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Influence of Powder Characteristics on the Microstructure and Mechanical Properties 

of HIPped CM247LC Ni Superalloy 

 

JE MacDonalda, RHU Khana, M Aristizabala, KEA Essaa, MJ Luntb, MM Attallaha 
a School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK  

b DSTL, Salisbury, Wiltshire, SP4 0JQ, UK 

 

ABSTRACT 

 

This work investigates the influence of gas atomised powder particle size and characteristics 

on the microstructure and mechanical properties of hot isostatically pressed (HIPped) 

CM247LC nickel-base superalloy powders. Three different GA powders (particle size ranges: 

53-150 µm; 0-150 µm; 15-53 µm) of very similar compositions were HIPped at the γʹ solvus 

temperature. Microstructural analysis and tensile testing were conducted on as-HIPped 

samples. It was found that the fine powders promote the formation of prior particle 

boundaries (PPBs) decorated with carbide and oxy-carbide clusters due to the higher oxygen 

content per weight in fine powders, which adversely affects the mechanical properties. It was 

also found that coarse powder particles are beneficial for minimising PPBs and increasing the 

twin boundaries fraction. Nonetheless, the best balance of high temperature tensile properties 

was in the wide range powder (0-150 µm). The effect of particle size was further investigated 

by sieving the wide range powder into two particle size distributions. Tensile testing of these 

conditions showed that the hot ductility could be further improved by removing the very fine 

powder particles. Both of the sieved powders exhibited better hot ductility than the wide 

range powder and also outperformed the 53-150 µm and 15-53 µm powders. 

 

Keywords: Ni-superalloys; powder hot isostatic pressing; microstructure; mechanical 

properties. 

 

1. Introduction 

Powder hot isostatic pressing (HIPping) of Ni-superalloys has the potential to yield superior 

components with improved buy-to-fly ratio over traditional processing routes [1-4]. There are, 

however, a number of issues with the powder HIPping of superalloys that need to be 

addressed, before the netshape advantages can benefit production of critical high temperature 

aero-engine components, such as combustor and turbine casings. From a microstructural 
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perspective the main issue is the presence of a significant density of oxides, carbides, and 

oxy-carbo-nitrides, forming prior particle boundaries (PPBs). PPBs are particularly 

detrimental to the mechanical properties, as they form continuous networks throughout the 

microstructure, ultimately leading to particle de-bonding and void formation during high 

temperature deformation [5-8]. Their presence can also complicate microstructural control 

during post-HIPping heat treatment by hindering grain coarsening [9]. Another less common 

issue is that brittle ceramic oxide phases (e.g. ZrO2, Al2O3 and TiO2) can be present owing to 

inclusions from the atomisation process or the O-rich layer on the powder particle surfaces. 

Such surface oxides may act as nuclei for the formation of primary MC carbides at the PPBs 

[5], which can occur even when the carbon (C) content is very low (<0.02 wt.%) if sufficient 

oxygen is present [5, 6]. These phases on powder particle surfaces can serve as crack 

initiation sites. Minimising O and C levels, the addition of stable carbide formers (e.g. Hf & 

Ta) [10, 11], increasing the HIPping temperature to promote grain growth past PPBs [8, 11], 

and heat treatment (hot outgassing) of powder before consolidation [3, 12] are all methods 

that have been reported to reduce PPB precipitation in as-HIPped superalloy components.  

CM247LC (where LC stands for low carbon) is a Ni superalloy with a potential for operation 

at high temperatures (≈750°C) due to the high  volume fraction (Vf). This alloy also has a 

moderate Cr level, which help prevent the formation of brittle topologically close packed 

(TCP) phases under long holds at high temperature [13-15]. Property data is available for cast 

and directionally solidified CM247LC [16-18] however limited data is available for HIPped 

CM247LC. In the present work, the effect of powder particle size and its influence on 

microstructure and tensile properties of the as-HIPped CM247LC has been studied.  

 

2. Experimental procedure 

 

Three argon gas atomised (GA) CM247LC powders with similar compositions were selected 

for investigation. The powders had particle size ranges of 53-150 μm, 0-150 μm and 15-53 

μm, which were designated as ‘coarse’ (C) (Sandvik Osprey), ‘wide range’ (WR) (Carpenter 

Powder Products), and ‘fine’ (F) (LPW technology Ltd.), respectively. The chemical 

composition of the powder is shown in table 1, measured using Inductively Coupled Plasma 

(ICP) (the main alloying additions), Combustion (C+S), and Fusion (N + O). Since the testing 

equipment was not sensitive enough to measure O levels below 100ppm, the supplier’s data 

for O content is also included. The low C content and the moderate levels of Hf and Ta should 

be suited to minimising PPB precipitation during HIPping.  



 3

 

Table 1: Composition (wt.%) of CM247LC powders investigated.  

 
C Al Ti Cr Mo Hf Ta Co W B N O 

O 
(supplier)

Ni

C 0.08 5.55 0.71 8.34 0.52 1.23 3.11 8.73 9.34 20ppm <20ppm <100ppm 20ppm Bal.
WR 0.09 5.57 0.80 8.29 0.61 1.31 3.10 9.59 9.57 140ppm <20ppm <100ppm 75ppm Bal.

F 0.07 5.60 0.78 8.07 0.51 1.35 3.23 8.75 10.0 140ppm <20ppm 120ppm 120ppm Bal.

 

The powder morphology, internal defects and HIPped microstructures were analysed using a 

Philips XL-30 SEM linked with energy dispersive X-ray spectroscopy (EDX) and a JEOL 

7000 FEG-SEM microscope. Image analysis was conducted with ImageJ software for 

quantitative analysis of γʹ volume fraction (Vf), measuring at least 1000 particles for each 

analysis. Powder flow rate, apparent density (ADH) and tap density (ρT) were measured as per 

the ASTM standards listed in table 2 using a Hall’s flowmeter. The particle size distribution 

(PSD) was measured using sieve analysis. Differential scanning calorimetry (DSC) was 

conducted on the as-received powders using a DSC 404 C Pegasus® machine to assess the 

phase changes from 900-1450°C heated at 10˚C/min. to 1450˚C and subsequently cooled at 

10˚C/min.  

 

The powder was encapsulated in mild steel canisters, degassed for 48 hours, crimped and 

welded to seal-off under a vacuum of <10-5 mbar. The canisters were consolidated in an EPSI 

HIPping system equipped with a Mo-furnace and type-B thermocouples for temperature 

control and measurement. HIPping was performed at 1260°C, 150 MPa pressure using a 2 h 

dwell time, and heating and cooling rates of 5°C·min-1 to/from the dwell temperature. These 

parameters were investigated in previous work by Zhang [11], where HIPping at the γ solvus 

temperature gave the best balance of elevated temperature (ET) properties. The HIPped 

samples were sectioned and examined under the SEM. EDX was conducted on as-polished 

samples, whilst others were etched with Kalling’s no. 2 reagent or electrochemically etched 

using 10% phosphoric acid (H3PO4) solution in H2O under 4V for 10sec, to further reveal the 

microstructure, especially the γ phase. Electron back-scattered diffraction (EBSD) was 

conducted on the XL-30 SEM and the data was analysed using HKL Channel 5 software. 

Grain maps were taken at x200 magnification with a 1 µm step size and x400 magnification 

with a 0.75 µm step size to characterise the grain size and structure. ET tensile tests were 

conducted at 750°C (per ASTM E8). The fracture surfaces were analysed under the SEM.  
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Table 2: Properties of the CM247LC powders. 

  

Powder Flow rate (s) ADH (g/cm3) ρT (g/cm3) Packing density (%)
C 14 4.6 5.4 63 

WR 15 4.8 5.8 68 
F 14 4.5 5.3 62 
SC 15 4.45 5.17 60.5 
SF / 4.47 5.29 62 

ASTM Standard B213-13 B212-09 B527-06 / 
 

   

Figure 3: A DSC trace for the phase transformations in CM247LC wide range powder, 

showing the melting range and the formation temperatures for the γ and γʹ phases. 

 

ThermoCalc analysis results are also included to assess the fraction of different phases as a 

function of temperature, using the TCNI5 database. The phase transformation temperatures 

are shown in table 3, which gives a comparison of the modelling and the experimental data. 

The transition temperatures suggested by the modelling are relatively lower than those given 

using the DSC for powders. This highlights the importance of conducting thermal analysis on 

different batches of powder since the γ′ solvus temperature is a critical processing temperature 

in powder HIPping. 

  

Table 3: Comparison of the phase transformation temperatures for CM247LC. 

 Phase transition temperatures (°C) 
DSC ThermoCalc 

γ formation (TLiquidus) 1365 (cooling) 1330  
γ′ solvus 1260 1245 
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3.2 As-HIPped Microstructure 

3.2.1  Chemical composition 

The chemical composition of the HIPped material was generally similar to the powder with 

the exception that O-content invariably increased in the as-HIPped samples, with the coarse 

and wide range powders HIPped material achieving 120 ppm and 140 ppm, respectively. The 

fine powder exhibited a larger increase in O content from 120 to 240 ppm. O pick-up in 

powder HIPping occurs despite degassing as the HIPped components could ‘pick-up’ residual 

O from the canister/atmosphere. The larger increase with the fine powder is due to the 

increased surface area to volume ratio.  

 

3.2.2 Gamma prime (γʹ) phase 

As-HIPped CM247LC had a γ Vf of 62% and all HIPped powders exhibited a ‘necklace’ 

structure, consisting of fine γ within the grains and coarse γ decorating the grain boundaries. 

An example of this is shown in Figure 4(a), where coarse γ particles can be seen around the 

edges of the grains (which have irregular boundary morphologies) whilst fine γ populates the 

grain interiors (figure 4b). This necklace structure was also consistent with microstructures 

obtained by Zhang, [11] (where 0-60 μm powder was used) and has been reported elsewhere 

[22] as a stable state for Ni-base superalloys. The fine γ was around 1 μm in size, with 

cuboidal array type morphology (coarsened ‘split-cube’ particles with irregular shaped edges) 

that distributed homogeneously within the grains. Both the coarse grain boundary γ′ and the 

~1 m split-cube γ′ are considered to be primary and secondary γ′, respectively, according to 

the size definitions as reported by Jackson and Reed [23]. In the channels between the split-

cube particles, ultra-fine tertiary γʹ particles, as shown in Figure 4c, were observed (although 

these particles were not included in the quantitative analysis of γʹ Vf). The phases present 

were similar from all three powders so only one image for each type has been included in 

Figure 4.  

 

3.2.3 Other phases 

EDX analysis was conducted on the other phases that can be seen in Figure 5. The finer type 

of the particles with brighter contrast were found typically to be rich in Ta, Hf, C and 

sometimes O suggesting they are (Hf, Ta)C carbides or oxy-carbides. Sometimes O was 

detected in such particles, which could be due to Hf + Ta ‘gettering’ oxygen from the matrix. 

The larger type of phase, identified as HfO2 by EDX analysis was also observed in all 

microstructures, although it appeared more common with the coarse powder, where some 
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the agglomeration of fine particles, and (c) fine powder: clear carbide rings can be seen at 

PPBs though grain growth occasionally occurred past the PPBs. 

 

3.2.5 Grain size & structure 

The low O-content in the coarse powder particles promoted grain growth past the limited 

PPBs, which led to a relatively coarse grain structure. The wide range powder contained both 

relatively coarse and fine powder particles, which lead to a more bi-modal grain distribution 

whereas the grain size was fine and more consistent with the fine powder. EBSD analysis 

(table 5) showed that the average grain sizes were around 21 µm, 18 µm and 12 µm from the 

coarse, wide range and fine powders, respectively. Grain boundaries often had irregular 

morphologies with all powders, which may be in part due to pinning of grain boundaries by 

the coarse γʹ particles of the necklace structure or the fine carbides. The development of 

significant grain boundary serrations has been reported with RR1000 by Mitchell et al. [25], 

by controlling the cooling rate from above the -solvus, with the presence of γʹ particles 

pinning the grain boundaries. It may be possible to increase the serrations in the as-HIPped 

CM247LC with closer control of the HIPping temperature and cooling rate. Such serrations 

have been found to significantly improve the stress-rupture properties of Ni-superalloys [25-

29].  

 

A number of straight grain boundaries such as in figure 7, were also observed under SEM, 

suggesting the formation of annealing twins, which varied depending on the powder.  They 

were observed more frequently within the coarse powder, which may be attributed to a 

combination of the powder particle size as well as the nominal oxygen content of the 

powders. Similar findings were reported by Rao et al. [6] in an investigation on HIPped 

IN718, where twinning was limited when powder had high O content. Twins can form during 

recrystallisation annealing following plastic deformation [6]. The application of plastic 

deformation at high temperature during HIPping can lead to the formation of twinning during 

recrystallisation. The lower degree of twinning observed in the fine powder condition may be 

due to the presence of more PPBs decorated with stable oxides and MC carbides, which can 

impede recrystallisation (as evident by the finer grain structure as well), eventually limiting 

the formation of annealing twins. 
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Twin boundaries exhibit exceptionally low energy and have been reported to enhance creep 

resistance compared to a ‘normal’ grain boundary [30, 31]. Maximising twin boundaries may, 

therefore, be beneficial, although for stainless steels at least, notable improvements in 

properties are not achieved until microstructures exhibit around 50% Σ3 [30]. Detrois et al. 

[30] conducted a grain boundary engineering (GBE) study concerned with increasing the 

fraction of Σ3 boundaries via cold working and annealing, with PM RR1000. Although such 

secondary processing stages are unsuitable for netshape PM components, the conditions for 

developing these boundaries are effectively simulated during the HIP cycle. Our results show 

that the powder particle size may have an effect. The coarser powder particles may have 

promoted more plastic deformation and recrystallisation, resulting in more twinning. Finer 

PSDs exhibit increased PPB decoration (Figure 6), which can limit recrystallisation. Tailoring 

the HIP cycle to increase plastic deformation e.g. by increasing HIP temperature as 

investigated with IN718 [32] and 316L stainless steel [33], may also increase the CSL 

boundaries in the microstructure. It may, therefore, be possible to use powder HIPping as a 

GBE method, although further investigation would be required to see if sufficient levels could 

be achieved to yield significant improvements in properties. However, when considering high 

temperature Ni-superalloy components, there are a number of other factors affecting high 

temperature properties (γʹ precipitate size, grain size, oxygen content, etc.) of which the 

degree of grain twinning is only one. 

 

3.3) Tensile Properties 

Coarse, wide range & fine powders: 

Tensile test results are shown in Figure 10. At room temperature (RT) the fine powder gave 

the highest tensile strength, as expected since it is well known that finer grains lead to higher 

tensile strength. The coarse powder had yield strength (YS) of 783 MPa, whilst the wide 

range was 800 MPa, and the fine powder was 815 MPa. Notably though, the coarse powder 

exhibited the highest ductility and better Ultimate Tensile Strength (UTS) than the wide range 

powder. This may be attributed to the fact that the coarse powder had good particle bonding 

with the least PPB precipitation and the highest degree of twinning in the microstructure. In 

the ET tests, however, there was slightly more variation in the properties between the 

powders. Tensile strength generally increased as the average powder particle size (and grain 

size) decreased. At 750°C, YS was 780 MPa for the coarse powder, 833 MPa for the wide 

range and 903 MPa for the fine. The tensile strengths achieved with all powders are 

comparable to cast CM247 material tested in [16-18]. Ductility in the as-HIP condition was 



 

slightly 

(DS) C

anisotro

  

Figure 

tempera

tempera

coarse a

 

The pro

and par

other fa

maintain

and the 

fact that

optimum

properti

B conte

140 ppm

expecte

taken in

HfO2 in

ductility

microstr

although

compare

better than

CM247LC r

opic nature o

10: Tensil

ature (RT) 

ature (ET – 

and fine pow

omising pro

rticularly th

actors bein

ned the bes

highest deg

t the coarse

m B conten

ies, so to giv

ent of the co

m (similar 

d. This aga

nto account

nclusions, li

y so cons

ructure. Th

h in this c

ed with the

n the conve

reported by

of DS.  

le test resu

the coarse 

750°C) the 

wders exhib

operties of t

he hot ducti

ng constant,

st ductility 

gree of twin

e powder ha

nt, which is 

ve a good b

oarse powde

to the wide

ain highligh

t. The only

ike those sh

iderably d

he hot ductil

ase the dec

e coarse pow

entionally c

y Kim et a

ults in the 

powder ga

wide range

bited a drop 

the coarse p

lity was aff

, it would 

at high tem

nning, howe

ad lower bor

the most in

balance it sh

er at only 2

e range and

hts that var

y other vari

hown in figu

due to thei

lity of the f

crease was 

wder. It can

14

cast materia

al. [16], th

 

as-HIPped 

ave the bes

e powder ha

in hot duct

powder that

ffected, decr

be expect

mperature, d

ever, the dro

ron content

nfluential gr

hould be at a

20 ppm is to

d fine pow

rious factor

iable in tha

ure 5(a), alt

ir sporadic

fine powde

attributed 

n be seen fr

al, but lowe

hough that 

condition 

st balance 

ad the best b

tility. 

t were seen

reasing from

ed that the

due to it ha

op in hot du

. Huron et a

rain bounda

an intermed

oo low wher

ders), bette

rs affect pr

at microstru

though it is

c/infrequent

er also decre

to the high

rom the clea

er than dire

may be ex

for all pow

of properti

balance of p

at RT wer

m 14% to 6

e coarse po

aving the le

ctility may 

al. [34] show

ary element 

diate level. I

reas if that 

er ET tensil

operties an

ucture was 

 unlikely th

t occurrenc

eased at ET

her degree 

arly defined

ectionally s

xpected due

wders: (a) 

ies, (b) at 

properties, w

re diminishe

6% on aver

owder wou

east PPB de

be explaine

owed that th

and affects

It is thought

powder had

le ductility 

nd they mus

the large, 

hey affected

ce through

T, from 13%

of PPB de

d spherical 

olidified 

e to the 

 

at room 

elevated 

while the 

ed at ET 

rage. All 

uld have 

ecoration 

ed by the 

here is an 

s various 

t that the 

d around 

may be 

st all be 

irregular 

d the hot 

hout the 

% to 9% 

ecoration 

particles 



 

in the f

debondi

zones. M

when co

powder 

 

Sieved p

 

Results 

versions

increase

particles

which a

improve

due to t

PPBs, a

clearly n

the SC 

CM247

literatur

CM247

 

Figure

fracture sur

ing. The fr

More ductil

oarse powd

was used.  

powders: 

of the ET 

s of the po

e from 10.7

s is benefic

are brought

ed further w

the coarser p

as well as th

not the mos

powder. In

LC, howev

re and in the

LC reported

e 11: Tensil

rface in Fig

racture surf

e fracture s

er particles 

tensile tests

wder outpe

7% (WR) t

cial. This ca

t about by 

with the SC 

powder par

he higher fra

st dominant

n both case

ver the duc

e case of the

d by Kim et

e test result

gure 13(f) t

faces for all

urfaces, wh

were used,

s on the sie

erformed th

to 12.3%, s

an be attrib

the very f

powder. Th

ticles, furth

action of Σ3

t factor, sinc

es the siev

ctility is hig

e SC powde

t al. [16]. 

ts in the as-H

ra

15

that this po

l powders 

hich exhibit

, whereas su

eved powde

he WR pow

suggesting 

buted to red

fine (<25 µ

his conditio

her promotin

3 CSL boun

ce the SF po

ved powder

gher than a

er, almost as

HIPped con

ange powde

 

owder clear

consisted o

ted few poo

uch particle

ers can be s

wder. For th

the elimina

duction in t

µm) powde

on would be

ng growth o

ndaries. The

owder exhib

rs exhibited

any equiaxe

s high as the

ndition for th

er. 

ly exhibited

of a radial 

rly bonded 

es were com

seen in Figu

e SF powde

ation of the

the PPBs an

er particles

e expected 

of recrystall

e Σ3 bounda

bited a high

d comparab

ed CM247L

e ductility f

 

he sieved ve

d the most 

zone and s

particles w

mmon when

ure 11. Bot

er, the hot 

e very fine 

nd carbide 

. The hot 

to perform 

lised grains

ary fraction

her Σ3 fract

ble strength

LC reporte

for conventi

ersions of th

particle 

shear lip 

were seen 

n the fine 

h sieved 

ductility 

powder 

clusters, 

ductility 

the best 

past the 

n alone is 

tion than 

h to cast 

d in the 

ional DS 

he wide 



 

Care sh

that can

contents

twin bo

the pow

affect th

Furtherm

also inf

percenta

conside

turn affe

relation

although

reported

twin rel

twin bo

random 

can dete

has been

were us

the SC 

reported

case the

 

  Figu

between

hould be tak

n affect high

s), grain siz

oundaries), a

wders from 

he formatio

more, as ev

fluenced th

ages than t

r is the tap 

fect the degr

nship betwe

h the WR e

d elsewhere

lated domai

oundaries p

m grain boun

ermine if a 

n used in th

sed as a mea

and SF pow

d a correlati

e HIP tempe

ure 12: The 

n different P

ken when as

h temperatu

ze and struc

and the pre

different su

on of these

vident by the

he formatio

the SC pow

density, sin

ree of recry

een the tap

exhibited b

e [33], how

ins (TRDs) 

present. TRD

ndaries. At 

crack will p

he current w

asure again

wders. The

ion between

erature was 

variation of

PSDs for the

ssessing thi

ure propertie

cture, streng

sence of de

uppliers sho

e twins, wh

e sieved po

on of twin 

wder, but als

nce differen

ystallisation 

p density a

oth the low

wever, that t

correlate to

Ds may co

triple point

propagate o

work, the rel

st elongatio

e study by 

n the Σ3 tw

varied. 

f Σ3 bounda

e WR powd

16

is data since

es for Ni-su

gthening pr

efects can a

owed that t

hile the B-c

owders, the 

boundarie

so a lower 

nt PSDs lea

during HIP

and the for

west Σ3 frac

the presence

o propertie

ontain mult

ts, the types

or be suppre

lationships s

on. Further w

Cortes et a

win boundar

ary length fr

der and its s

e there are v

uperalloys. A

recipitates, 

all also have

the nominal

content can

powder PSD

s. The SF

ductility (f

ad to differe

Pping. Again

rmation of 

ction as the

e of multip

s better tha

tiple grains 

s of bounda

essed. There

shown in Fi

work would

al. [32] on 

ries and the

fraction and 

sieved fracti

various mic

Alloy chem

grain bound

e an effect. 

l O-content 

n influence 

D (and its e

powder ex

figure 12a)

ent tap dens

n however, 

Σ3 bound

e poorest du

ple twinned 

an the actua

and twin 

aries presen

efore, altho

igure 12 ma

d be needed

IN718 pow

e hot ductili

associated 

ions SF and 

crostructura

mistry (e.g. O

dary charac

The compa

t of the pow

the ET pr

effect on O 

xhibited hi

. Another f

sities, whic

there was n

daries (figu

uctility. It h

clusters, kn

al length fra

chains, alo

nt (CSL or 

ough the Σ3

ay be linear 

d to confirm

wder HIPp

ity, although

ductility ac

SC, showin

al factors 

O and B-

cter (e.g. 

arison of 

wder can 

operties. 

content) 

gher Σ3 

factor to 

ch can in 

no linear 

re 12b), 

has been 

nown as 

action of 

ong with 

random) 

fraction 

if TRDs 

m this for 

ping also 

h in that 

 

chieved 

ng (a) the 



 17

variation in elongation %  and levels of Σ3 boundaries after HIPping, and (b) the variation in 

Σ3 levels boundaries and the powder tap density. 

 

Comparison of the sieved and un-sieved powders: 

The sieved powders in both PSDs outperformed the original 3 powders in the mechanical 

properties. For the coarse (C) powder, the poor hot ductility was attributed to the low B 

content and the presence of large, irregular HfO2 inclusions in the microstructure (further 

study would be required to fully identify the contribution of each of these factors but it is 

likely they both contributed to the poor ductility to some extent). After sieving the WR 

powder to yield the SC PSD, it was possible to achieve a (slightly) coarser microstructure 

promoting recrystallisation and grain growth with a powder containing higher B content 

(expected to provide strengthening) and the presence of only relatively small HfO2 inclusions. 

Consequently, the hot ductility was not limited by the presence of defects hence more than 

doubled from 6.3 to 14.7%.  

 

The SF powder also exhibited higher hot ductility (12.3%) than the original fine (F) powder 

(8.7%). In this case, the B content of the WR powder and the fine powder were similar and 

the fine powder also exhibited finer HfO2 inclusions in general. Therefore, the increase in 

ductility is attributed to a further reduction in PPB precipitation, despite the fact that there was 

not much difference between the PSDs. This may be attributed to the nominal O content of 

the original powders. The fine powder had 120ppm O, whereas the wide range powder had 

75ppm O content (according to the supplier’s data). After HIPping these increased to 240ppm 

and 140ppm as analysed using gas fusion, respectively. Within a given powder PSD, the O 

content would be expected to increase slightly if the coarse powder particles were removed 

(i.e. the ‘fine’ section of the WR powder may be expected to have higher O content than 

140ppm due to the average particle size and the effect of surface area to volume ratio). 

However, the SF PSD also had the sub-25 μm particles removed, which may have actually 

served to reduce the overall average O content. This would explain why the SF powder 

exhibited a higher fraction of Σ3 boundaries than the WR powder. Therefore, it is also likely 

that after sieving, the SF powder exhibited a lower O content than the un-sieved fine (F) 

powder.  

 

3.4) Fractography 
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Figure 14: Fracture surfaces from the ET tensile tests for the sieved powders. The SC powder 

(a,b) exhibited the best ductility in the current work resulting in (a) fracture surfaces with 

large shear lips ductile and (b) transgranular fracture. The SF powder (c,d) exhibited (c) much 

bigger shear lips than the unsieved fine powder, and (d) much more ductile fracture surface 

showing microvoid coalescence and free from PPBs. 

 

It is unlikely that the produced microstructures will be suitable for creep resistant structures 

due to the fine grain size and un-optimised  structures, meaning that a post-HIP heat 

treatment is likely to be required, which is the subject of our next investigation. However, the 

HIPped-only material that was developed in this study can be applied in short-duration high 

temperature applications (e.g. stationary motorsport components) or in corrosive 

environments (e.g. oil and gas components) where superalloys are used. Post-HIP heat 

treatments are known to result in thermally induced porosity (TIPs), which is likely to 

undermine the fatigue behaviour of the material.  

 

Conclusions 

 Powder particle size was found to affect the grain size and PPB precipitation, with coarse 

powder particles (leading to lower O content in the HIPped material) encouraging grains 

to grow past the PPBs leaving carbide distributed throughout the microstructure. 

 HfO2 inclusions were found to be more of an issue with the coarse powder, although this 

can also be affected by the specific atomiser used in powder production. 

 The particle size and O content appear to have affected the formation of twin boundaries, 

with an increased fraction of Σ3 boundaries achieved by using the coarse powder. Such 

boundaries are thought to be beneficial for high temperture properties. although they are 

only one of the various chemical and microstructural factors that control the properties. 

 The best balance of high temperature properties was given by the wide range powder. It 

is thought that the low B content and the presence of coarse HfO2 inclusions affected the 

hot ductility of the coarse powder, whilst PPB decoration affected the hot ductility of the 

fine powder. 

 Tensile properties of the as-HIPped wide range powder were comparable to cast 

CM247LC at high temperature, with slightly lower strength but slightly better ductility. 

 Sieving of the wide range powder into finer and coarser PSDs meant that the tensile 

properties were further improved over all of the the original powders including the parent 

wide-range PSD, by further elimination of PPB defects associated with the ultra-fine 



 21

powder particles, promoting further recrstallisation leading higher Σ3 boundary fractions 

and improvements in hot ductility. 
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