movement separately for the purpose of extracting
different and complementary meanings. At each frame t, the proposed method outputs the
unit quaternions qB

t ∈ R4N , which represent the 3D rotations for each joint of the character
B, from the input pose pA

t ∈ R3N of A and the target T-pose skeleton of B, re fB ∈ R3N ,
where N is the number of joints. To make the target character B follow the pose of the input
character A in good shape, we present a novel architecture that successfully encodes the
skeleton invariant pose representation from the pose (see Section 3.1). The retargeted pose
of the character B, pB

t , is then computed by applying qB
t to re fB using forward kinematics

(FK) layer. When processing the overall movement, on the other hand, the temporal context
must be grasped. Therefore, vB

1:T , the movement of the target character, is regressed from the
entire input movement vA

1:T to capture the character’s overall movement. (see Section 3.2).
Then, the retargeted motion xB

1:T can be computed by combining the obtained frame-by-
frame pose and the overall movement of the character B. Note that learning proceeds in an
unsupervised manner, i.e., there is no ground truth for the retargeted motion xB

1:T . To this
end, we further introduce a novel unsupervised learning scheme which allows the model to
retarget motions while maintaining good pose and overall movement (see Section 3.3).

3.1 Architecture for Pose Retargeting
In this section, we present an architecture that produces the unit quaternions qB

t to make the
target character B follow the pose of the input pA

t at each frame. This is challenging because
there is no ground truth for pB

t , so we can not give a guide to what pose B should take. The
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key insight to tackle this problem is to learn how to reconstruct pA
t first, then make minor

modifications to fit with B.
Auto-encoders have shown reliable results for unsupervised feature learning [14, 37].

Similarly, we present the auto-encoding phase to reconstruct the input pose pA
t . To encode

the pose representation from pA
t , we present a pose encoder FP. That is,

ϕ
A
t = FP(pA

t ;WP), (1)

where WP denotes the connection weights of the pose encoder. The pose representation ϕA
t

from the pose encoder conveys shape information about the pose at t frame. Then, a mapping
function Fq is introduced to map the pose representation ϕA

t to the quaternion space. After
the mapping, the output is normalized because it must be defined as unit quaternions to
represent the 3D rotations as follows,

qA
t =

Fq(ϕ
A
t ;Wq)∥∥Fq(ϕA

t ;Wq)
∥∥

2

. (2)

Here, qA
t represents the rotation to make the pose of A. Then, to make modifications to

fit with B, another mapping function F∆ is presented. F∆ outputs the modifications on the
quaternion space from the pose representation ϕA

t and the T-pose skeleton re fB as follows,

∆q =
F∆(ϕ

A
t ,re fB;W∆)∥∥F∆(ϕ
A
t ,re fB;W∆)

∥∥
2

. (3)

In the quaternion space, the product of two rotation quaternions q1 and q2, called the Hamil-
ton product, represents the rotation equivalent to the rotation of q1 followed by the rotation
of q2. That is, qB

t , modified version of qA
t by ∆q, can be expressed as a hamilton product of

two quaternions. Then, the retargeted pose pB
t can be obtained as follows,

qB
t = qA

t ⊗∆q, (4)

pB
t = FK(qB

t ,re fB). (5)

By learning to reconstruct pA
t by applying qA

t to re fA using FK layer, what rotations qA
t

makes the desired pose can be learned. Thus, learning the subtle changes in qA
t is much easier

than learning from a zero base (see Section 3.3).

3.2 Architecture for Movement Retargeting

In this section, we present an architecture which handles the overall movement. Unlike the
pose, the temporal context must be grasped. To this end, we present a movement regressor
FM which regresses the entire input movement vA

1:T ∈ R4T . Recent studies suggest that con-
volutional models empirically outperform recurrent models [5, 20, 27]. In our work, FM is
realized by 1D convolutions on the time sequence.

Since the overall movement contains the x, y, z velocities of the root joint, it is affected
by the size of the character, e.g., for the same walking motion, the adult step is faster than
the child step. To capture the scale invariant information about the overall movement, the
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overall movement is normalized with respect to the scale of the character before fed into the
movement regressor FM . The scale factor S of the character is defined as follows,

S =
1
Ns

∑
i∈H

d(i, parents(i)), (6)

where Ns be a scaling coefficient that adjusts S not to be too large, H be a set of joints
whose elements are Root, Spine 0,1,2, Neck, LeftUpLeg, LeftLeg and LeftFoot, and d(i, j)
denotes the L2 distance between i and j. Then, normalizing is done by dividing the x,y,z
velocities (except the rotation) by the corresponding scale factor. As shown in Figure 1, vA

1:T
is normalized to nvA

1:T with respect to its scale factor SA then the movement regressor FM
regresses the scale invariant overall movement nvB

1:T from nvA
1:T . That is,

nvB
1:T = FM(nvA

1:T ;WM). (7)

Similarly, nvB
1:T is then denormalized to vB

1:T by multiplying the scale factor SB to the x, y, z
velocities in nvB

1:T .

3.3 Unsupervised Training for Motion Retargeting
In this section, we present the training loss which allows the aforementioned parts to work
properly. Our loss consists of four parts:

i) Reconstruction Loss. First, the model learns to reconstruct pA
t by applying qA

t to re fB
using FK layer. By minimizing the reconstruction error, FP learns to encode the meaningful
pose representation ϕA

t while Fq learns what rotations qA
t makes the desired pose given ϕA

t .
The reconstruction loss for the entire T frames is defined as follows,

Lrecon = ∑
t

∥∥pA
t −FK(qA

t ,re fA)
∥∥2

2. (8)

Additionally, meeting the end-effector positions may be critical to make the pose similar. In
our work, joints that affect the end-effector positions have double the weight to the loss.

ii) Perceptual Pose Loss. By Eq. (8), the rotation qA
t makes the desired pose of A. B

should be the same pose of A but minor modifications are needed because of the different
kinematic configuration. To this end, we present the perceptual pose loss exploiting the pose
encoder FP. We feed the retargeted pose pB

t into FP then penalize the pose representation
ϕB

t to be close to the pose representation of A, ϕB
t . As learning proceeds to minimize the dif-

ference between the pose representations, the pose encoder FP learns to encode the skeleton
invariant pose representation. Then, the modifications coming from the different kinematic
configuration can be encoded in ∆q. In our experiments, we minimize the L2 distance be-
tween the pose representations and use λp = 5. That is,

Lpose = λp
∥∥ϕ

A
1:T −ϕ

B
1:T

∥∥2
2. (9)

iii) Motion Discrimination Loss. Now, we present the loss term that penalize to make
the retargeted motion xB

1:T look realistic. We define the mean point trajectory m̄1:T where
m̄t = mean(xt)∈R3, i.e., the mean position of all joints. Then, m̄A

1:T and m̄B
1:T are normalized

with respect to its corresponding scale factors computed by Eq. (6). To avoid the unrealistic
motion such as body floating or sinking, we make these normalized mean point trajectories
be similar to each other. Exploiting the adversarial training [12], we present the motion
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discriminator D( . ;WD) which discriminates the normalized mean point trajectories. Then,
PMnet is trained to fool the discriminator as follows,

Lmotion = λmEx∼pB(x)

[
log

(
1−D

(
m̄B

1:T
SB

))]
, (10)

where x ∼ pB(x) means the sampling from the distribution of retargeted motion generated
by the proposed method and λm = 2 is used as a balancing parameter.

iv) Rotation Constraint Loss. The last term in our loss aims to limit the rotation angles
to be within a certain range, which avoids the excessive bone twisting.

Lrot = λr

(∥∥max(0, |eulery(qA
1:T )|−α)

∥∥2
2 +

∥∥max(0, |eulery(qB
1:T )|−α)

∥∥2
2

)
. (11)

As in [36], eulery(.) denotes the rotation angle around the plane parallel to the bone (i.e.,
y-axis). In our experiments, λr = 10 and α = 100◦ are used.

Finally, the total loss is defined by the summation of all four loss terms as follows,

Ltotal = Lrecon +Lpose +Lmotion +Lrot . (12)

The training proceeds end-to-end, which updates the whole network parameters WP, Wq, W∆,
and WM and the discriminator parameter WD iteratively. As in [36], when constructing a mini
batch, we chose the same character to the inputs with probability of p = 0.5 for training
stability. We used the Adam optimizer [21] with a batch size of 16 and a learning rate of
0.0001 then trained the model for 15000 iteration.

3.4 Implementation
We used TensorFlow [3] for implementation. The pose encoder FP and two mapping net-
works Fq and F∆ are realized by fully-connected (fc) layers while the movement regressor
FM and the discriminator D are realized by 1D convolution (1DConv) layers. The detailed
architectures are reported in Table 1. The source code is available at https://github.
com/ljin0429/PMnet.

4 Experiments
We evaluated the motion retargeting capability of the proposed PMnet on the Adobe Mixamo
dataset [2] and compared the results with the state-of-the-art method (NKN [36]). The NKN
results were obtained using the code released by the authors. We also compared the results
with the most trivial approach for motion retargeting which directly copies the input quater-
nions and velocities (Copy). For fair comparison, we followed the same experimental setup
as described in NKN. The training set consisted of 1650 non-overlapping motion sequences
for 7 characters. For training, we used randomly sampled 2-second clips (60 frames). For
testing, we evaluated the methods on 185 scenarios. Each scenario involved retargeting the 4-
second clip (120 frames) of the motion sequence. The ground truths of the testing sequences
were also collected for quantitative evaluation. For quantitative evaluation, we evaluated a
target character-normalized mean square error (MSE) on the joint positions throughout the
entire sequences, which is the same metric presented in NKN. For qualitative evaluation,
we visualized the results by rendering the animated 3D characters. Further, we validated the
proposed method through several self-comparisons.
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Table 1: Detailed architecture for FP, Fq, F∆, FM and D. We used the leak rate of 0.2 for
leaky ReLU and applied dropout for the whole network with the keep probability of 0.8.
Please visit https://github.com/ljin0429/PMnet for more details.

Name Layer Number of Neurons Activation
input 66 -

fc 512 ReLU
FP fc 512 ReLU

fc 512 ReLU
fc 512 ReLU

Fq input 512 -
fc 88 -

F∆ input 512 -
fc 88 -

Name Layer Kernel Stride Channel Depth Activation Length
input - - 4 - 60

FM 1DConv 3 1 128 leaky ReLU 60
1DConv 3 1 4 - 60

Input - - 3 - 60
1DConv 4 2 16 leaky ReLU 30
1DConv 4 2 32 leaky ReLU 15

D 1DConv 4 2 64 leaky ReLU 8
1DConv 4 2 128 leaky ReLU 4
1DConv 4 2 1 - 1
output - - 1 sigmoid 1

4.1 Self-comparisons
In order to validate the effectiveness of the proposed method, we compared the PMnet with
the following four variants: wPP-PMnet, wM-PMnet, wR-PMnet, and eqR-PMnet. In wPP-
PMnet, Lpose was omitted while, in wM-PMnet, Lmotion was omitted. Then, we investigated
the effectiveness of reconstruction. We omitted Lrecon in wR-PMnet and used the equal
penalty for all joints when computing Lrecon in eqR-PMnet.

As shown in Table 2, the four variants of PMnet also achieved higher performances than
NKN and the Copy baseline. This demonstrates that the proposed PMnet architecture is ef-
fective for learning about the pose and movement for motion retargeting. The results of wPP-
PMnet showed increased error compared with PMnet, reflecting that the perceptual pose loss
Lpose contributes to making the proper modifications to fit with the target character. Without
Lmotion in wM-PMnet, there is no guide for retargeting the overall movement properly, which
results in increased motion retargeting error. Without Lrecon, as expected, wR-PMnet shows
significant performance degradation. This means that the proposed scheme, which learns to
reconstruct A first and then modify it rather than directly learning B from a zero-base, is ef-
fective. In addition, we confirmed that more weights to the joints that affect the end-effectors
when computing Lrecon results in a slight improvement to the performance as compared with
eqR-PMnet.

https://github.com/ljin0429/PMnet
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Figure 2: Qualitative comparisons. We present two motion retargeting results, from Mutant
to Liam (left) and from Big Vegas to Malcolm (right). The number in orange on the upper
left indicates the frame number.

4.2 Qualitative and Quantitative Comparisons

We confirmed that the proposed PMnet is capable of retargeting motion and significantly
outperforms NKN, as shown in Table 2. For the NKN results, we listed both the performance
we achieved using the provided code and the performance reported in their paper. PMnet
showed superior performance (1.95) to all the others, reducing the error by 74.6% compared
with NKN (7.68) and 78.3% compared wiht the Copy baseline (9.00).

Figure 2 shows the qualitative results of PMnet and NKN. We present the results from
two testing sequences. The number in orange on the upper left indicates the frame number.
As shown in the left sequence, unlike NKN, PMnet preserved the details of the input mo-
tion well, including the motion of the legs and tilt of the body. This demonstrates that our
model is capable of encoding good pose representation and making proper modifications to
adapt it to different kinematic configurations. Further, NKN showed unrealistic movements
(floating body) as can be seen in the right sequence. Even in this case, PMnet also showed
reliable results, which demonstrates the effectiveness of the proposed movement regressor
with normalizing and denormalizing processes.

Figure 3 shows the overall movement from PMnet, NKN, and the ground truth where
(a)-(c) depict the x, y, z velocities of the root joint and (d) depicts the rotation of the root
joint. The overall movement of PMnet is much more similar to the ground truth, suggesting
that the resulting motion from PMnet looks more realistic, as shown in Figure 2.
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Table 2: Quantitative results on Mixamo dataset [2]. For the NKN results, the numbers on
the left are the results of our experiments using the code provided from the authors, and the
numbers in brackets indicate the performance reported in their paper.

Method MSE Notes
10.50 (10.25) Auto-Encoder

NKN (CVPR’18) [36] 7.68 (8.51) Cycle loss
8.87 (7.10) Cycle + Adv loss

Copy 9.00 Copy input quaternions and velocities
wPP-PMnet 2.54 without Lpose
wM-PMnet 2.79 without Lmotion
wR-PMnet 2.99 without Lrecon
eqR-PMnet 2.15 equal weights for Lrecon

PMnet 1.95 Ours

(a) 𝑥𝑥-velocity (b) 𝑦𝑦-velocity (c) 𝑧𝑧-velocity (d) rotation

Figure 3: Plots for the overall movement where the horizontal axis represents the frame
sequence and the vertical axis represents the corresponding velocity and rotation values. We
present the larger plots at https://github.com/ljin0429/PMnet.

5 Conclusion
In this paper, we proposed a new unsupervised motion retargeting framework based on learn-
ing disentangled meanings of pose and movement. Our contributions can be summarized as
follows: 1) We decoupled motion retargeting process into two parts, where the first part gen-
erates the pose of the target character in each frame and the second part regresses the overall
movement. 2) To generate the target pose, a novel architecture for obtaining quaternions
of the input and modifying it using the Hamilton product was proposed. 3) The movement
regressor along with normalizing and denormalizing processes was proposed to generate
realistic movements. 4) A new training loss was designed to afford our deep network the
capability to generate a target motion that mimics the input pose well and shows realistic
movements. The experiments show compelling results, illustrating that the proposed method
significantly outperforms the state-of-the-art method qualitatively and quantitatively.
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