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Confidence in metabolite identification dictates the applicability of metabolomics to regulatory 
toxicology
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Highlights:
 Confidence in metabolite identification surveyed across toxico-metabolomic studies.
 Mapped regulatory use cases of metabolomics to confidence required for identification.
 Recommendation to more extensively describe and report metabolite identification.
 Deeper identification of metabolomes of toxicological test species also recommended.
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Abstract

The strength of omics technologies in toxicology is their ability to identify pathways of toxicity. While 
pathway discovery is not required for chemical risk assessment, it can generate molecular biomarkers 
that accelerate the use of molecular assays in regulatory toxicology. For metabolomics, this 
application is limited by the challenge of metabolite identification. Here we construct a framework 
around the confidence-in-identification of metabolites and molecular pathways, and map multiple 
toxico-metabolomics studies to this framework. This reveals that few studies achieve the highest level 
of confidence defined by the Metabolomics Standards Initiative. However, we argue that the level of 
confidence required is dependent on the regulatory application. For some, such as chemical grouping, 
current practices can suffice, while other applications require a more rigorous approach to metabolite 
identification.
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1. Introduction 

In 2007 the U.S. National Research Council published Toxicity Testing in the 21st century: A Vision 
and a Strategy [1,2], marking the start of a paradigm shift in toxicity testing from observational studies 
in vertebrate animals towards high-throughput predictive approaches incorporating mechanistic 
information from in vitro studies [3,4]. This shift has in part been driven by the growing backlog of 
chemicals requiring safety assessments and the recognition that animal testing is slow, costly and 
ethically inappropriate [5,6]. In consequence, novel higher-throughput, higher-information-content 
approaches are needed in regulatory toxicology to better assess the potential hazards of industrial 
chemicals and biocides [7,8]. Omics technologies, including transcriptomics, proteomics, 
metabolomics and lipidomics, have been highlighted as promising tools for this purpose, most recently 
by regulatory bodies [9–11]. The strength of omics technologies lies in their ability to provide 
mechanistic information to help identify pathways of toxicity [5]. Ultimately, the discovery and 
incorporation of molecular mechanistic information into regulatory toxicology, while not a requirement 
for setting hazard thresholds, could have multiple benefits: improved chemical grouping (based on 
similarities of molecular responses to chemicals), accelerated use of pathway-based approaches (e.g. 
adverse outcome pathways), and reduced costs [5,12]. Importantly, it could also help reduce 
vertebrate animal testing, as mechanistic information could in part be derived through in vitro testing 
and extrapolated to humans through modelling approaches [13].

During workshops organised by the European Chemicals Agency in April 2016 [10] and European 
Food Safety Authority in April 2018 [9], attention was drawn to the contributions that metabolomics 
has and could increasingly make to regulatory toxicology. Metabolomics refers to the application of 
analytical and bioinformatic tools to enable an untargeted characterisation of the low molecular weight 
biochemicals (typically <1500 Da) that are present in biological fluids, cells and/or tissues [14,15]. 
Undoubtedly, a growing number of researchers in academia and industry are employing this omic 
technology to investigate the effects of chemicals in a variety of species [16–20], but its uptake into 
regulatory toxicology is still minimal compared to the application of transcriptomics (or gene 
expression profiling). This review addresses the question as to how effective metabolomics is for the 
challenges associated with toxicity testing in the twenty-first century, with a focus on metabolite 
identification. Other factors to improve its utility to discover molecular mechanisms, but beyond the 
scope of this article, include the need to improve analytical sensitivity and throughput, as well as to 
study time courses of metabolic perturbations induced by chemicals. One of the principal motivations 
for its use in toxicology is that metabolomics measures - with high information content - the most 
downstream molecular phenotype of a cell or organism, i.e. metabolomics provides a molecular 
readout that can be most directly associated with more traditional adverse outcomes (or ‘apical 
endpoints’) used in regulatory toxicology. Consequently, adverse perturbations in the metabolome 
(i.e. ‘metabolic biomarkers’) can in principle be more directly interpreted as functional observations of 
toxicity, while also providing insights into the mode of action of a chemical [12,21].

Practically, an optimal workflow that uses omics technologies to characterise pathways of toxicity 
would comprise ofinclude an exposure study, omics data generation and analysis, extensive and 
robust identification of the molecular entities (genes expressed, metabolites perturbed, etc.), pathway 
enrichment analysis of these molecular perturbations, and then using knowledgebases to help 
associate the perturbed molecular pathways to downstream adverse outcomes such as 
carcinogenesis, mutagenesis or reproductive dysfunction. Transcriptomics studies in human health, 
with robust gene identification coupled with extensive systems biology knowledgebases (such as 
Ingenuity Pathway Analysis® and MetaCoreTM), are increasingly achieving this optimal workflow [22–
24]. This is not yet the case for metabolomics, however, for which definitive metabolite identification of 
thousands of heterogeneous metabolites remains a significant bottleneck [25,26]. Consequently, the 
development of new strategies for metabolite identification, including a diverse range of hyphenated 
analytical platforms using gas chromatography, liquid chromatography, mass spectrometry and/or 
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nuclear magnetic resonance spectroscopy, is an active research field [27,28]. Given the central 
position of ‘robust identification of the molecular entities’ in the optimal workflow introduced above, it 
should immediately be evident that this represents a potentially serious impediment to the application 
of metabolomics data to regulatory toxicology, which we explore further below.  

2. Levels of confidence in identification of metabolites and pathways

The importance of defining and reporting the confidence in metabolite identification has been widely 
recognised by the metabolomics community for over a decade, with the international  Metabolomics 
Standards Initiative (MSI) originally proposing 4 levels of confidence (Table 1) [29]. Amendments to 
these levels of confidence have since been proposed [30–32]. The confidence in identifying pathways 
of toxicity using metabolomics increases from MSI levels 4 through to 1, and could be further 
increased by identifying several metabolites within the perturbed biochemical pathway (effectively a 
weight-of-evidence approach), and increased still further by identifying both metabolites and genes in 
that pathway (Figure 1). Such a multi-omics ‘triangulation’ of both upstream gene expression and 
downstream function of metabolites and lipids would not only help to substantiate the identities of the 
molecular entities (i.e. correlated changes in GSH and GSH synthetase gene expression) but would 
provide greater confidence in the importance of a particular biochemical pathway in response to a 
chemical.

Table 1. Levels of confidence in metabolite identification as originally defined by the international Metabolomics 
Standards Initiative [29].

MSI level Descriptor Criteria

1 Identified 
metabolite 

Requires that two or more orthogonal properties (e.g. 
chromatographic retention time, accurate m/z, mass fragmentation 
pattern, and/or NMR chemical shift) of the experimentally measured 
metabolite matches that of an authentic chemical standard, both in 
the same laboratory and using the same method of data acquisition. 
Documented spectral evidence to validate the metabolite identification 
should be provided.

2 Putatively 
annotated 
metabolite 

Experimentally measured metabolite matches characteristic 
physicochemical properties of a known metabolite, and/or has similar 
spectra to those of a known metabolite within public/commercial 
libraries; does not require a chemical reference standard. 
Documented evidence should be provided.

3 Putatively 
characterised 
metabolite 
class

Experimentally measured metabolite matches characteristic 
physicochemical properties of a known chemical class of metabolites, 
and/or has similar spectra to those of a known chemical class of 
metabolites within public/commercial libraries; does not require a 
chemical reference standard. Documented evidence should be 
provided.

4 Unknown 
metabolite 

Metabolites that fall outside the thresholds required for levels 1-3, yet 
can still be differentiated and (relatively) quantified based upon 
spectral data.

Given this gradient from unknown metabolite through to the optimal of known identification of genes 
and metabolites within a pathway, the question must be asked as to what level of confidence is 
required for a metabolomics dataset to address a specific regulatory need in toxicology. Arguably, 
even without definitive identification of the molecular entities, omics technologies can contribute (albeit 
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with less confidence) to the discovery of mode(s)-of-action (MoA) of a chemical, for example by 
pattern matching the response of a new chemical to a library of responses to known chemicals 
(discussed below). Here we construct a framework around this confidence-in-identification (CII) axis 
(Figure 1) that maps the CII to particular regulatory applications. We also map existing metabolomics 
studies in toxicology to this framework. This exercise highlights where existing metabolomics methods 
can contribute to regulatory applications now, and which applications are reliant upon the 
development of more robust metabolite identification and pathway synthesis tools.

Figure 1. Confidence-in-identification (CII) framework spanning the identification of individual metabolites 
(according to the original Metabolomics Standards Initiative levels 1-4) and molecular pathways. We propose the 

confidence levels required when metabolomics is applied to several regulatory toxicology use cases.

3. Mapping confidence-in-identification to regulatory applications in toxicology

Regulatory applications within toxicology that may benefit from the application of metabolomics (and 
metabolic biomarkers) include chemical grouping and read-across, screening (or prioritisation) of 
chemicals for extensive hazard testing, derivation of benchmark doses and health thresholds, and 
cross-species extrapolation of toxicity pathways (or ‘biological read-across’), as recently identified by 
the MEtabolomics standaRds Initiative in Toxicology (MERIT) consortium [33]. Here we critically 
examine these and related use cases in the context of the minimal requirements for metabolite 
identification, drawing upon the recent literature.

https://paperpile.com/c/E7ai60/r21v
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Chemical grouping is based upon a notion that chemicals with similar structure and/or 
physicochemical properties have similar (eco)toxicological properties. Consequently, if a chemical is 
‘data-poor’ (i.e. minimal or no toxicity measurements have been made), it is possible to interpolate or 
extrapolate toxicity data from structurally-similar data-rich substances to fill information gaps; this 
approach is known as ‘chemical read-across’ (Figure 2). Even though this approach is widely 
employed, it seems imprudent to ignore the existence of so-called ’activity cliffs’ for which the imputed 
toxicity data is grossly in error and leads to inaccurate safety assessments [34]. It is increasingly 
acknowledged that grouping chemicals not only on their structure but also incorporating biological 
response data could be an effective strategy for chemical read-across [34,35]. van Ravenzwaay et al. 
[35,36] have incorporated biological information, derived from metabolomics studies, into chemical 
grouping and read-across by building a library of metabolic responses to chemicals (BASF MetaMap® 
Tox). The proprietary library houses the plasma metabolic responses of rats exposed to several 
hundred individual chemicals, many with known MoA. Metabolite profiles from data-poor chemicals 
can be screened against this library to determine which library chemicals they most resemble, forming 
a chemical group for read-across of apical toxicity endpoints. Their approach also offers a possibility 
to refine and reduce animal testing. 

Figure 2. Two approaches for forming groups (or categories) from a series of individual chemicals. At the top of 
the figure, the grouping is based upon the similarity of the chemical’s molecular structures or other physico-
chemical properties. At the bottom, biologically-based chemical grouping is based on the similarities of the 

molecular responses to chemical exposure. In the hypothetical example, two groups are formed (dependent on 
the decision threshold) for structure-based grouping, while three groups are formed based on the similarity of the 

metabolic responses (identified to MSI level 4 or higher). Group membership can then be used to read-across 
toxicity (e.g. an adverse outcome) from one chemical in the group to all other chemicals.

With regard to the CII required for chemical grouping, the initial process employed by van 
Ravenzwaay et al. [35] does not require identification of each metabolite to demonstrate similarities in 
toxicological responses. Each plasma metabolite profile is compared to metabolic profiles of 
chemicals in the library in a pairwise manner. However, in subsequent processing, metabolites with 
high confidence identifications (‘anchor metabolites’) can be compared to ensure that they change 
intensity in the same direction in response to the test chemical and library chemical(s). Anchor 

https://paperpile.com/c/E7ai60/VlCw
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metabolites are considered essential components of a particular biochemical pathway and MoA. This 
identifies where on the CII axis this application of metabolomics currently sits, namely a combination 
of MSI level 4 for profile matching and level 1 to anchor to a MoA. Arguably, if the regulatory need 
was solely to group chemicals according to their biological responses, MSI level 4 descriptions of the 
metabolites should suffice. This still requires that the spectral data provides (relative) quantification of 
the unidentified metabolites, where those feature intensities (i.e. peak intensities) are then used to 
assess the similarities of the metabolic responses across chemicals (Figure 2). Even though it is not 
(yet) necessary to identify significantly changed features to group chemicals, reporting the confidence 
levels of the metabolite identification is essential [33].

While there has been steady progress in applying metabolomics to chemical grouping and read-
across, its application to screening, cross-species extrapolation of toxicity pathways and to deriving 
benchmark doses (BMD) to set health thresholds is only now beginning. In terms of screening 
applications, while in principle an intensity change in an unidentified feature in a metabolomics 
spectrum could be used to trigger more extensive toxicity testing, it is unlikely that such a decision 
(with financial and ethical considerations) would be taken; i.e., if a single metabolic biomarker was 
being used as a screening alert, we argue that a MSI level 1 identification would be needed. However, 
if a panel of metabolic biomarkers were used as a trigger for additional testing then a range of 
confidence levels could be acceptable, though some MSI level 1 identifications would be mandatory. 
For the application of metabolomics to deriving points of departure (PoD) and consequently dose 
thresholds for regulation, strict criteria for metabolite identification should be applied. While there are 
no published examples of applying BMD to metabolomics data (such studies are underway in the 
authors’ laboratory), there are reports on the application of BMD to transcriptomics [37]. Given the 
approach includes utilising individual genes (and potentially metabolites) to indicate PoDs from 
baseline biochemistry, robust identification will be essential within a regulatory context. Hence we 
argue that individual metabolites for which dose-response relationships are measured and used as 
indicators of toxicological perturbation should be identified to MSI level 1, or ideally higher, on the CII 
axis. Indeed, this plays to one of the advantages of using metabolic biomarkers, namely to causally 
associate these downstream molecular changes with the apical endpoints that are traditionally used in 
regulatory toxicology. 

The discovery of which molecular toxicity pathways are perturbed by a chemical is not a requirement 
of current risk assessment practices. However, the discovery of molecular pathways and associated 
biomarkers (or ‘key events’) promises to fuel the application of molecular assays in regulatory 
toxicology as these biomarkers could be used for chemical grouping, screening, BMD modelling, etc. 
We next survey the CII associated with published metabolomics studies that have discovered MoA(s) 
and putative metabolic biomarkers. Early-response metabolic biomarkers predicting reproductive 
fitness in Daphnia magna were reported by Taylor et al. [12] following exposure to cadmium, 2,4-
dinitrophenol and propranolol. The authors discovered a panel of 49 biomarkers specific to 
reproductive fitness, with the identification of the individual markers spanning MSI levels 1-4; these 
confidence levels were explicitly reported. Ortiz-Villanueva et al. [38] investigated the effects of three 
endocrine disrupting chemicals, bisphenol A, perfluorooctane sulfonate and tributyltin, on zebrafish 
(Danio rerio) embryos. They proposed potential biomarkers with "unequivocal metabolite 
identification" by comparison to online database resources, though according to the MSI this is only to 
level 2. Others discovered metabolic biomarkers that predicted the energetic fitness (termed scope for 
growth; SFG) of marine mussels (Mytilus edulis) exposed to copper and pentachlorophenol with 
different MoA and resulting in different metabolic signatures [39]. In this study, a single biomarker 
predictive of pentachlorophenol-induced decrease in SFG was identified at MSI level 1 by comparison 
to an authentic standard. Considering applications of metabolomics in human toxicology, Cuykx et al. 
[40] discovered metabolic biomarkers associated with non-alcoholic fatty liver disease induced by 
sodium valproate (a reference toxicant) in a metabolically-competent cell line (HepaRG). Noteworthily, 
these authors reported the level of identification for each metabolic feature (using an amended scale 

https://paperpile.com/c/E7ai60/r21v
https://paperpile.com/c/E7ai60/hxMV
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of 1-5 [31]). While it is clear that the potential of metabolomics to discover MoAs and/or metabolic 
biomarkers in (eco)toxicology has been recognised by the academic community, utilisation of this 
approach in regulatory science will require a more consistent and rigorous approach with respect to 
metabolite identification and its reporting, including a push towards more level 1 identified biomarkers.

4. Next steps and recommendations

Extensive level 1 and above (i.e. pathway discovery) metabolite identification is very challenging. 
Indeed, the requirement to match experimental spectral data to an authentic chemical standard is only 
achievable if the metabolite standard is available (Table 1). Yet it is estimated that less than 20% of 
the metabolome is commercially available as standards, and custom synthesis is a specialism and 
typically expensive. It is important that regulatory scientists recognise these facts and, at least 
currently, shouldn’t assume that lack of level 1 identification is an indication of complacency. That 
said, there is much that the metabolomics community can do to increase scores on the CII axis 
(Figure 1). We must continue to expand spectral databases of authentic chemical standards, including 
building MS/MS and MSn libraries of thousands of metabolites, in part to facilitate the development of 
semi-targeted metabolomics (achieving MSI level 1). Toxicologists have a role to play in prioritising 
metabolites and metabolic pathways of highest toxicological importance for spectral data generation 
and potentially de novo synthesis of commercially unavailable metabolites. Furthermore, we should 
build on the philosophy of the international Metabolomics Society’s Model Organism Metabolomes 
task group, which is to focus initially on characterising the metabolomes of a few model organisms in 
order to leverage the critical mass of research activity and existing knowledge for such species 
[28,41]. Again, toxicologists have a role to play in defining the priority model species and systems for 
metabolome annotation, e.g. strain(s) of rat (Rattus norvegicus) [42], waterflea (D. magna) for 
ecotoxicology, HepaRG and HepG2 as widely used human hepatocyte models, etc. Finally, scientists 
applying metabolomics to regulatory toxicology must strive towards high confidence in metabolite 
identification as well as provide documented spectral evidence to validate the metabolite 
identifications that they report.
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