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Abstract 25 

Early diagnosis, optimal therapeutic management and regular follow up of children with X-linked hypophosphatemia (XLH) determine their long 26 

term outcomes and future quality of life. Biochemical screening of potentially affected newborns in familial cases and improving physician’s 27 

knowledge on clinical signs, symptoms and biochemical characteristics of XLH for de novo cases should lead to earlier diagnosis and treatment 28 

initiation. The follow-up of children with XLH includes clinical, biochemical and radiological monitoring of treatment (efficacy and complications) 29 

and screening for XLH-related dental, neurosurgical, rheumatological, cardiovascular, renal and ENT complications. In 2018, the European 30 

Union approved the use of burosumab, a humanized monoclonal anti-FGF23 antibody, as an alternative therapy to conventional therapy (active 31 

vitamin D analogues and phosphate supplements) in growing children with XLH and insufficiently controlled disease. 32 

Diagnostic criteria of XLH and the principles of disease management with conventional treatment or with burosumab are reviewed in this paper. 33 

 34 
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1. INTRODUCTION 40 

 41 

 42 

X-linked hypophosphatemic rickets (XLHR, OMIM 307800), a rare genetic disease due to inactivating mutations in the PHEX gene (Phosphate 43 

Regulating Gene with Homologies to the Endopeptidase on the X chromosome MIM #300550) is the most common form of hypophosphatemic 44 

rickets with an incidence of 1:20000(1,2). 45 

PHEX is expressed in osteocytes and odontoblasts and inactivating PHEX mutations result in increased synthesis and secretion of fibroblast 46 

growth factor 23 (FGF23). Part of the pathophysiological mechanism that underlies XLHR is impaired proximal renal phosphate reabsorption 47 

and reduced 1-hydroxylation of 25-OH vitamin D due to the excess action of FGF23(3,4). 48 

 49 

Children affected by XLH present with rickets, severely impaired mineralization of bone (osteomalacia) and teeth, and other signs and 50 

symptoms ultimately caused by excess FGF23, with the typical biochemical profile of hypophosphatemia, renal phosphate wasting and reduced 51 

calcitriol [1,25(OH)2 vitamin D] concentration. 52 

Early diagnosis and optimal management and follow-up of children and adolescents with XLH are the keys to successful outcomes, which 53 

determine the future quality of life of these patients. To date, large-scale natural history studies of XLH are lacking, which makes it is difficult to 54 

distinguish possibly inevitable long-term complications due to the underlying condition from sequelae of inadequate management. The burden 55 

of disease observed in today’s adult XLH patients(5,6) suggests that late diagnosis and inadequate management contribute to adverse 56 

outcomes. 57 

The aim of this review is to highlight the need for early diagnosis and optimal management so that children with XLH become healthier future 58 

adults. 59 

 60 

 61 

 62 

 63 
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2. DIAGNOSIS OF XLH 64 

 65 

Disease awareness of physicians and affected family members leads to early diagnosis and thus early treatment initiation. Early diagnosis of 66 

XLH is of major importance since early treatment initiation leads to better outcomes such as improved linear growth and final height, bone mass 67 

accrual, fewer bone deformations and better dental health(7–11).  68 

Two diagnostic settings need to be distinguished.  69 

 70 

2.1 Diagnosis of familial cases of XLH 71 

About 85-90% of familial cases of hypophosphatemic rickets are associated with PHEX gene mutations(10,12–19). XLH due to PHEX 72 

mutations follows an X-linked dominant inheritance pattern(2). Thus, affected fathers transmit the disease to all of their daughters and none of 73 

their sons. Affected mothers have a 50% risk of having an affected daughter or son. In the setting of familial XLH, potentially affected newborns 74 

should be biochemically screened and treatment should be initiated as soon as the diagnosis is made in order to prevent rachitic changes, leg 75 

bowing and short stature. If appropriately managed, it is unlikely that these patients develop active rickets and consequent orthopedic 76 

complications (figure 1).  77 

However, even in familial XLH cases diagnosis can be delayed. Unfortunately, adult patients are often lost to follow-up and may not have been 78 

informed or may have incompletely understood the inheritance pattern. This is illustrated by the median age at diagnosis of XLH in familial 79 

cases of 1.3 years, ranging from 0.1 to 14.3 years (n=58; unpublished data obtained from patients followed at the French reference center of 80 

Bicêtre, Paris, and(20)). During the transition from pediatric to adult care, it is crucial to explain the inheritance pattern to adolescents and 81 

young adults with childbearing potential. 82 

 83 

In babies born to parents affected with XLH, biochemical screening should be performed as soon as possible after the 1st week of life or 84 

certainly at first presentation to their family doctor. Screening includes serum phosphate, creatinine and alkaline phosphatase (ALP), and 85 

urinary phosphate and creatinine. Diagnosis of XLH is suspected if the serum phosphate level is below the normal range for newborns and if 86 

renal phosphate wasting is documented using the calculated renal phosphate reabsorption rate(21–23). It is essential that serum phosphate 87 
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and ALP concentrations are interpreted based on reference ranges for newborns and infants as these are physiologically higher than those for 88 

adults(24,25). Although clinical and radiological signs of rickets (figure 1) are often lacking in those babies, ALP may be found at the upper level 89 

of normal. Once diagnosis is made, the patient needs to be referred to a pediatrician specialized in bone disease (e.g. a pediatric 90 

endocrinologist) and treatment should be initiated immediately. The genetic diagnosis, i.e. PHEX sequencing, confirms the diagnosis; it may be 91 

done on cord blood or on a sample drawn after birth. Waiting for genetic results should not delay the start of treatment. Of note, a serum 92 

phosphate level within the normal range during the first months of life does not rule out the diagnosis and, in the absence of genetic diagnosis, 93 

the biochemical screening should be repeated including serum phosphate and ALP.  94 

 95 

2.2 Diagnosis of de novo cases of XLH  96 

Children with XLH due to de novo PHEX mutations, i.e. one third of the patients, are usually diagnosed after a diagnostic odyssey. Mean age at 97 

diagnosis is 3.9 ± 3.1 years, ranging from 0.9 to 13.1 years (unpublished data, Bicêtre, Paris) (figure 2a). 98 

 99 

2.2.1 Revealing symptoms 100 

Diverse clinical presentations may lead to the diagnosis of XLH. The most frequent and typical presentation is rickets (figure 1) which manifests 101 

as long bone deformities, especially leg bowing, delayed walking, waddling gait and bone/joint pain developing progressively once toddlers start 102 

standing and walking. In those patients, pediatricians and/or orthopedic surgeons are often the first specialists that are consulted because of leg 103 

deformities. As a certain degree of leg bowing in toddlers is considered physiological (26) (figure 2b), the first consultation may not always lead 104 

to a diagnostic work-up and therefore diagnosis is delayed until symptoms worsen. Stunted growth may be the revealing symptom in de novo 105 

XLH children (14% of cases in Bicêtre center; unpublished data); noteworthy, growth velocity is always poor at the time of diagnosis in those 106 

children. Rarely, the diagnosis of rickets is made from radiographs taken for other reasons, e.g. systematic screening of hip dysplasia in 107 

France.   108 

 109 

2.2.2 Diagnostic criteria 110 
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Any leg bowing (genu varum or valgum) whether or not associated with poor statural growth, and widening of the metaphysis (ankles and 111 

wrists) should lead to a radiological and biochemical work-up. Tooth abscesses or facial cellulitis occurring on apparently healthy teeth suggest 112 

poor dentin mineralization(9). Radiological signs of XLH are detailed in this issue by C. Adamsbaum and colleagues. Briefly, radiographs of the 113 

hand, knees and lower limbs show the long bone deformities, abnormal growth plates with widened and frayed metaphyses. In contrast to other 114 

forms of rickets, bone cortices appear dense(20,27). At the time of diagnosis, fractures are uncommon in children and adolescents.  115 

Biochemical criteria (table 1) for the diagnosis of XLH include:  116 

 serum phosphate below the normal threshold for age(28,29)  associated with renal phosphate wasting, e.g. reduced calculated maximal 117 

tubular reabsorption of phosphate as a function of glomerular filtration rate (TmP/GFR)(21). Of note, the fractional tubular resorption of 118 

phosphate (TRP) value may be within the normal range in children with XLH, and in the presence of hypophosphatemia only the 119 

TmP/GFR is diagnostic; 120 

 ALP levels above the upper limit of normal for age, indicating rickets/osteomalacia. In children, the measure of total ALP is used, in 121 

contrast to adults, in whom bone ALP should be measured preferably(20,30). Although ALP levels are elevated in XLH children and 122 

adolescents, the increase is not in the order of magnitude as seen in vitamin D deficiency rickets, defects in calcitriol synthesis or 123 

calcitriol receptor mutations (commonly called the vitamin D receptor)  (figure 2c); 124 

 parathyroid hormone (PTH) levels in the normal or upper normal range; any mild increase in PTH may be caused by underlying 125 

additional vitamin D or dietary calcium deficiency;  126 

 normal serum calcium, and low urinary calcium excretion; 127 

 exclusion of other proximal or distal tubular wasting disorders; 128 

 exclusion, and otherwise prior correction, of vitamin D or dietary calcium deficiency. 129 

In summary, the key to correct diagnosis of de novo XLH cases is good knowledge of the clinical signs and symptoms and the correct use of 130 

age-adjusted biochemical investigations to distinguish various forms of rickets. 131 

 132 
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The diagnosis of XLH may be confirmed by the measurement of elevated levels of intact FGF23. However, FGF23 concentrations may be 133 

inappropriately normal and this does not exclude the diagnosis. Patients with XLH produce levels of FGF23 that are well below those of patients 134 

with oncogenic osteomalacia (31,32). FGF23 levels are influenced by several factors including phosphate intake(33,34).  135 

 136 

2.3 Genetic confirmation of XLH 137 

The final confirmation of XLH is obtained through genetic analysis which identifies mutations in the PHEX gene in ~70% of patients with 138 

hypophosphatemic rickets, and 85-90% of patients when the disease is familial (2,12,16,19,35–46). Whenever possible, genetic analysis is 139 

recommended. Different types of PHEX mutations exist including point mutations, splice-site mutations, small and large deletions, deletions of 140 

pseudo-exons, and mosaicism, suggesting that several techniques or strategies may be necessary to reach a final diagnosis(18,39,47–51). 141 

 142 

3. SEVERITY OF DISEASE AND COMPLICATIONS  143 

We now have enough evidence to inform patients that XLH is a multisystemic disorder that may be associated with several complications 144 

including 145 

 tooth abscesses, taurodontism (enlarged pulp chambers and body of tooth), facial cellulitis and periodontitis(52,53); 146 

 premature fusion of cranial sutures leading to dolichocephaly and/or craniosynostosis; in some cases, patients may present with 147 

increased intracranial pressure, Chiari 1 malformation, syringomyelia, papillary oedema or neurological signs(54–61) ; 148 

 hearing impairment(20,62–65); 149 

 short stature: final height below -2SD is found in ~50% of patients adequately treated by conventional therapy(10,11,20,24,66–74); 150 

 reduced muscle function due to hypophosphatemia(75,76); 151 

 joint and bone pain  152 

 153 

At the time of diagnosis, XLH children should undergo a thorough work-up to assess the severity/extent of the disease(20,30) including:  154 
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 measuring rickets severity, judged by inter-malleolar and intercondylar distances, 6MWT (6-minute walking test) as a global dynamic 155 

measure, serum ALP and PTH levels, serum and urinary calcium and phosphate concentrations, and hand, standing long leg and/or 156 

knee X-rays; 157 

 assessing possible complications of the disease, i.e. craniosynostosis and its neurological complications(55,60), hearing impairment(62), 158 

abnormal dental mineralization(9), growth retardation(69), and reduced muscle function(76); 159 

 measuring renal function (glomerular and tubular) and morphology before the start of therapy through kidney ultrasound and detailed 160 

biochemical work-up. 161 

 162 

4. DIFFERENTIAL DIAGNOSIS  163 

 164 

Once the diagnosis of rickets is confirmed by clinical, biochemical and radiological criteria, and the diagnosis of nutritional rickets and vitamin D 165 

resistant rickets (VDDR1-3), all of which are associated with secondary phosphate wasting due to high PTH levels, have been ruled out, other 166 

causes of hypophosphatemic rickets should be considered in patients who do not carry a PHEX variant, even if they display an elevated FGF23 167 

level. The different causes of hypophosphatemic rickets are described in table 3. 168 

Several rickets-like diseases that may lead to progressive bone deformities, abnormal gait and metaphyseal irregularities need to be excluded. 169 

These conditions may be found in the presence of low ALP levels, e.g. hypophosphatasia(77) or normal levels of ALP, e.g. healed nutritional 170 

rickets, Blount’s disease or Schmid type metaphyseal dysplasia(78). 171 

 172 

5. DISEASE MANAGEMENT 173 

5.1 Principles of disease management 174 

Once the diagnosis of XLH is established, the objective of the treatment is to restore the lower limb biomechanic axis and gait, improve growth, 175 

bone and teeth mineralization and muscular function. Disease management should also include social aspects, patient/family education and 176 

support. In addition, during follow up, the multidisciplinary team will aim at preventing the development of endocrine, orthopedic, rheumatologic, 177 
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metabolic, cardiovascular and renal complications. So far, international recommendations that could guide physicians in the management of 178 

these rare patients are lacking. However, some reports have been published including extensive physicians’ expertise(20,30).  179 

The patient pathway will involve different health and social disciplines throughout infancy, childhood and adolescence. We suggest that patients 180 

are seen at regular intervals by multidisciplinary teams lead by a pediatric expert in bone diseases, who will liaise with the patient’s local 181 

healthcare providers (general practitioners/ pediatricians), a pediatric radiologist, orthopedic surgeon, physiotherapist, dentist and orthodontist. 182 

Additional professions may be required, e.g. pediatric neurosurgeon, ear, nose and throat (ENT) specialist, ophthalmologist, dietician, social 183 

worker and psychologist. 184 

 185 

Two different therapies are currently available for XLH: active vitamin D analogues combined with phosphate supplements, and burosumab, the 186 

monoclonal fully human anti-FGF23 antibody. These treatments have different therapeutic objectives and outcomes, and therefore require 187 

different management as highlighted in table 2.  188 

 189 

5.2 Conventional treatment with vitamin D analogues and phosphate supplements 190 

For decades, the association of active vitamin D analogues (alfacalcidol or calcitriol) and phosphate supplements using multiple daily dosing 191 

was the only treatment option for children with XLH. The objective of this therapy is to counteract the calcitriol deficiency secondary to FGF23 192 

exces and to compensate renal phosphate wasting. Medication doses reported in the literature, most of which date back over 20 years, vary 193 

widely, from 10-80 ng/kg/day of calcitriol and 30-180 mg/kg/day of elemental phosphate(8,20,67,79–83). Advice on treatment, based on recent 194 

reviews(20,30)   and the authors’ expertise is shown in table 2. 195 

 196 

This therapy has demonstrated its efficacy to: 197 

 decrease ALP concentrations to the upper limit of normal in ~ one year(20); 198 

 improve bone deformity, bone pain and gait in 30 to 60% of patients(11,66,67,80,82,84–86); 199 

 improve growth velocity in the magnitude of ~ 1 standard deviation(8,10,11,20,66–72,79,84,87); 200 
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 significantly improve dentin mineralization and therefore decrease teeth abscesses and oral complications in affected 201 

children(7,9,20,88,89). 202 

Improvement in some of these outcomes, i.e. linear growth, final height, radiological features of rickets and oral health(7,10,11,90), has been 203 

associated with early treatment initiation and longer duration of treatment. 204 

Many limitations to this therapy have been identified over the years and should be known by the caring physician, including: 205 

 the absence of correction of the phosphate wasting with continued hypophosphatemia(20,30,80,85); 206 

 the risk of nephrocalcinosis and/or urolithiasis; large doses of active vitamin D and oral phosphate supplements have both been 207 

associated with an increased rate of nephrocalcinosis in children(67,91–95); 208 

 the risk of hyperparathyroidism; large oral doses of phosphate supplements are associated with the development of secondary and 209 

tertiary hyperparathyroidism by yet unknown mechanisms (8,86,91,92,96–100) 210 

 the insufficient, or lack of, response of some children, leading to corrective surgeries of lower limbs(101); 211 

 and the incomplete correction of muscle function deficits(75,76). 212 

In addition to these major issues, we are lacking large scale studies to evaluate the impact of this conventional therapy on the quality of life and 213 

on the development of several disease complications such as craniosynostosis and hearing problems, enthesopathy, chronic pain and fatigue.  214 

 215 

Dose Adjustment for conventional therapy (table 2) 216 

The daily dose of phosphate supplements and vitamin D analogues is adjusted to serum ALP and PTH and urinary calcium/creatinine 217 

concentrations, clinical measures (leg bowing, growth velocity) and the patient’s weight. The goal is to maintain normal ALP, PTH and urinary 218 

calcium/creatinine levels but not to normalise serum phosphate levels. During the first months of treatment, consistently elevated ALP levels 219 

without hypercalciuria should lead to an increase in active vitamin D analogue and/or phosphate dose. Vice versa, normalized ALP in the 220 

presence of hypercalciuria may require a reduction in the dose of active vitamin D analogues. If PTH level increases, one must consider 221 

lowering phosphate supplementation and/or increasing the dose of active vitamin D analogues. In all cases, strict adherence to medication, in 222 

particular the multiple daily dosing of phosphate is essential. 223 
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 224 

5.3 Novel therapy with anti-FGF23 antibody 225 

As for today, the alternative therapy is burosumab, the humanized monoclonal anti-FGF23 antibody which was recently approved in the 226 

European Union for the treatment of XLH children over 1 year of age and adolescents who are still growing, and in the US for the treatment of 227 

all patients affected by XLH over 1 year of age(102,103). The main objective of this treatment is to counteract excess FGF23, thereby restoring 228 

phosphate reabsorption and endogenous 1,25(OH)2 vitamin D synthesis.  229 

In children with severe XLH aged 5 to 12 years, the treatment with burosumab, given subcutaneously every 2 weeks was found to result 230 

in(104):  231 

 a steady increase in serum phosphate concentration to a range between 1.1 and 1.6 mmol/l due to an increase in TmP/GFR; 232 

 an increase in the calcitriol levels; 233 

 an improvement in the radiographic rickets severity scores after 40 and 64 weeks of treatment; 234 

 an improvement of physical function as shown by the increase in the distance walked during the 6MWT. 235 

In contrast to conventional therapy, the burosumab dose is adjusted to the serum phosphate concentration as described in table 2. The 236 

recommended starting dose in Europe is 0.4 mg/kg body weight (0.8 mg/kg in US), followed by a titration period to reach a serum phosphate 237 

level in the low normal range for age, through dose increments every 4 weeks (maximum dose 2.0 mg/kg body weight or 90 mg every 15 days). 238 

 239 

The limitations known to this treatment are(104–106): 240 

 injections site reactions, headache and muscular pain; 241 

 gain in growth velocity appears limited;  242 

 the therapy is recent and therefore data on any long-term outcomes, e.g. hyperparathyroidism, nephrocalcinosis, surgery, body 243 

disproportion and adult complications such as enthesopathy are not yet available. 244 

 245 
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Given the available evidence for both therapies, we propose that children born into families affected with XLH, as well as children with a de 246 

novo diagnosis of XLH, be started on conventional therapy except if the diagnosis was delayed for several years, thus rickets considered as 247 

severe. In our view, treatment with burosumab should be offered (unless of course injections are refused), preferably with rigorous 248 

documentation and follow-up, to XLH children aged 1 year or older and in adolescents with growing skeletons if: 249 

- they have radiographic evidence of rickets; 250 

 they are refractory to conventional therapy; 251 

 they experience complications related to conventional therapy. 252 

 253 

6. DISEASE FOLLOW-UP (table 2) 254 

Adequate follow-up of XLH patients includes clinical, biochemical and radiological monitoring of treatment (efficacy and complications) and 255 

screening for XLH-related dental, neurosurgical, rheumatological, cardiovascular, renal and/or ENT complications(20,30).  256 

The parameters, as well as their frequency of assessment vary depending on age, disease severity and existing XLH-related complications. 257 

 258 

6.1 Treatment monitoring 259 

Clinical follow-up includes measuring intercondylar distance, intermalleolar distance, and if possible tibial torsion(107), height and growth 260 

velocity. An annual 6MWT can also be helpful in older children (from 5-6 years of age)(104,108). The number of dental abscesses and 261 

episodes of acute oral infections are recorded. The rachitic/osteomalacic, insufficiently treated bone, is associated with elevated ALP and low 262 

urinary calcium. In contrast, when rickets is healing, ALP tends to normalize, and urinary calcium to increase. The FGF23 level is not used as a 263 

tool for treatment monitoring in XLH children(33,109,110). 264 

The efficacy and safety of conventional therapy, i.e. phosphate supplements and vitamin D analogues, is monitored by measuring ALP, the 265 

biomarker of rickets activity and osteomalacia(20,66,82,85). PTH is measured regularly as hyperparathyroidism is promoted by oral phosphate 266 

supplementation, especially during adolescence(8,86,91,111). Serum and specifically urine calcium measurements are necessary to evaluate 267 

the safety of vitamin D analogues. In children younger than 5 years of age, the 24 hours urine collection is quite difficult, and spot urine samples 268 
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are preferred. In children older than 5 years of age, 24 hours urine collections are advised if the urinary calcium is above the upper limit of 269 

normal (Uca/cr > 0.7 mmol/mmol)(112).  270 

The follow-up of children with rickets may include radiographs. Once the diagnosis is made, radiological techniques using small amounts of X-271 

rays, such as EOS, may be used whenever possible. Radiographs of lower limbs or knees (done not more than every 2 years) may be useful 272 

during follow-up. Radiographs may be indicated if patients are refractory to therapy, if orthopedic surgery is indicated, in cases of unexplained 273 

bone pain and before transition to adult care.  274 

After initial treatment initiation and during physiological periods of rapid growth (infancy and puberty) it is useful to evaluate the patient every 275 

three months clinically and biochemically. This is also the case for patients of all ages with unsatisfactory results, e.g. ALP remaining high, 276 

worsening of leg bowing, or pain. Otherwise 6-monthly evaluation is sufficient. 277 

 278 

The questions that should be asked if treatment objectives under conventional therapy are not achieved are: 279 

Is treatment correctly prescribed?  280 

 Are the doses appropriate? Adjusted to weight and growth velocity? Adjusted to biochemical markers?  281 

 Are phosphate supplements prescribed in multiple daily doses?  282 

 Is treatment correctly given? Are phosphate supplements given separately from calcium intakes such as milk and yogurt? 283 

 Is compliance correct? As in many chronic diseases that require multiple daily doses of medication, poor compliance often explains poor 284 

metabolic control and poor clinical outcome.  285 

 286 

6.2 Particular aspects concerning patients treated with burosumab 287 

In patients treated with burosumab, serum phosphate is a strong biomarker of efficacy and is monitored for treatment titration and follow-up. In 288 

clinical trials, the phosphate target ranges from 1.1 to 1.6 mmol/l. Measurements are performed every 2 later every 4 weeks (104) for dose 289 

adjustment. We do not yet know the optimal serum phosphate target for children. During treatment, TmP/GFR and ALP require monitoring 290 

since they act as short-term and long-term biochemical markers of burosumab efficacy, respectively(104). The 1,25(OH)2 vitamin D 291 
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concentration increases rapidly upon burosumab therapy during 64 weeks of observation ; its value as a biomarker to adjust the therapy has 292 

not been evaluated(105,113,114).  293 

 294 

7. SCREENING FOR XLH COMPLICATIONS 295 

Craniosynostosis and premature fusion of cranial sutures are complications of XLH. Craniosynostosis should be screened for by 296 

assessing head circumference, skull shape and also neurological signs (fundoscopy, headaches). To date, there are no clear guidelines 297 

regarding MRI evaluations of children with XLH. However, recent data demonstrated the high frequency of Chiari 1 malformation and 298 

syringomyelia in XLH children raising the question whether systematic evaluation of the brain through MRI during childhood is indicated 299 

(55,60,115). In case of neurological symptoms, a CT scan and/or brain MRI should be done. 300 

Hearing should be evaluated by audiometry during childhood; however data to identify the best time period or at risk patients is scarce(62).  301 

Dental examination should be performed at least once a year in children(9). For details refer to the dedicated article on dental issues. 302 

Growth should be monitored at least twice a year; bone age evaluation may be included in short children or in case of decreased growth 303 

velocity, a sign of active rickets which may require an increase in therapy(10,11,20,41,68,69). Growth hormone (GH) is not a standard 304 

treatment or indication for children with XLH. Studies have shown that GH increases short-term linear growth in short XLH children before 305 

puberty(116–123). Data on only 5 patients treated until final height   showed no significant gain(124). 306 

Nephrocalcinosis and nephrolithiasis are screened for using kidney ultrasounds and should be done at the start of therapy and 307 

approximately every 1-2 years depending on the urinary excretion of calcium(125).  308 

Cardiovascular screening. To date, cardiac complications of XLH, on conventional therapy, are not commonly reported. This is surprising 309 

given that FGF23 has long been known to be associated with cardiovascular risk and the development of pathological hypertrophy that can lead 310 

to congestive heart failure(126). Only very recently was left ventricular hypertrophy and hypertension described in a subset of XLH patients in a 311 

prospective clinical study(127). Given the sparse evidence, it is difficult to come up with firm recommendations. We have decided to 312 

recommend cardiac echography every 5 years until further evidence emerges. Regular cardiac ultrasound measurements were part of the 313 

safety features of the burosumab clinical trials with no evidence of complications. Given the limited long-term safety data, we feel that regular 314 

echocardiography is required until more evidence emerges. 315 
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 316 

8. SOCIAL AND PATIENT EDUCATION FOLLOW-UP  317 

Education of patients and families is crucial at the time of diagnosis. Regular updates are necessary to assess and encourage adherence to 318 

treatments, provide service contacts and information about patients’ association groups, inform patients of scientific discoveries, including new 319 

therapies, support school and professional achievement and provide adequate social support (e.g. XLHnetwork.com; (1); http:// 320 

phosphatdiabetes.de). 321 

 322 

9. PERSPECTIVES 323 

XLH is a multisystemic disorder that may manifest in children only once they start standing and walking. Untreated, or insufficiently treated, the 324 

disease leads to severe handicaps including bone pain, bone deformities, dental complications with abscesses and missing teeth, and short 325 

stature. The current conventional therapy, based on phosphate supplements and vitamin D analogues allows improvement in bone deformities, 326 

growth velocity and bone and dentin mineralization. However, this treatment does not restore normal phosphate levels and many patients do 327 

not respond fully/adequately to this therapy. Burosumab counteracts FGF23 excess thus restores renal phosphate reabsorption in treated 328 

children and adolescents. These convincing results have led to the approval of burosumab by EMA and FDA for the use in Europe and the 329 

USA. However, long-term data are needed, especially on growth, renal calcium excretion, PTH secretion and bone disease overall. When 330 

children evolve through adolescence and then adulthood, complications of their disease such as hearing impairment, hyperparathyroidism, 331 

cardiovascular and renal complications, rheumatological issues and enthesopathy may occur. These complications, which may be modified by 332 

the disease’s therapy, render difficult the decision to stop or pursue the daily conventional treatment through adulthood once growth is 333 

complete. Since osteomalacia will return after any of the two therapies is stopped, adult bone specialists will need to gather further long-term 334 

treatment data.  335 
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Figure 1: Radiographic features of rickets in XLH children 356 

A. Radiographs of lower limbs in a baby girl with an affected XLH father carrying a PHEX mutation. The baby is also affected; there are almost 357 

no signs of rickets on radiographs at birth. Treatment was started on day 7 with alfacalcidol 1ug/day (27 ng/kg/d) and phosphate supplements 358 

(Phosphoneuros®) 80 mg, 4 times per day (60 mg/kg/d) given twenty minutes after breast feeding. On radiographs at age 2.5 years, there were 359 

no signs of rickets (mild features at year 1). B. Different features of rickets, highlighting the variability in XLH disease severity, at the time of 360 

diagnosis in three children diagnosed late with de novo PHEX mutations. 361 

 362 

Figure 2: Diagnosis of XLH in children 363 

A. Age at diagnosis in children affected with XLH; we selected only the de novo cases (n=36 out of 94). The cohort of patients is followed at the 364 

Bicêtre reference center, Paris, France (unpublished). The mean age (+/- SD) at diagnosis (dotted line) was 3.9 ± 3.1 yrs, the median was 2.7 365 

yrs [min: 0.9 - max:13.7] yrs. Each bar represents a case. B. Physiological distance between knees and ankles in children, adapted from. The 366 

upper part of the graph represents the 2SD intercondylar distance (positive) and the lower part the 2 SD intermalleolar distance (negative) and 367 

the mean values are represented in the middle of the graph. C. Serum ALP concentrations in 21 children with XLH at the time of diagnosis 368 

compared with 7 children affected by a molecular defect in the calcitriol (VDR) receptor. Median and 5th - 95th percentile of ALP are given. 369 

 370 

 371 

  372 
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Table 1: Diagnostic work up for XLH and differential diagnosis of hypophosphatemia 373 

 374 

 Newborn 
Familial  

Child  
Familial  

Infant-Child 
De novo 

   Take family history of leg bowing in infancy, dental problems, 
chronic ‘rheumatological’ pain and short stature  

Radiographs  Left hand and wrist 
Standing lower limbs 

Left hand and wrist (=bone age) 
Standing lower limbs 

Blood biochemistry Phosphate, calcium 
ALP 

Creatinine 
PTH 

Phosphate, calcium 
ALP 

Creatinine 
PTH 

Phosphate, calcium 
ALP 

Creatinine 
PTH 

25OHD; 1,25(OH)2D 
Electrolytes, blood gas 

Urine biochemistry Phosphate 
Creatinine 
Calcium 

Phosphate 
Creatinine 
Calcium  

Phosphate 
Creatinine 
Calcium 

Electrolytes 
Protein, aminoacids 

Confirmation PHEX genetics PHEX genetics Intact FGF23 
PHEX genetics 

 375 

25OHD: 25-hydroxy vitamin D; 1,25(OH)2D: 1,25-di-hydroxy vitamin D (calcitriol) 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 
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Table 2: Treatment doses, objectives and monitoring in children affected with XLH 384 
  Vitamin D analogs and phosphate supplements Burosumab 

 

 

Newborns or before the 
development of clinical or 

radiological signs of 
rickets 

Clinical or radiological 
signs of rickets 

Children > 1 year 
Tr

ea
tm

en
t d

os
es

 

Starting dose 

Alfacalcidol: 
25-40 ng/kg/day 
(0.8-1 ug/day) 

Phosphate: 
40-60 mg/kg/day 

(4 to 5 intakes/day) 

Alfacalcidol: 
40-80 ng/kg/day 
(1-1.5 ug/day) 

Phosphate: 
40-60 mg/kg/day 

(4 to 5 intakes/day) 

0.4 mg/kg/15 days in Europe 
0.8 mg/kg/15 days in USA 

Maintenance dose Alfacalcidol: 25-40 ng/kg/day (1-2 ug/day) 
Phosphate: 30-60 mg/kg/day (3 to 5 intakes/ day) ~ 1 mg/kg of body weight every 15 days 

 

Ef
fic

ac
y 

m
ar

ke
rs

 

Outcomes Time to the objective 
Normal serum phosphate 

Non applicable 1-4 months 

Normal urinary excretion of 
phosphate 

(TRP, TmP/GFR) 

Increase in 1,25 (OH)2D 
without hypercalcemia 

ALP normalization 6-12 months 
Improvement of lower limb 

deformities 3-4 years Data not available 

6MWT No data Improvement at 12 months 

Increase in growth velocity 1 year No data 
Improvement of radiological 

signs of rickets on radiographs 
of lower limbs 

(RGI-C) 

No data 10 months 
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Improvement of 
POSNA, PODCI No data 10 months 

 
Sa

fe
ty

 m
ar

ke
rs

 

 Frequency of follow-up 

Serum calcium 
3-6 months Urinary calcium 

Serum PTH 
Renal ultrasound 1-2 years 

Cardiac ultrasound Every 5 years Every 2 years until more evidence available 
 385 
TRP: fractional tubular reabsorption of phosphate 386 
TmP/GFR:  ratio of the renal tubular maximum reabsorption rate of phosphate to the glomerular filtration rate  387 
ALP : alkaline phosphatase 388 
6MWT : 6-minute walk test 389 
RGI-C: radiographic global impression of change 390 
POSNA: pediatric musculoskeletal functional health questionnaire 391 
PODCI: pediatric outcomes data collection instrument  392 
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 393 
Table 3: Non-exhaustive list of the causes of rickets associated with renal phosphate wasting. * 394 
 395 

Disorder (abbreviation) OMIM Gene/location Urinary 
Calcium FGF23 

Rickets/osteomalacia with renal tubular phosphate wasting due to elevated FGF23 levels/signaling 

X-linked hypophosphatemia (XLH) #307800 PHEX/Xp22.1 Low 
Undetectable 

Normal or moderately 
elevated 

Autosomal dominant hypophosphatemic rickets (ADHR) #193100) FGF23/12p13.3 Low 
Undetectable Elevated 

Autosomal recessive hypophosphatemic rickets 1 (ARHR1) #241520 DMP1/4q22.1 Low 
Undetectable 

Normal or moderately 
elevated 

Autosomal recessive hypophosphatemic rickets 2 (ARHR2) #613312 ENPP1/6q23.2 Low 
Undetectable 

Normal or moderately 
elevated 

Hypophosphatemic rickets and hyperparathyroidism #612089 KLOTHO/13q13.1 Low Elevated 

Osteoglophonic dysplasia (OD)  #166250 FGFR1/8p12 Low Normal or moderately 
elevated 

Fibrous dysplasia (FD) 
Tumor induced osteomalacia (TIO) 

Cutaneous skeletal hypophosphatemia syndrome (CSHS) also 
called Schimmelpenning-Feuerstein-Mims syndrome (SFM) 

 
 

#174800 
 
 

 
#163200 

 
 

GNAS/20q13.3 
 
 
 

RAS/1p13.2 

Low 
Undetectable 

Normal or moderately 
elevated 

Rickets/osteomalacia due to primary renal tubular phosphate wasting 

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) #241530 SLC34A3/9q34.3 Normal or 
high 

Low or 
undetectable 

X-linked recessive hypophosphatemic rickets (XLR,  Dent’s 
disease, Lowe syndrome) 

#300554 
#309000 

CLCN5/Xp11.23 
OCRL1/Xq25-26 

Normal or 
high Varies 

Renal Fanconi syndrome due to cystinosis #219800 CTNS/17p13.2 High Low 

Hypophosphatemia and nephrocalcinosis (NPHLOP1) 
Fanconi reno-tubular syndrome 2 (FRTS2) 

#612286 
 

#613388 
SLC34A1/5q35.3 Elevated Low or 

undetectable 

Iatrogenic proximal tubulopathy = drug induced Fanconi Syndrome 
(for instance cisplatin, ifosfamide, tenofovir, sodium valproate)   Varies Variable 
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* excluding causes of rickets with secondary phosphate wasting due to high PTH levels such as nutritional rickets, and rickets due to vitamin D 396 

deficiency or resistance. 397 

  398 
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 402 
 403 
 404 
 405 
 406 
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