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Thermally Switching On/O� the Hardening of Soaked
Nanocomposite Materials

The area of smart materials is a hot topic as it allows
access to adaptive/responsive materials with self-
healing, shape memory, or actuation behavior.

Indeed, scientists can make all manner of materials
on-scale with controllable and remarkable properties, but
designing materials with mechanical adaptability is much
more challenging. Although the sea cucumber might seem
like an unlikely source of scienti�c creativity, Rowan, Maia,
and co-workers have taken inspiration from this remarkable
creature in their recent ACS Central Science paper.1 Building
on their 2008 Science paper,2 with Weder on the fabrication
of arti�cial polymer nanocomposites that displayed mechan-
ical morphing characteristics, they have made an impressive
leap forward through the design and demonstration of a
biomimetic reversible heat-sti�ening polymer nanocomposite.

Stimulus-responsive materials have bene�ted from sig-
ni�cant advances in polymer science in recent years.3

Many of the interesting properties of responsive materials
arise from a transition in solubility or conformation of the
polymer in the presence of an external stimulus. In this
manner, transitions at the molecular level can be ampli�ed to
result in a change in nanoscale structure and/or material
properties. Perhaps the most commonly utilized stimulus is
that of temperature, with poly(N-isopropylacrylamide) being
the most widely studied responsive polymer. Harnessing
these transitions toward speci�c material applications is

challenging, but this is exactly what the Rowan and Maia
groups have achieved in this work.

In their previous work, Rowan and Weder fabricated
arti�cial polymer nanocomposites containing rigid cellu-
lose nano�bers,4 and then built on this to create arti�cial
materials that displayed chemosoftening behavior when
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Rowan and Maia use straightforward polymer
science to mimic complex natural phenomena
to create novel adaptive nanocomposite
materials.

Figure 1. (a) Schematic showing the concept of a reversible, thermally
sti�ening water swollen composite below the LCST and a sti�
reinforced composite above the LCST. (b) Tensile storage modulus
(E�) of t-CNC-g-POEG3A/PVAc composites dry as-processed (1DAP,
black squares), soaked in water (25 °C) below the LCST for 3 days
(1WBL, red circles), placed in water (60 °C) above the LCST for 1 h
(1WAL, blue triangles), and redried above 60 °C (1RDAL, green
triangles). Adapted with permission from ref 1. Copyright 2017
American Chemical Society.

In this manner, transitions at the
molecular level can be ampli�ed
to result in a change in nanoscale

structure and/or materials
properties
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exposed to water and body temperature.2 This was achieved
by embedding cellulose nano�bers in a rubbery polymer
matrix. The surface of the cellulose �bers contains hydroxyl
groups which can hydrogen bond where the �bers intersect
to form a reinforced network. This network makes the
material rigid. However, it can be disrupted by adding water,
to break up the intersecting and hydrogen bonding
nano�bers, and hence the composite material becomes
�exible. While this was a radically new approach for synthetic
material design, it was inspired by nature’s approach to
adaptive material design. For example, sea cucumbers
can rapidly alter the sti�ness of their skin in response to
environmental cues. Indeed, their biological tissue is derived
from a nanocomposite structure containing rigid collagen
nano�bers embedded in a soft connective tissue. The sti�-
ness of the animal is controlled by enzyme secretion (which
switches “on” or “o�” the interactions between the �bers)
from the nervous system. When connected, the nano�bers
form a reinforcing network that increases the overall sti�ness
of the sea cucumber considerably and provides an “armored”
skin in response to a threat.

In this issue, Rowan, Maia and co-workers have designed a
novel heat-sti�ening polymer nanocomposite by grafting
lower critical solution temperature (LCST) polymers to
cellulose nanocrystals (CNCs) embedded in a poly(vinyl
acetate) (PVAc) matrix. The role of the LCST polymers is
to mimic the enzymatically activated switch of the reinforc-
ing network observed in the sea cucumber, using CNCs as
reinforcing �llers, while PVAc acts as the soft connective tissue.
When swollen in water, an increase in temperature triggers
the fully reversible sti�ening of the material (Figure 1a).
In contrast to commonly applied LCST polymers such
as poly(N-isopropylacrylamide) or poly(N,N-dimethylami-
noethyl methacrylate), their strategy exploits poly(oligo-
(ethylene glycol)monomethyl ether (meth)acrylates). Inter-
estingly, this class of polymers allows for tailoring the LCST
transition (switching temperature in the range between
26 and 90 °C), and also shows high biocompatibility.5 Both
of these factors undoubtedly contribute to the potential
widespread application of these new adaptive materials.

In a wet, warm, and salty biomimetic environment, the
nanocomposites underwent an impressive increase in their
tensile storage modulus, ca. 2 orders of magnitude, from
�10 to 300 MPa (Figure 1b), which leads to a signi�cant
sti�ening of the materials. Moreover, by altering the �ller
content, one can easily modulate the sti�ening time from
2 to 4 min. When considering the potential application of
this technology, this o�ers plenty of time to adapt the soft
wet �lm to a speci�c shape before becoming sti� upon
exposure to the body’s environment. The authors demon-
strate this feature by preparing a mechanically sti� human
nose from a water-soaked �lm of the nanocomposite
material (Figure 2). Such unique platform is envisaged as a
promising new reinforcing medical implant for bone regen-
eration, especially in the craniofacial region where current
alternatives lack the ability to shape and conform to a bony
defect and also fail to allow for �tting to complex 3D
anatomic defects. Excitingly, these new materials appear to
o�er signi�cant advances toward tackling these challenges
although they have not yet been optimized as the perfect
bone sca�old: they would need to display mechanical
features closer to the target native tissue (human cortical
bone has an elastic modulus between 3 and 20 GPa).6

Alternatively, their sti�ening response could also be applied
for tissues with lower elastic modulus, like cartilage or
tendon (on the order of 1�100 MPa).7 Undoubtedly, a
future goal is to ensure their biocompatibility, bio-
activity, and mechanical endurance, as well as sti�ness
yet �exibility and lightness yet strength.6 Furthermore,
the sca�old microarchitecture should provide su�cient
porosity, interconnectivity, and transport properties for
vascularization and blood vessel invasion (pore size of
150 to 500 �m).8,9

Figure 2. Images of a wet 30 wt % t-CNC-g-POEG2MA/PVAc composite sti�ened enough to retain the shape of a human nose upon exposure to a
warm hand. Reproduced with permission from ref 1 . Copyright 2017 American Chemical Society.

The role of the LCST polymers is
to mimic the enzymatically acti-
vated switch of the reinforcing
network observed in the sea

cucumber, using CNCs as rein-
forcing �llers, while PVAc acts as

the soft connective tissue.
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