Hybrid approach to predict the track deterioration in a railway in-service
Oliveira De Melo, Andre; Kaewunruen, Sakdirat; Papaelias, Mayorkinos

License:
Creative Commons: Attribution (CC BY)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 21/06/2019

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
HYBRID APPROACH TO PREDICT THE TRACK DETERIORATION IN A RAILWAY IN-SERVICE: A CONCEPTUAL DESIGN
Andre L. O. de Melo^{1, 3}, Sakdirat Kaewunruen^{1, 3}, and Mayorkinos Papaelias^{2, 3}

¹Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
²School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, United Kingdom
³Birmingham Centre for Railway Research and Education, School of Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom

ABSTRACT

The track supports the loads of the railway vehicles and guides their movements. Its excellence determines the permissible wheel load, speed, safety and reliability of the rail operation. None railway can expect to survive in a competitive economy if its track is an obstacle to safety, reliability and proper service. The effects of all adverse features on the track are cumulative and track components require a routine of attention and renewal at frequent intervals. If the permanent way is not perfectly levelled and aligned, irregularities cause oscillations or vibrations of the train, which can cause discomfort to the passenger and damage to the freight, and the worst: a catastrophic accident. In planning a new track or improving one in-service, it is important to be able to predict the probable asset deterioration rate as a function of the variables related to the train and its periodicity. This may contribute significantly in planning, engineering, operational, and maintenance activities. The aim of this paper is to present a conceptual design of a hybrid numerical and experimental approach to predict the track deterioration in a railway in-service based on empirical-mechanistic and probabilistic theories.

Corresponding Author: Andre L. O. de Melo