Vitamin D supplementation to prevent acute respiratory infections

Martineau, Adrian R; Jolliffe, David A; Greenberg, Lauren; Aloia, John F; Bergman, Peter; Dubnov-Raz, Gal; Esposito, Susanna; Ganmaa, Davaasambuu; Ginde, Adit A; Goodall, Emma C; Grant, Cameron C; Janssens, Wim; Jensen, Megan E; Kerley, Conor P; Laaksi, Ilkka; Manaseki-Holland, Semira; Mauger, David; Murdoch, David R; Neale, Rachel; Rees, Judy R

DOI: 10.3310/hta23020

License: Other (please specify with Rights Statement)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© Queen’s Printer and Controller of HMSO 2019. This work was produced by Martineau et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 11. Jun. 2020
Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis

Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis

Adrian R Martineau,1,2* David A Jolliffe,1 Lauren Greenberg,1 John F Aloia,3 Peter Bergman,4 Gal Dubnov-Raz,5 Susanna Esposito,6 Davaasambuu Ganmaa,7 Adit A Ginde,8 Emma C Goodall,9 Cameron C Grant,10 Wim Janssens,11 Megan E Jensen,12 Conor P Kerley,13 Ilkka Laaksi,14 Semira Manaseki-Holland,15 David Mauger,16 David R Murdoch,17 Rachel Neale,18 Judy R Rees,19 Steve Simpson Jr,20 Iwona Stelmach,21 Geeta Trilok Kumar,22 Mitsuyoshi Urashima,23 Carlos A Camargo Jr,24 Christopher J Griffiths1,2,25 and Richard L Hooper1

1Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
2Asthma UK Centre for Applied Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
3Bone Mineral Research Center, Winthrop University Hospital, Mineola, NY, USA
4Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
5Department of Exercise, Lifestyle and Nutrition Clinic, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, Israel
6Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
7Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
8Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
9Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
10Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
11Universitaire ziekenhuizen Leuven, Leuven, Belgium
12Centre for Asthma and Respiratory Diseases, University of Newcastle, Newcastle, NSW, Australia
13Dublin City University, Dublin, Ireland
Declared competing interests of authors: Susanna Esposito reports grants and personal fees from GlaxoSmithKline (GSK) plc (GSK House, Middlesex, UK), grants and personal fees from Pfizer Inc. (New York, NY, USA), grants and personal fees from Sanofi Pasteur MSD [Sanofi Pasteur (Lyon France) and Merck Sharp & Dohme Corp. (MSD, Kenilworth, NJ, USA)], grants from DuPage Medical Group (DMG, Downers Grove, IL, USA), personal fees from Valeas S.p.A. (Milan, Italy), and grants and personal fees from Vifor Pharma (Bern, Switzerland), outside the submitted work. Emma Goodall reports personal fees from GSK outside the submitted work. Wim Janssens reports grants from Instituut voor Innovatie door Wetenschap en Technologie (IWT)–Vlaanderen and from Laboratoires SMB (Brussels, Belgium) during the conduct of the study. David Mauger reports funding from the National Heart, Lung, and Blood Institute, MA, USA. Rachel Neale reports grants from the National Institutes of Health and the Medical Research Council during the conduct of the study. Judy R Rees reports that a use patent is held by Dartmouth College and Dr John A Baron for calcium as a chemopreventive agent. Dr Baron is not an author on this paper but is the principal investigator of the parent study from which the study by Rees (Rees JR, Hendricks K, Barry EL, Peacock JL, Mott LA, Sandler RS, et al. Vitamin D3 supplementation and upper respiratory tract infections in a randomized, controlled trial. Clin Infect Dis 2013;57:1384–92) was conducted. The patent was previously licensed by Pfizer (with royalties), but has not been licensed for about 5 years. Judy R Rees is not involved in the patent and the patent does not involve vitamin D.
This report should be referenced as follows:

Health Technology Assessment is indexed and abstracted in *Index Medicus/MEDLINE, Excerpta Medica/EMBASE, Science Citation Index Expanded* (SciSearch®) and *Current Contents®/Clinical Medicine*.
Health Technology Assessment

Criteria for inclusion in the Health Technology Assessment journal

Reports are published in Health Technology Assessment (HTA) if (1) they have resulted from work for the HTA programme, and (2) they are of a sufficiently high scientific quality as assessed by the reviewers and editors.

Reviews in Health Technology Assessment are termed 'systematic' when the account of the search appraisal and synthesis methods (to minimise biases and random errors) would, in theory, permit the replication of the review by others.

HTA programme

The HTA programme, part of the National Institute for Health Research (NIHR), was set up in 1993. It produces high-quality research information on the effectiveness, costs and broader impact of health technologies for those who use, manage and provide care in the NHS. 'Health technologies' are broadly defined as all interventions used to promote health, prevent and treat disease, and improve rehabilitation and long-term care.

The journal is indexed in NHS Evidence via its abstracts included in MEDLINE and its Technology Assessment Reports inform National Institute for Health and Care Excellence (NICE) guidance. HTA research is also an important source of evidence for National Screening Committee (NSC) policy decisions.

For more information about the HTA programme please visit the website: http://www.nets.nihr.ac.uk/programmes/hta

This report

The research reported in this issue of the journal was funded by the HTA programme as project number 13/03/25. The contractual start date was in October 2014. The draft report began editorial review in January 2017 and was accepted for publication in October 2017. The authors have been wholly responsible for all data collection, analysis and interpretation, and for writing up their work. The HTA editors and publisher have tried to ensure the accuracy of the authors' report and would like to thank the reviewers for their constructive comments on the draft document. However, they do not accept liability for damages or losses arising from material published in this report.

This report presents independent research funded by the National Institute for Health Research (NIHR). The views and opinions expressed by authors in this publication are those of the authors and do not necessarily reflect those of the NHS, the NIHR, NETSCC, the HTA programme or the Department of Health and Social Care. If there are verbatim quotations included in this publication the views and opinions expressed by the interviewees are those of the interviewees and do not necessarily reflect those of the authors, those of the NHS, the NIHR, NETSCC, the HTA programme or the Department of Health and Social Care.

© Queen's Printer and Controller of HMSO 2019. This work was produced by Martineau et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.

Published by the NIHR Journals Library (www.journalslibrary.nihr.ac.uk), produced by Prepress Projects Ltd, Perth, Scotland (www.prepress-projects.co.uk).
NIHR Journals Library Editor-in-Chief

Professor Ken Stein
Chair of HTA and EME Editorial Board and Professor of Public Health,
University of Exeter Medical School, UK

NIHR Journals Library Editors

Professor Ken Stein
Chair of HTA and EME Editorial Board and Professor of Public Health,
University of Exeter Medical School, UK

Professor Andrée Le May
Chair of NIHR Journals Library Editorial Group (HS&DR, PGfAR, PHR journals)

Professor Matthias Beck
Professor of Management, Cork University Business School, Department of Management
and Marketing, University College Cork, Ireland

Dr Tessa Crilly
Director, Crystal Blue Consulting Ltd, UK

Dr Eugenia Cronin
Senior Scientific Advisor, Wessex Institute, UK

Dr Peter Davidson
Consultant Advisor, Wessex Institute, University of Southampton, UK

Ms Tara Lamont
Scientific Advisor, NETSCC, UK

Dr Catriona McDaid
Senior Research Fellow, York Trials Unit, Department of Health Sciences,
University of York, UK

Professor William McGuire
Professor of Child Health, Hull York Medical School, University of York, UK

Professor Geoffrey Meads
Professor of Wellbeing Research, University of Winchester, UK

Professor John Norrie
Chair in Medical Statistics, University of Edinburgh, UK

Professor John Powell
Consultant Clinical Adviser, National Institute for Health and Care Excellence (NICE), UK

Professor James Raftery
Professor of Health Technology Assessment, Wessex Institute, Faculty of Medicine,
University of Southampton, UK

Dr Rob Riemsma
Reviews Manager, Kleijnen Systematic Reviews Ltd, UK

Professor Helen Roberts
Professor of Child Health Research, UCL Great Ormond Street Institute of Child Health, UK

Professor Jonathan Ross
Professor of Sexual Health and HIV, University Hospital Birmingham, UK

Professor Helen Snooks
Professor of Health Services Research, Institute of Life Science, College of Medicine,
Swansea University, UK

Professor Jim Thornton
Professor of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences,
University of Nottingham, UK

Professor Martin Underwood
Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, UK

Please visit the website for a list of editors: www.journalslibrary.nihr.ac.uk/about/editors

Editorial contact: journals.library@nihr.ac.uk
Abstract

Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis

Adrian R Martineau,1,2* David A Jolliffe,1 Lauren Greenberg,1 John F Aloia,3 Peter Bergman,4 Gal Dubnov-Raz,5 Susanna Esposito,6 Davaasambuu Ganmaa,7 Adit A Ginde,8 Emma C Goodall,9 Cameron C Grant,10 Wim Janssens,11 Megan E Jensen,12 Conor P Kerley,13 Ilkka Laaksi,14 Semira Manaseki-Holland,15 David Mauger,16 David R Murdoch,17 Rachel Neale,18 Judy R Rees,19 Steve Simpson Jr,20 Iwona Stelmach,21 Geeta Trilok Kumar,22 Mitsuyoshi Urashima,23 Carlos A Camargo Jr,24 Christopher J Griffiths1,2,25 and Richard L Hooper1

1Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
2Asthma UK Centre for Applied Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
3Bone Mineral Research Center, Winthrop University Hospital, Mineola, NY, USA
4Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
5Department of Exercise, Lifestyle and Nutrition Clinic, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, Israel
6Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
7Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
8Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
9Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
10Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
11Universitaire ziekenhuizen Leuven, Leuven, Belgium
12Centre for Asthma and Respiratory Diseases, University of Newcastle, Newcastle, NSW, Australia
13Dublin City University, Dublin, Ireland
14Centre for Military Medicine, Finnish Defense Forces, University of Tampere, Tampere, Finland
15Department of Public Health, Epidemiology and Biostatistics, Institute of Applied Health Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
16Department of Statistics, The Pennsylvania State University, Hershey, PA, USA
17Department of Pathology, University of Otago, Christchurch, New Zealand
18Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, QLD, Australia
19Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
20Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
21Department of Pediatrics and Allergy, Medical University of Łódź, Łódź, Poland
22Institute of Home Economics, University of Delhi, New Delhi, India
23Division of Molecular Epidemiology, Jikei University School of Medicine, Tokyo, Japan

© Queen’s Printer and Controller of HMSO 2019. This work was produced by Martineau et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.
Background: Randomised controlled trials (RCTs) exploring the potential of vitamin D to prevent acute respiratory infections have yielded mixed results. Individual participant data (IPD) meta-analysis has the potential to identify factors that may explain this heterogeneity.

Objectives: To assess the overall effect of vitamin D supplementation on the risk of acute respiratory infections (ARIs) and to identify factors modifying this effect.

Data sources: MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, ClinicalTrials.gov and the International Standard Randomised Controlled Trials Number (ISRCTN) registry.

Study selection: Randomised, double-blind, placebo-controlled trials of supplementation with vitamin D$_3$ or vitamin D$_2$ of any duration having incidence of acute respiratory infection as a prespecified efficacy outcome were selected.

Study appraisal: Study quality was assessed using the Cochrane Collaboration Risk of Bias tool to assess sequence generation, allocation concealment, blinding of participants, personnel and outcome assessors, completeness of outcome data, evidence of selective outcome reporting and other potential threats to validity.

Results: We identified 25 eligible RCTs (a total of 11,321 participants, aged from 0 to 95 years). IPD were obtained for 10,933 out of 11,321 (96.6%) participants. Vitamin D supplementation reduced the risk of ARI among all participants [adjusted odds ratio (aOR) 0.88, 95% confidence interval (CI) 0.81 to 0.96; heterogeneity \(p < 0.001 \)]. Subgroup analysis revealed that protective effects were seen in individuals receiving daily or weekly vitamin D without additional bolus doses (aOR 0.81, 95% CI 0.72 to 0.91), but not in those receiving one or more bolus doses (aOR 0.97, 95% CI 0.86 to 1.10; \(p = 0.05 \)). Among those receiving daily or weekly vitamin D, protective effects of vitamin D were stronger in individuals with a baseline 25-hydroxyvitamin D [25(OH)D] concentration of < 25 nmol/l (aOR 0.30, 95% CI 0.17 to 0.53) than in those with a baseline 25(OH)D concentration of \(\geq \) 25 nmol/l (aOR 0.75, 95% CI 0.60 to 0.95; \(p = 0.006 \)). Vitamin D did not influence the proportion of participants experiencing at least one serious adverse event (aOR 0.98, 95% CI 0.80 to 1.20; \(p = 0.83 \)). The body of evidence contributing to these analyses was assessed as being of high quality.

Limitations: Our study had limited power to detect the effects of vitamin D supplementation on the risk of upper versus lower respiratory infection, analysed separately.

Conclusions: Vitamin D supplementation was safe, and it protected against ARIs overall. Very deficient individuals and those not receiving bolus doses experienced the benefit. Incorporation of additional IPD from ongoing trials in the field has the potential to increase statistical power for analyses of secondary outcomes.

Study registration: This study is registered as PROSPERO CRD42014013953.

Funding: The National Institute for Health Research Health Technology Assessment programme.
Contents

List of tables xi
List of figures xiii
List of abbreviations xv
Plain English summary xvii
Scientific summary xix

Chapter 1 Background 1

Chapter 2 Research questions 3

Chapter 3 Methods 5
Protocol and registration 5
Patient and public involvement 5
Eligibility criteria 5
Study identification and selection 6
Data collection processes 6
Risk-of-bias assessment for individual studies 6
Definition of outcomes 7
Synthesis methods 7
Exploration of variation in effects 7
Quality assessment across studies 8
Additional analyses 8

Chapter 4 Results 9
Study selection and individual participant data obtained 9
Study and participant characteristics 11
Risk of bias within studies 11
Overall results: acute respiratory infection incidence 11
Overall results: asthma exacerbation 18
Overall results: chronic obstructive pulmonary disease exacerbation 20
Subgroup analyses: acute respiratory infection incidence 20
Subgroup analyses: asthma exacerbation 24
Subgroup analyses: chronic obstructive pulmonary disease exacerbation 26
Secondary outcomes: efficacy 26
Secondary outcomes: safety 27
Risk of bias across studies 27
Responder analyses 27
Sensitivity analyses 29

Chapter 5 Discussion 31
Principal findings 31
Strengths and limitations 32
Future research 33
Conclusions 33
| CONTENTS |
|----------|----------|
| Acknowledgements | 35 |
| References | 37 |
| Appendix 1 Electronic search strategy | 43 |
List of tables

TABLE 1 Characteristics of the trials contributing data to analyses, and their participants 12

TABLE 2 Risk-of-bias assessment 15

TABLE 3 One-step IPD meta-analysis, proportion of participants experiencing at least one ARI: overall and by subgroup 16

TABLE 4 One-step IPD meta-analysis, ARI event rate: overall effect and subgroup analyses by baseline vitamin D status and dosing regimen 18

TABLE 5 One-step IPD meta-analysis, time to first ARI: overall effect and subgroup analyses by baseline vitamin D status and dosing regimen 18

TABLE 6 One-step IPD meta-analysis, proportion of participants experiencing at least one ARI: overall and by subgroup, stratified by dosing frequency 22

TABLE 7 One-step IPD meta-analysis, rate of asthma exacerbations requiring treatment with systemic corticosteroids: overall and by subgroup 25

TABLE 8 One-step IPD meta-analysis, COPD exacerbation rate: overall and by subgroup 26

TABLE 9 One-step IPD meta-analysis of secondary outcomes 27

TABLE 10 One-step IPD meta-analysis of secondary outcomes, stratified by dosing frequency 28

TABLE 11 Responder analyses, one-step IPD meta-analysis for the outcome of ARI 29
List of figures

FIGURE 1 The PRISMA flow diagram: ARI analysis 9
FIGURE 2 The PRISMA flow diagram: asthma exacerbation analysis 10
FIGURE 3 The PRISMA flow diagram: COPD exacerbation analysis 10
FIGURE 4 Cates plots illustrating reduction in risk of ARI with vitamin D supplementation, irrespective of dosing frequency 17
FIGURE 5 Two-step IPD meta-analysis, proportion of participants experiencing at least one ARI 19
FIGURE 6 Mean baseline serum 25(OH)D concentration at enrolment by dosing regimen 21
FIGURE 7 Mean age at enrolment by dosing regimen 21
FIGURE 8 Cates plot illustrating reduction in risk of ARI with daily or weekly vitamin D supplementation without additional bolus doses 24
FIGURE 9 Funnel plot pseudo 95% confidence limits for IPD meta-analysis of proportion of participants experiencing at least one ARI 29
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(OH)D</td>
<td>25-hydroxyvitamin D</td>
</tr>
<tr>
<td>aHR</td>
<td>adjusted hazard ratio</td>
</tr>
<tr>
<td>aIRR</td>
<td>adjusted incidence rate ratio</td>
</tr>
<tr>
<td>aOR</td>
<td>adjusted odds ratio</td>
</tr>
<tr>
<td>ARI</td>
<td>acute respiratory infection</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grading of Recommendations Assessment, Development and Evaluation</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IPD</td>
<td>individual participant data</td>
</tr>
<tr>
<td>IU</td>
<td>international unit</td>
</tr>
<tr>
<td>LRI</td>
<td>lower respiratory infection</td>
</tr>
<tr>
<td>NNT</td>
<td>number needed to treat</td>
</tr>
<tr>
<td>PPI</td>
<td>patient and public involvement</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>URI</td>
<td>upper respiratory infection</td>
</tr>
</tbody>
</table>
Plain English summary

Research question

Does taking a vitamin D supplement help to prevent colds, flu and chest infections?

Background

Low blood levels of vitamin D (the ‘sunshine vitamin’) have been linked to an increased risk of colds, flu and chest infections, collectively termed ‘acute respiratory infections’ (ARIs). Clinical trials testing whether or not vitamin D supplements can prevent ARIs have had mixed results. The reason why vitamin D appears to work in some situations but not others is not understood. In order to answer this question, we obtained data from individuals who took part in previous clinical trials, combined them and analysed them to answer two questions:

1. Does vitamin D reduce the overall risk of ARIs, broadly defined?
2. Do some people benefit more from taking vitamin D than others?

Included studies

We obtained raw data on a total of 10,933 people from 25 trials conducted in 15 countries. Participants were aged from 0 to 95 years. All of the studies compared vitamin D with placebo (dummy medication), which is the gold standard trial design.

Key results

Overall, vitamin D supplements reduced the risk of having at least one ARI from 42% to 39%. We also showed that vitamin D had greater protective effects when it was given daily or weekly to people with the lowest vitamin D levels: the risk of having at least one ARI was reduced from 60% to 32% in these individuals. Vitamin D was not effective in protecting against ARIs when it was given in large, widely spaced doses. Taking vitamin D supplements was found to be safe.

Conclusion

Taking a vitamin D supplement can protect against ARIs. The strongest effects are seen when a daily or weekly supplement is given to people with the lowest vitamin D levels.
Scientific summary

Background

Acute respiratory infections (ARIs) are a major cause of global morbidity and mortality. Observational studies report consistent independent associations between low serum concentrations of 25-hydroxyvitamin D [25(OH)D], the major circulating vitamin D metabolite, and susceptibility to ARI. The observation that 25(OH)D supports induction of antimicrobial peptides in response to both viral and bacterial stimuli suggests a potential mechanism by which vitamin D-inducible protection against these outcomes may be mediated. Vitamin D metabolites have also been reported to induce other innate antimicrobial effector mechanisms, including autophagy and synthesis of reactive nitrogen intermediates and reactive oxygen intermediates.

These epidemiological and in vitro data have prompted numerous randomised controlled trials (RCTs) to determine whether or not vitamin D supplementation can decrease the risk of ARI. A total of five aggregate data meta-analyses incorporating data from up to 15 primary trials have been conducted to date, of which two report statistically significant protective effects and three report no statistically significant effects. All but one of these aggregate data meta-analyses reported significant heterogeneity of effect between primary trials.

Such heterogeneity of effect may have arisen as a result of intertrial variation in participant characteristics and in dosing regimens, either of which may modify the effects of vitamin D supplementation on immunity to respiratory pathogens. Subgroup analyses within primary trials of vitamin D supplementation for diverse indications show that participants with lower baseline vitamin D status may derive greater clinical benefit from supplementation than those with higher baseline status. Administration of large boluses of vitamin D has been associated with reduced efficacy for non-classical effects of vitamin D and, in some cases, increased risk of adverse outcomes. Although study-level factors are amenable to exploration via aggregate data meta-analysis of published data, potential effect modifiers operating at an individual level, such as baseline vitamin D status, can only be explored using individual participant data (IPD) meta-analysis. This is because subgroups are not consistently disaggregated in trial reports, and consistent adjustments for potential confounders cannot be applied. In order to determine the overall effect of vitamin D supplementation on the risk of ARI and to identify factors that might modify the effects of this intervention on the risk of ARI, we undertook a meta-analysis of IPD from RCTs that had investigated these outcomes.

Main objectives

1. To determine the overall effect of vitamin D supplementation on the risk of ARI and serious adverse events.
2. To determine whether or not the following factors modify the effect of vitamin D supplementation on the risk of ARI:
 i. baseline vitamin D status
 ii. vitamin D dosing regimen
 iii. size of vitamin D dose
 iv. age
 v. body mass index
 vi. presence versus absence of respiratory comorbidity [e.g. asthma, chronic obstructive pulmonary disease (COPD)]
 vii. influenza vaccination status.
Methods

Data sources
Two investigators searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, ClinicalTrials.gov and the International Standard Randomised Controlled Trials Number (ISRCTN) registry for eligible studies from database inception until December 2015.

Study selection (eligibility criteria)
Randomised, double-blind, placebo-controlled trials of supplementation with vitamin D₃ or vitamin D₂ of any duration were eligible for inclusion in the ARI analysis if they had been approved by a Research Ethics Committee and if data on incidence of ARI were collected prospectively and prespecified as an efficacy outcome. Studies reporting results of long-term follow-up of primary RCTs were excluded.

Data management
Individual participant data were requested from the principal investigator for each eligible trial, and the terms of collaboration were specified in a data transfer agreement, signed by representatives of the data provider and the recipient (Queen Mary University of London). Data relating to study characteristics were extracted for the following variables: setting, eligibility criteria, details of intervention and control regimens, study duration and case definitions for ARI. IPD were extracted for the following variables, when available: baseline data were requested for age, sex, cluster identification (cluster randomised trials only), influenza vaccination status, history of asthma, history of COPD, weight, height (adults and children able to stand) or length (infants), serum 25(OH)D concentration, study allocation (vitamin D vs. placebo) and details of any stratification or minimisation variables. Follow-up data were requested for the total number of ARIs, upper respiratory infections (URIs) and lower respiratory infections (LRIs) experienced during the trial, time from first dose of study medication to first ARI/URI/LRI if applicable, total number of courses of antibiotics taken for ARI during the trial, total number of days off work or school as a result of ARI symptoms during the trial, serum 25(OH)D concentration at final follow-up, duration of follow-up, number and nature of serious adverse events, number of adverse reactions (incident hypercalcaemia or renal stones) and end-trial status (completed vs. withdrew vs. lost to follow-up vs. died).

Data were de-identified at source prior to transfer via e-mail. On receipt, three investigators assessed data integrity by performing internal consistency checks and by attempting to replicate the results of the analysis for ARI incidence when this was published in the trial report. Study authors were contacted to provide missing data and to resolve queries arising from these integrity checks. Once queries had been resolved, clean data were uploaded to the main study database.

Assessment of validity
The Cochrane Collaboration Risk of Bias tool was used to assess the following variables: sequence generation; allocation concealment; blinding of participants, personnel and outcome assessors; completeness of outcome data; evidence of selective outcome reporting; and other potential threats to validity.

Data synthesis
Initially, all studies were reanalysed separately; the original authors were asked to confirm the accuracy of this reanalysis when it had been performed previously, and any discrepancies were resolved. Then we performed both one-step and two-step IPD meta-analysis using a random-effects model adjusted for age, sex and study duration to obtain the pooled intervention effect on (1) the proportion of participants experiencing at least one ARI, (2) ARI rate and (3) time to first ARI with a 95% confidence interval (CI). The number needed to treat (NNT) for an additional beneficial outcome was calculated in which meta-analysis of dichotomous outcomes revealed a statistically significant beneficial effect of allocation to vitamin D compared with placebo.

In order to explore the causes of heterogeneity and identify factors modifying the effects of vitamin D supplementation on ARI risk, we also performed prespecified subgroup analyses by extending the one-step meta-analysis framework to include treatment–covariate interaction terms. Subgroups were defined
according to baseline vitamin D status [serum 25(OH)D concentration of < 25 nmol/l vs. ≥ 25 nmol/l],
vitamin D dosing regimen [daily or weekly administration without bolus dosing vs. administration of a regimen including at least one bolus dose of ≥ 30,000 IU (international units) of vitamin D], dose size (daily equivalent < 800 IU vs. 800–1999 IU vs. ≥ 2000 IU), age (≤ 1 year vs. 1.1–15.9 years vs. 16–65 years vs. > 65 years), body mass index (< 25 kg/m² vs. ≥ 25 kg/m²) and presence versus absence of asthma, COPD and previous influenza vaccination. Interaction analyses were adjusted for potential confounders (age, sex and study duration) in order to ensure that reported subgroup effects were independent. In order to minimise the chance of type I error arising from multiple analyses, significance was inferred only when p-values for treatment–covariate interaction terms were < 0.05.

Results

We identified 25 RCTs (total 11,321 participants, aged from 0 to 95 years) that were eligible for the ARI analysis. These trials were conducted in 15 different countries on four continents and enrolled participants of both sexes from birth to 95 years of age. The mean baseline 25(OH)D concentration ranged from 18.9 to 88.9 nmol/l. All studies administered oral vitamin D₃ to participants in the intervention arm: this was given as monthly to once every 3 months bolus doses in seven studies, as weekly doses in three studies, as a daily dose in 12 studies and as a combination of bolus and daily doses in three studies. Study duration ranged from 7 weeks to 1.5 years. Incidence of ARI was a primary or coprimary outcome for 14 studies and a secondary outcome for 11 studies.

Individual participant data were obtained for 10,933 out of 11,321 (96.6%) participants in these studies. In the one-step IPD meta-analysis, vitamin D supplementation resulted in a statistically significant reduction in the proportion of participants experiencing at least one ARI [adjusted Odds Ratio (aOR) 0.88, 95% CI 0.81 to 0.96; p = 0.003, p for heterogeneity < 0.001; 10,933 participants in 25 studies]. The number needed to benefit was 33 (95% CI 20 to 101). Statistically significant protective effects of vitamin D were also seen for one-step analyses of ARI rate [adjusted incidence rate ratio (aIRR) 0.96, 95% CI 0.92 to 0.997; p = 0.04; p for heterogeneity < 0.001; 10,703 participants in 25 studies] but not for analysis of time to first ARI [adjusted hazard ratio (aHR) 0.95, 95% CI 0.89 to 1.01; p = 0.09; p for heterogeneity < 0.001; 9108 participants in 18 studies]. Two-step analyses showed consistent effects for the proportion of participants experiencing at least one ARI (aOR 0.80, 95% CI 0.69 to 0.93; p = 0.004; p for heterogeneity = 0.001; 10,899 participants in 24 studies), ARI rate (aIRR 0.91, 95% CI 0.84 to 0.98; p = 0.018; p for heterogeneity < 0.001; 10,703 participants in 25 studies) and time to first ARI (aHR 0.92, 95% CI 0.85 to 1.00; p = 0.051; p for heterogeneity = 0.14; 9108 participants in 18 studies). Vitamin D did not influence the proportion of participants experiencing at least one serious adverse event (aOR 0.98, 95% CI 0.80 to 1.20; p = 0.83). This evidence was assessed as being of high quality.

Subgroup analyses revealed a strong protective effect of vitamin D supplementation among individuals with baseline circulating 25(OH)D concentration of < 25 nmol/l (aOR 0.58, 95% CI 0.40 to 0.82; NNT 8, 95% CI 5 to 21; 538 participants in 14 studies; within subgroup, p = 0.002), and no statistically significant effect among those with baseline 25(OH)D concentration of ≥ 25 nmol/l (aOR 0.89, 95% CI 0.77 to 1.04; 3634 participants in 19 studies; within subgroup, p = 0.15; for interaction, p = 0.01). Stronger protective effects of vitamin D against ARIs were also seen in trials in which vitamin D was administered using a daily or weekly regimen without additional bolus doses (aOR 0.81, 95% CI 0.72 to 0.91; NNT 20, 95% CI 13 to 43; 5133 participants in 15 studies; within subgroup, p < 0.001; no such protective effect was seen among participants in trials in which at least one bolus dose of vitamin D was administered (aOR 0.97, 95% CI 0.86 to 1.01; 5800 participants in 10 studies; within subgroup, p = 0.67; p for interaction = 0.05). For both of these subgroup analyses, broadly consistent effects were observed for event rate analysis and survival analysis. The p-values for interaction were > 0.05 for all other potential effect modifiers investigated.
We then proceeded to stratify the subgroup analyses according to dosing frequency, in order to provide a cleaner look at results of subgroup analyses under the assumption that administration of bolus doses was ineffective. The results of this exploratory analysis suggested that daily or weekly administration of vitamin D induced an even greater degree of protection against ARI among participants with baseline circulating 25(OH)D concentrations of < 25 nmol/l than in the unstratified analysis (aOR 0.30, 95% CI 0.17 to 0.53; NNT 4, 95% CI 3 to 7; 234 participants in six studies; within subgroup, p < 0.001). Moreover, administration of daily or weekly vitamin D also protected against ARI among participants with higher baseline 25(OH)D concentrations (aOR 0.75, 95% CI 0.60 to 0.95; NNT 15, 95% CI 9 to 86; 1603 participants in six studies; within subgroup, p = 0.02). The p-value for interaction for this subgroup analysis was 0.006, indicating that protective effects of daily or weekly vitamin D supplementation were significantly greater in the subgroup of participants with profound vitamin D deficiency. No other statistically significant interaction was seen; notably, bolus dose vitamin D supplementation did not offer any protection against ARI even when administered to those with circulating 25(OH)D concentrations of < 25 nmol/l (aOR 0.82, 95% CI 0.51 to 1.33; 304 participants in eight studies; within subgroup, p = 0.43).

Limitations

Our power to detect effects of vitamin D supplementation was limited for some subgroups [e.g. individuals with baseline 25(OH)D concentration of < 25 nmol/l receiving bolus-dosing regimens]. Null and borderline significant results for analyses of these outcomes may have arisen as a consequence of type II error. Data relating to adherence to study medication were not available for all subjects. However, the inclusion of non-adherent participants would bias results of our intention-to-treat analysis towards the null; thus, we conclude that effects of vitamin D in those who are fully adherent to supplementation will be no less than those reported for the study population overall. Finally, we caution that study definitions of ARI were diverse, and virological, microbiological and/or radiological confirmation was obtained for a minority of events. ARI is often a clinical diagnosis in practice, however, and as all studies were double-blind and placebo-controlled, differences in incidence of events between study arms cannot be attributed to observation bias.

Conclusions

Implications for health care

Our synthesis of the current evidence suggests that vitamin D supplementation can prevent ARIs, broadly defined. We identified that the greatest potential benefit is for those individuals who are very deficient in vitamin D. Those receiving daily or weekly supplementation without additional bolus doses also experienced particular benefit. Our results add to the body of evidence supporting the introduction of public health measures, such as food fortification, to improve vitamin D status in settings in which profound vitamin D deficiency is common.

Recommendations for research

1. Incorporation of additional IPD from ongoing trials in the field has the potential to increase statistical power for subgroup analyses; this IPD meta-analysis should therefore be updated when a significant new body of data has accumulated.
2. Given the major impact of ARIs on economic productivity and health-care use, our findings are likely to influence the economic case for the introduction of vitamin D fortification of foods in the UK. Economic models of the cost-effectiveness of vitamin D fortification in the UK should therefore be updated to take account of the previously unappreciated protective effects of vitamin D against ARIs.
Study registration

This study is registered as PROSPERO CRD42014013953.

Funding

Funding for this study was provided by the Health Technology Assessment programme of the National Institute for Health Research.
Chapter 1 Background

A cute respiratory infections (ARIs) are a major cause of global morbidity and mortality, responsible for
10% of ambulatory and emergency department visits in the USA1 and an estimated 2.65 million
deaths worldwide in 2013.2 Viral ARI precipitate the majority of acute exacerbations of asthma and chronic
obstructive pulmonary disease (COPD),3 which represent the major cause of morbidity and mortality in
people with these conditions.4,5

Observational studies report consistent independent associations between low serum concentrations of
25-hydroxyvitamin D [25(OH)D], the major circulating vitamin D metabolite, and susceptibility to ARI6,7 and
acute exacerbations of asthma8,9 such observational studies have yielded more conflicting results for the
outcomes of COPD exacerbation.10–12 The observation that 25(OH)D supports induction of antimicrobial
peptides in response to both viral and bacterial stimuli13–15 suggests a potential mechanism by which
vitamin D-inducible protection against these outcomes may be mediated. Vitamin D metabolites have
also been reported to induce other innate antimicrobial effector mechanisms, including autophagy and
synthesis of reactive nitrogen intermediates and reactive oxygen intermediates.16 In addition, vitamin D
metabolites have been reported to induce anti-inflammatory activity via multiple mechanisms, including
induction of the regulatory cytokine interleukin (IL) 1017 and inhibition of the pro-inflammatory cytokine
IL-17A.18 We have also recently shown that 25(OH)D attenuates rhinovirus-induced expression of the genes
encoding intercellular adhesion molecule 1 (ICAM-1, a cell surface glycoprotein that acts as the cellular
receptor for major group rhinoviruses) and platelet-activating factor receptor (PAFR, a G-protein coupled
receptor implicated in adhesion of Streptococcus pneumoniae to respiratory epithelial cells).19 These
findings suggest possible mechanisms by which vitamin D may enhance resistance to rhinovirus infection
and reduce risk of secondary bacterial infection in vitamin D-deficient individuals.

These epidemiological and in vitro data have prompted numerous randomised controlled trials (RCTs) to
determine whether or not vitamin D supplementation can decrease the risk of ARI and acute exacerbations
of asthma and COPD. For the outcome of ARI, a total of five aggregate data meta-analyses incorporating
data from up to 15 primary trials have been conducted to date, of which two report statistically significant
protective effects20,21 and three report no statistically significant effects.22–24 All but one of these aggregate
data meta-analyses22 reported significant heterogeneity of effect between primary trials. For the outcome
of asthma exacerbation, a total of four aggregate data meta-analyses incorporating data from up to
nine primary trials have been conducted to date, of which three report statistically significant protective
effects23,25,26 and one reports no statistically significant effects.27 The most recent of these – and the one
incorporating data from the most studies – reported a high degree of heterogeneity of effect between
trials for the outcome of study-defined asthma exacerbation.26 We are not aware of any published
meta-analyses investigating effects of vitamin D supplementation on the risk of COPD exacerbation,
which may reflect the fact that only three primary trials investigating this question have been published
to date.28–30

When heterogeneity of effect is present, it may have arisen as a result of intertrial variation in participant
characteristics and in dosing regimens, either of which may modify the effects of vitamin D supplementation
on immunity to respiratory pathogens.31 Subgroup analyses within primary trials suggest that COPD patients
with lower baseline vitamin D status may derive greater clinical benefit from supplementation than those
with higher baseline status.28,29 Moreover, participant characteristics such as age and body mass index have
been reported to modify the 25(OH)D response to vitamin D supplementation.32,33 Administration of large
boluses of vitamin D has been associated with reduced efficacy for non-classical effects20 and, in some
cases, increased risk of adverse outcomes.34 Although study-level factors are amenable to exploration via
aggregate data meta-analysis of published data, potential effect modifiers operating at an individual level,
such as baseline vitamin D status, can only be explored using individual participant data (IPD) meta-analysis.
This is because subgroups are not consistently disaggregated in trial reports, and consistent adjustments for potential confounders cannot be applied.35 In order to identify factors that might modify effects of vitamin D supplementation on the risk of ARI and acute exacerbations of asthma and COPD, we undertook a meta-analysis of IPD from RCTs that had investigated these outcomes. The results of some of these analyses have been published elsewhere.36–38
Chapter 2 Research questions

1. What is the overall effect of vitamin D supplementation on the risk of:

 i. acute respiratory infections, incorporating events classified as upper respiratory infections (URIs), lower respiratory infections (LRIs) and ARIs of unclassified location (i.e. infection of the upper and/or lower respiratory tract)

 ii. upper respiratory infections and LRIs, analysed separately

 iii. emergency department attendance and/or hospital admission for ARI

 iv. use of antimicrobials for treatment of ARI

 v. work/school absence as a result of ARI

 vi. severe exacerbations of asthma

 vii. severe exacerbations of COPD

 viii. serious adverse events

 ix. potential adverse reactions to vitamin D (hypercalcaemia and renal stones)

 x. mortality (related to ARI/respiratory failure, infection and all-cause) and to identify factors modifying this effect?

2. Do the following factors modify the effect of vitamin D supplementation on the risk of ARI?

 i. baseline vitamin D status [serum 25(OH)D concentration of < 25 nmol/l vs. ≥ 25 nmol/l]

 ii. dosing regimen [daily or weekly administration of vitamin D without bolus dosing vs. administration of a regimen including at least one bolus dose of ≥ 30,000 international units (IU) of vitamin D]

 iii. dose size (daily equivalent < 800 IU vs. 800–1999 IU vs. ≥ 2000 IU of vitamin D)

 iv. age (≤ 1 year vs. 1.1–15.9 years vs. 16–65 years vs. > 65 years)

 v. body mass index (< 25 kg/m² vs. ≥ 25 kg/m²)

 vi. presence versus absence of respiratory comorbidity (asthma, COPD)

 vii. influenza vaccination status.
Chapter 3 Methods

Protocol and registration

Methods were prespecified in a protocol that was registered with the PROSPERO International Prospective Register of Systematic Reviews [www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42014013953 accessed 1 May 2018]. Research Ethics Committee approval to conduct this meta-analysis was not required in the UK; local ethics permission to contribute de-identified IPD from primary trials was required and obtained for studies by Camargo et al.39 (the Ethics Review Committee of the Mongolian Ministry of Health), Murdoch et al.40 (Southern Health and Disability Ethics Committee, reference URB/09/10/050/AM02), Rees et al.41 (Committee for the Protection of Human Subjects, Dartmouth College, NH, USA; Protocol no 24381), Tachimoto et al.42 (Ethics Committee of the Jikei University School of Medicine, reference 26-333: 7839), Tran et al.43 (QIMR Berghofer Medical Research Institute Human Research Ethics Committee, reference number P1570) and Urashima et al.44,45 (Ethics Committee of the Jikei University School of Medicine, reference 26-333: 7839).

Patient and public involvement

Two patient and public involvement (PPI) representatives were involved in development of the research question and the choice of outcome measures specified in the study protocol through discussion with the investigators. When possible, results of this systematic review and meta-analysis will be disseminated to individual participants via the principal investigators of each trial (e.g. via e-mail to participants who have requested updates on how their data are being used). PPI representatives and participants in primary trials are thanked for their contributions in the Acknowledgements.

Eligibility criteria

For the IPD meta-analysis of ARI outcomes, randomised, double-blind, placebo-controlled trials of supplementation with vitamin D3 or vitamin D2 of any duration were eligible for inclusion if they had been approved by a Research Ethics Committee and if data on incidence of ARI were collected prospectively and prespecified as an efficacy outcome. The last requirement was imposed to minimise misclassification bias (prospectively designed instruments to capture these events were deemed more likely to be sensitive and specific for this outcome). Studies reporting results of long-term follow-up of primary RCTs were excluded.

For the IPD meta-analysis of asthma exacerbation, randomised, double-blind, placebo-controlled trials of supplementation with vitamin D3 or vitamin D2 in patients with asthma were eligible for inclusion if they had been approved by a Research Ethics Committee and if data on incidence of asthma exacerbation were reported.

For the IPD meta-analysis of COPD exacerbation, randomised, double-blind, placebo-controlled trials of supplementation with vitamin D3 or vitamin D2 in patients with COPD were eligible for inclusion if they had been approved by a Research Ethics Committee and if data on incidence of COPD exacerbation were reported.
Study identification and selection

Two investigators (ARM and DAJ) searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, ClinicalTrials.gov and the International Standard Randomised Controlled Trials Number (ISRCTN) registry using the electronic search strategies described in Appendix 1. Searches were regularly updated up to and including 31 December 2015 for the ARI analysis, 26 October 2016 for the analysis of asthma exacerbations and 31 July 2017 for the analysis of COPD exacerbations. No language restrictions were imposed. These searches were supplemented by searching review articles and reference lists of trial publications. Collaborators were asked if they knew of any additional trials. Three investigators (ARM, CAC and DAJ) determined which trials met the eligibility criteria; disagreements were resolved by consensus. References were managed in EndNote X5 [Clarivate Analytics (formerly Thomson Reuters), Philadelphia, PA, USA].

Data collection processes

Individual participant data were requested from the principal investigator for each eligible trial and the terms of collaboration were specified in a data transfer agreement, signed by representatives of the data provider and the recipient (Queen Mary University of London). Data were de-identified at source prior to transfer via e-mail. On receipt, three investigators (DAJ, RLH and LG) assessed data integrity by performing internal consistency checks and by attempting to replicate results of analyses that were published in trial reports. Study authors were contacted to provide missing data and to resolve queries arising from these integrity checks. Once queries had been resolved, clean data were uploaded to the main study database, which was held in Stata® IC version12 (StataCorp LP, College Station, TX, USA).

Data relating to study characteristics were extracted for the following variables: setting, eligibility criteria, details of intervention and control regimens, study duration and case definitions for ARI. IPD were extracted for the following variables, when available: baseline data were requested for age, sex, cluster ID (cluster randomised trials only), racial/ethnic origin, influenza vaccination status, history of asthma, history of COPD, weight, height (adults and children able to stand) or length (infants), serum 25(OH)D concentration, study allocation (vitamin D vs. placebo) and details of any stratification or minimisation variables. For all trials, follow-up data were requested for serum 25(OH)D concentration at final follow-up, duration of follow-up, number and nature of serious adverse events, number of adverse reactions (incident hypercalcaemia or renal stones) and end-trial status (completed vs. withdrew vs. lost to follow-up vs. died). For trials contributing IPD to the ARI analysis, follow-up data were also requested for the total number of ARIs, URIs and LRIs experienced during the trial, time from first dose of study medication to first ARI/URI/LRI if applicable, total number of courses of antibiotics taken for ARI during the trial and total number of days off work or school as a result of ARI symptoms during the trial. For trials contributing IPD to the analysis of severe asthma exacerbation, follow-up data were also requested for the total number of asthma exacerbations experienced during the trial that were treated with systemic corticosteroids and the time from the first dose of study medication to the first such exacerbation, if applicable. For trials contributing IPD to the analysis of severe COPD exacerbation, follow-up data were also requested for the total number of COPD exacerbations experienced during the trial that were treated with systemic corticosteroids and/or antibiotics and the time from the first dose of study medication to the first such exacerbation if applicable.

Risk-of-bias assessment for individual studies

We used the Cochrane Collaboration Risk of Bias tool46 to assess the following variables: sequence generation; allocation concealment; blinding of participants, personnel and outcome assessors; completeness of outcome data; evidence of selective outcome reporting; and other potential threats to validity. Study quality was assessed independently by two investigators (ARM and DAJ), except for the three trials by Martineau et al.,29,47,48 which were assessed by Carlos A Camargo Jr. Discrepancies were resolved by consensus.
Definition of outcomes

The primary outcome of the meta-analysis was incidence of ARI, incorporating events classified as URIs, LRIs and ARIs of unclassified location (i.e. infection of the upper and/or lower respiratory tract). Secondary outcomes were incidence of URI and LRI, analysed separately; incidence of emergency department attendance and/or hospital admission for ARI; use of antimicrobials for treatment of ARI; work/school absence as a result of ARI; incidence of severe asthma exacerbation, defined as a worsening of asthma symptoms resulting in treatment with systemic corticosteroids; incidence of severe COPD exacerbation, defined as a worsening of symptoms resulting in treatment with systemic corticosteroids and/or antibiotics; incidence and nature of serious adverse events; incidence of potential adverse reactions to vitamin D (hypercalcaemia and renal stones); and mortality (related to ARI/respiratory failure, infection and all-cause).

Synthesis methods

Data were analysed by Lauren Greenberg and Richard L Hooper. Our IPD meta-analysis approach followed published guidelines.35 Initially, all studies were reanalysed separately; the original authors were asked to confirm the accuracy of this reanalysis when it had been performed previously, and any discrepancies were resolved. We then performed both one-step and two-step IPD meta-analysis using a random-effects model adjusted for age, sex and study duration to obtain the pooled intervention effect with a 95% confidence interval (CI). We did not adjust for other covariates because missing values for some participants would have led to their exclusion from statistical analyses. In the one-step approach, IPD from all studies were modelled simultaneously while accounting for the clustering of participants within studies. In the two-step approach, IPD were first analysed for each separate study independently to produce an estimate of the treatment effect for that study; these data were then synthesised in a second step.35 For one-step IPD meta-analysis, heterogeneity was assessed by calculation of the standard deviation of random effects; for two-step IPD meta-analysis, heterogeneity was summarised using the I^2 statistic. The number needed to treat (NNT) for an additional beneficial outcome was calculated using the Visual Rx NNT calculator (www.nntonline.net/visualrx/) when meta-analysis of dichotomous outcomes revealed a statistically significant beneficial effect of allocation to vitamin D versus placebo.

Exploration of variation in effects

In order to explore the causes of heterogeneity and identify factors modifying the effects of vitamin D supplementation on ARI risk, we performed prespecified subgroup analyses by extending the one-step meta-analysis framework to include treatment–covariate interaction terms. Subgroups were defined according to baseline vitamin D status [serum 25(OH)D concentration of < 25 nmol/l vs. ≥ 25 nmol/l], vitamin D dosing regimen (daily or weekly administration without bolus dosing vs. administration of a regimen including at least one bolus dose of $\geq 30,000$ IU of vitamin D), dose size (daily equivalent < 800 IU vs. $800–1999$ IU vs. ≥ 2000 IU), age (≤ 1 year vs. $1.1–15.9$ years vs. $16–65$ years vs. > 65 years), body mass index (< 25 kg/m2 vs. ≥ 25 kg/m2), presence versus absence of asthma or COPD and previous influenza vaccination status. Interaction analyses were adjusted for potential confounders (age, sex and study duration) to ensure that reported subgroup effects were independent. The 25 nmol/l cut-off point for baseline 25(OH)D concentration in subgroup analyses was selected on the basis that it is the threshold for vitamin D deficiency defined by the UK Department of Health and Social Care49 and the level below which participants in clinical trials have experienced the most consistent benefits of supplementation.50 In order to minimise the chance of type I error arising from multiple analyses, significance was inferred only when p-values for treatment–covariate interaction terms were < 0.05.
Quality assessment across studies

For the primary analysis, the likelihood of publication bias was investigated through the construction of a contour-enhanced funnel plot.51 We used the five Grading of Recommendations Assessment, Development and Evaluation (GRADE) considerations [(1) study limitations, (2) consistency of effect, (3) imprecision, (4) indirectness and (5) publication bias]52 to assess the quality of the body of evidence contributing to analyses of the primary efficacy outcome and major safety outcome of our meta-analysis.

Additional analyses

For the ARI analysis, we conducted sensitivity analyses excluding IPD from trials in which ARI was a secondary outcome (as opposed to a primary or coprimary outcome) and in which risk of bias was assessed as being unclear. We also conducted a responder analysis in participants randomised to the intervention arm of included studies for whom end-study 25(OH)D concentration data were available, comparing risk of ARI in those who attained a serum concentration of 25(OH)D of ≥ 75 nmol/l with that in those who did not.
Chapter 4 Results

Study selection and individual participant data obtained

For the ARI analysis, our search identified a total of 532 unique studies that were assessed for eligibility; of these, 25 studies with a total of 11,321 randomised participants fulfilled eligibility criteria. IPD were sought and obtained for all 25 studies. Outcome data were obtained for 10,933 out of 11,321 (96.6%) of the randomised participants in these 25 studies (Figure 1).

For the analysis of severe asthma exacerbations, our search identified a total of 483 unique studies that were assessed for eligibility; of these, eight studies with a total of 1078 randomised participants fulfilled eligibility criteria. IPD were obtained for seven of the eight studies. Outcome data were obtained for 955 out of 978 (97.6%) of the randomised participants in these seven studies (Figure 2).

For the analysis of severe COPD exacerbations, our search identified a total of 254 unique studies that were assessed for eligibility; of these, three studies with a total of 510 randomised participants fulfilled eligibility criteria. IPD were obtained for two of the three studies. Outcome data were obtained for 422 out of 422 (100%) of the randomised participants in these two studies (Figure 3).

FIGURE 1 The PRISMA flow diagram: ARI analysis. CENTRAL, Cochrane Central Register of Controlled Trials; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
RESULTS

FIGURE 2 The PRISMA flow diagram: asthma exacerbation analysis. CENTRAL, Cochrane Central Register of Controlled Trials; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

FIGURE 3 The PRISMA flow diagram: COPD exacerbation analysis. CENTRAL, Cochrane Central Register of Controlled Trials; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
Study and participant characteristics

Characteristics of studies contributing data to this meta-analysis and their participants are presented in Table 1.

Trials were conducted in 15 different countries on four continents and enrolled participants of both sexes from birth to 95 years of age. Baseline serum 25(OH)D concentrations were determined in 21 out of 27 trials: the mean baseline 25(OH)D concentration ranged from 18.9 to 88.9 nmol/l. All studies administered oral vitamin D₃ to participants in the intervention arm: this was given as monthly to once every 3 months bolus doses in seven studies, as weekly doses in three studies, as a daily dose in 13 studies, and as a combination of bolus and daily doses in four studies. Study duration ranged from 7 weeks to 1.5 years. Incidence of ARI was a primary or coprimary outcome for 14 studies, and a secondary outcome for 11 studies. Incidence of asthma exacerbation was a primary or coprimary outcome for two studies and a secondary outcome for five studies. Incidence of COPD exacerbation was a primary or coprimary outcome for two studies; no study included this as a secondary outcome.

The integrity of the IPD was confirmed by replication of the primary analyses in published papers when applicable. The process of checking IPD identified three minor errors in published reports. For the 2012 trial by Manaseki-Holland et al., the correct number of repeat episodes of chest radiograph-confirmed pneumonia was 134, rather than 138 as reported. For the trial by Dubnov-Raz et al., the number of patients randomised to the intervention arm was 27, rather than 28 as reported. For the trial by Laaksi et al., the proportion of men randomised to placebo who did not experience any ARI was 30 out of 84, rather than 30 out of 80 as reported.

Risk of bias within studies

Details of the risk-of-bias assessment are provided in Table 2.

All but three trials were assessed as being at a low risk of bias for all aspects assessed. Three trials were assessed as being at an unclear risk of bias owing to high rates of loss to follow-up. In the trial by Dubnov-Raz et al., 52% of participants did not complete all symptom questionnaires. In the trial by Laaksi et al., 37% of randomised participants were lost to follow-up. In the trial by Kerley et al., 24% of randomised participants were lost to follow-up.

Overall results: acute respiratory infection incidence

The results of the one-step IPD meta-analysis testing the effects of vitamin D on the proportion of all participants experiencing at least one ARI, adjusting for age, sex and study duration, are presented in Table 3. Vitamin D supplementation resulted in a statistically significant reduction in the proportion of participants experiencing at least one ARI [adjusted odds ratio (aOR) 0.88, 95% CI 0.81 to 0.96, p = 0.003; p for heterogeneity < 0.001; NNT 33, 95% CI 20 to 101; 10,933 participants in 25 studies; Cates plot, Figure 4].

Statistically significant protective effects of vitamin D were also seen for the one-step analyses of ARI rate [adjusted incidence rate ratio (aIRR) 0.96, 95% CI 0.92 to 0.997; p = 0.04 and p for heterogeneity < 0.001] in 10,703 participants in 25 studies (Table 4). However, the protective effects of vitamin D were not seen in the analysis of time to first ARI [adjusted hazard ratio (aHR) 0.95, 95% CI 0.89 to 1.01; p = 0.09 and p for heterogeneity < 0.001] in 9108 participants in 18 studies (Table 5). Two-step analyses also showed consistent effects for the proportion of participants experiencing at least one ARI [aOR 0.80, 95% CI 0.69 to 0.93; p = 0.004 and p for heterogeneity = 0.001] in 10,899 participants in 24 studies (Figure 5), ARI rate [aIRR 0.91, 95% CI 0.84 to 0.98; p = 0.018 and p for heterogeneity < 0.001] in 10,703 participants in 25 studies, and time to first ARI [aHR 0.92, 95% CI 0.85 to 1.00; p = 0.051 and p for heterogeneity = 0.14] in 9108 participants in 18 studies. This evidence was assessed as being of high quality.
TABLE 1 Characteristics of the trials contributing data to analyses, and their participants

<table>
<thead>
<tr>
<th>First author and year</th>
<th>Setting</th>
<th>Participants</th>
<th>Mean age (years) (SD) [range]</th>
<th>Male : female</th>
<th>25(OH)D assay, EQA scheme</th>
<th>Mean baseline 25(OH)D concentration (nmol/l) (SD) [range]</th>
<th>Baseline 25(OH)D concentration < 25 nmol/l (%)</th>
<th>Intervention: control</th>
<th>Oral dose of vitamin D₃, intervention arm</th>
<th>Control</th>
<th>Study duration</th>
<th>Outcome</th>
<th>ARI definition</th>
<th>n entering analysis/ N randomised (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-Ng 2009</td>
<td>USA</td>
<td>Healthy adults</td>
<td>57.9 (13.6) [21.4–80.6]</td>
<td>34 : 128</td>
<td>RIA (DiaSorin, Saluggia, Italy)</td>
<td>63.7 (25.5) [16.0–156.0]</td>
<td>3/150 (2.0)</td>
<td>84 : 78</td>
<td>50 µg daily</td>
<td>Placebo</td>
<td>3 months</td>
<td>ARI (1y)</td>
<td>URI ≥ 2 URI symptoms in absence of allergy symptoms</td>
<td>157/162 (96.9)</td>
</tr>
<tr>
<td>Urashima 2010</td>
<td>Japan</td>
<td>Schoolchildren</td>
<td>10.2 (2.3) [6.0–15.0]</td>
<td>242 : 188</td>
<td>–</td>
<td>Not determined</td>
<td>217 : 213</td>
<td>30 µg daily</td>
<td>Placebo</td>
<td>4 months</td>
<td>ARI (1y), asthma exacerbation (2y in subset)</td>
<td>334/430 (77.7), ARI 99/110, asthma exacerbation</td>
<td>453/453 (100.0)</td>
<td></td>
</tr>
<tr>
<td>Manaseki-Holland 2010</td>
<td>Afghanistan</td>
<td>Pre-school children with pneumonia</td>
<td>1.1 (0.8) [0.1–3.3]</td>
<td>257 : 196</td>
<td>–</td>
<td>Not determined</td>
<td>224 : 229</td>
<td>2.5-mg bolus, once</td>
<td>Placebo</td>
<td>3 months</td>
<td>ARI (2y)</td>
<td>URI: repeat episode of pneumonia – age-specific tachypnoea without wheeze</td>
<td>453/453 (100.0)</td>
<td></td>
</tr>
<tr>
<td>Laaksi 2010</td>
<td>Finland</td>
<td>Military conscripts</td>
<td>19.1 (0.6) [18.0–21.0]</td>
<td>164 : 0</td>
<td>EIA [Immunodiagnostic Systems Holdings plc (IDS), The Boldoms, UK; Octeia®]</td>
<td>75.9 (18.7) [41.9–129.0]</td>
<td>0/73 (0.0)</td>
<td>80 : 84</td>
<td>10 µg daily</td>
<td>Placebo</td>
<td>6 months</td>
<td>ARI (1y)</td>
<td>URI: medical record diagnosis</td>
<td>164/164 (100.0)</td>
</tr>
<tr>
<td>Majak 2011</td>
<td>Poland</td>
<td>Children with asthma</td>
<td>10.9 (3.3) [6.0–17.0]</td>
<td>32 : 16</td>
<td>RIA (BioSource Europe, S.A., Nivelles, Belgium)</td>
<td>88.9 (38.2) [31.5–184.7]</td>
<td>0/48 (0.0)</td>
<td>24 : 24</td>
<td>12.5 µg daily</td>
<td>Placebo</td>
<td>6 months</td>
<td>Asthma exacerbation (1y), ARI (2y)</td>
<td>484/48 (100.0), asthma exacerbation and ARI</td>
<td>2064/2079 (99.3)</td>
</tr>
<tr>
<td>Trilok Kumar 2011</td>
<td>India</td>
<td>Low-birthweight infants</td>
<td>0.1 (0.0) [0.0–0.3]</td>
<td>970 : 1109</td>
<td>–</td>
<td>Not determined</td>
<td>1039 : 1040</td>
<td>35 µg weekly</td>
<td>Placebo</td>
<td>6 months</td>
<td>ARI (2y)</td>
<td>URI: medical record diagnosis of events causing hospitalisation</td>
<td>2064/2079 (99.3)</td>
<td></td>
</tr>
<tr>
<td>Lehouck 2012</td>
<td>Belgium</td>
<td>Adults with COPD</td>
<td>67.9 (8.3) [48.0–86.0]</td>
<td>145 : 37</td>
<td>RIA (DiaSorin)</td>
<td>49.8 (29.2) [9.0–159.7]</td>
<td>31/182 (17.0)</td>
<td>91 : 91</td>
<td>2.5-mg bolus monthly</td>
<td>Placebo</td>
<td>1 year</td>
<td>COPD exacerbation (1y), ARI (2y)</td>
<td>URI: self-report on health status</td>
<td>175/182 (96.2), ARI 180/182, COPD exacerbation</td>
</tr>
<tr>
<td>Manaseki-Holland 2012</td>
<td>Afghanistan</td>
<td>Infants</td>
<td>0.5 (0.3) [0.0–1.0]</td>
<td>1591 : 1455</td>
<td>–</td>
<td>Not determined</td>
<td>1524 : 1522</td>
<td>2.5-mg bolus once every 3 months</td>
<td>Placebo</td>
<td>1.5 years</td>
<td>ARI (1y)</td>
<td>URI: pneumonia confirmed by chest radiograph</td>
<td>301/3046 (98.9)</td>
<td></td>
</tr>
<tr>
<td>Camargo 2012</td>
<td>Mongolia</td>
<td>Third/fourth grade schoolchildren</td>
<td>10.0 (0.9) [7.0–12.7]</td>
<td>129 : 118</td>
<td>LC-MS/MS</td>
<td>18.9 (9.7) [3.3–61.2]</td>
<td>192/245 (78.4)</td>
<td>143 : 104</td>
<td>7.5 µg daily</td>
<td>Placebo</td>
<td>7 weeks</td>
<td>ARI (2y)</td>
<td>URI: parent-reported 'chest infections or colds'</td>
<td>244/247 (98.8)</td>
</tr>
<tr>
<td>First author and year</td>
<td>Setting</td>
<td>Participants</td>
<td>Mean age (years) (SD)</td>
<td>Male : female</td>
<td>25(OH)D assay, EQA scheme</td>
<td>Mean baseline 25(OH)D concentration (nmol/l) (SD) [range]</td>
<td>Baseline 25(OH)D concentration < 25 nmol/l (%)</td>
<td>Intervention: control</td>
<td>Oral dose of vitamin D3: intervention arm</td>
<td>Study duration</td>
<td>Outcome</td>
<td>ARI definition</td>
<td>n entering analysis/ randomised (%)</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>--------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Murdoch 2012</td>
<td>New Zealand</td>
<td>Healthy adults</td>
<td>48.1 (9.7) [18.0–67.6]</td>
<td>81 : 241</td>
<td>LC-MS/MS</td>
<td>72.1 (22.1) [13.0–142.0]</td>
<td>5/322 (1.6)</td>
<td>2 x 5-mg bolus monthly, then 2.5-mg bolus monthly</td>
<td>Placebo</td>
<td>1.5 years</td>
<td>ARI (1y)</td>
<td>322/322 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bergman 2012</td>
<td>Sweden</td>
<td>Adults with increased susceptibility to ARI</td>
<td>53.1 (13.1) [20.0–77.0]</td>
<td>38 : 102</td>
<td>CLA (DiaSorin)</td>
<td>49.3 (23.2) [8.0–135.0]</td>
<td>15/131 (11.45)</td>
<td>100 µg daily</td>
<td>Placebo</td>
<td>1 year</td>
<td>ARI (2y)</td>
<td>124/140 (88.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marchisio 2013</td>
<td>Italy</td>
<td>Children with recurrent acute otitis media</td>
<td>52.8 (1.0) [1.3–4.8]</td>
<td>64 : 52</td>
<td>CLA (DiaSorin)</td>
<td>65.3 (17.3) [24.7–120.6]</td>
<td>2/116 (1.7)</td>
<td>25 µg daily</td>
<td>Placebo</td>
<td>6 months</td>
<td>ARI (1y)</td>
<td>116/16 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rees 2013</td>
<td>USA</td>
<td>Adults with previous colorectal adenoma</td>
<td>2.8 (0.6) [0.7–1.3]</td>
<td>438 : 321</td>
<td>RIA (IDS)</td>
<td>62.5 (19.3) [24.7–120.6]</td>
<td>2/116 (1.7)</td>
<td>25 µg daily</td>
<td>Placebo</td>
<td>13 months (average)</td>
<td>ARI (2y)</td>
<td>759/759 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tran 2014</td>
<td>Australia</td>
<td>Healthy older adults</td>
<td>71.7 (6.9) [60.3–85.2]</td>
<td>343 : 301</td>
<td>CLA (DiaSorin)</td>
<td>41.7 (13.5) [12.6–105.0]</td>
<td>66/643 (10.3)</td>
<td>0.75 mg bolus vs. 1.5 mg bolus monthly</td>
<td>Placebo</td>
<td>1 year</td>
<td>ARI (2y)</td>
<td>594/644 (92.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodall 2014</td>
<td>Canada</td>
<td>Healthy university students</td>
<td>19.6 (2.2) [17.0–33.0]</td>
<td>218 : 382</td>
<td>CLA (DiaSorin)</td>
<td>62.5 (19.3) [24.7–120.6]</td>
<td>2/116 (1.7)</td>
<td>25 µg daily</td>
<td>Placebo</td>
<td>8 weeks</td>
<td>ARI (1y)</td>
<td>492/600 (82.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urashima 2014</td>
<td>Japan</td>
<td>High school students</td>
<td>16.5 (1.0) [15.0–18.0]</td>
<td>162 : 85</td>
<td>CLA (DiaSorin)</td>
<td>62.5 (19.3) [24.7–120.6]</td>
<td>2/116 (1.7)</td>
<td>25 µg daily</td>
<td>Placebo</td>
<td>2 months</td>
<td>ARI (1y)</td>
<td>247/247 (100.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grant 2015</td>
<td>New Zealand</td>
<td>Pregnant women and offspring</td>
<td>Unborn : 0 (mothers) [260 (mothers)]</td>
<td>121 : 128</td>
<td>LC-MS/MS</td>
<td>54.8 (25.8) [8.0–128.0]</td>
<td>30/200 (15.0)</td>
<td>Mothers: 25 µg vs. 50 µg daily; infants: 10 µg vs. 20 µg daily</td>
<td>Placebo</td>
<td>9 months (3 months in pregnancy and 6 months in infancy)</td>
<td>ARI (2y)</td>
<td>236/260 (90.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martineau 2015 (ViDiCO)</td>
<td>UK</td>
<td>Adults with COPD</td>
<td>64.7 (8.5) [40.0–85.0]</td>
<td>144 : 96</td>
<td>LC-MS/MS</td>
<td>46.1 (25.7) [0.0–160.0]</td>
<td>50/240 (20.8)</td>
<td>4-mg bolus once every 2 months</td>
<td>Placebo</td>
<td>1 year</td>
<td>ARI and COPD exacerbation (Co1y)</td>
<td>240/240 (100.0), ARI and COPD exacerbation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martineau 2015 (ViDiAs)</td>
<td>UK</td>
<td>Adults with asthma</td>
<td>47.9 (14.4) [16.0–78.0]</td>
<td>109 : 141</td>
<td>LC-MS/MS</td>
<td>49.6 (24.7) [0.0–139.0]</td>
<td>36/250 (14.4)</td>
<td>3-mg bolus once every 2 months</td>
<td>Placebo</td>
<td>1 year</td>
<td>ARI and asthma exacerbation (Co1y)</td>
<td>250/250 (100.0), ARI and asthma exacerbation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
TABLE 1 Characteristics of the trials contributing data to analyses, and their participants (continued)

<table>
<thead>
<tr>
<th>First author and year</th>
<th>Setting</th>
<th>Participants</th>
<th>Mean age (years) (SD)</th>
<th>Male : female</th>
<th>25(OH)D assay, EQA scheme</th>
<th>Mean baseline 25(OH)D concentration (nmol/l) (SD) [range]</th>
<th>Baseline 25(OH)D concentration < 25 nmol/l (%)</th>
<th>Intervention: control</th>
<th>Oral dose of vitamin D₃ intervention arm</th>
<th>Control</th>
<th>Study duration</th>
<th>Outcome</th>
<th>ARI definition</th>
<th>n entering analysis/N randomised (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martineau 2015<sup>24</sup> (ViDiFlu)</td>
<td>UK</td>
<td>Older adults and their carers</td>
<td>67.1 (13.0) [21.4–94.0]</td>
<td>82 : 158</td>
<td>LC-MS/MS</td>
<td>42.9 (23.0) [0.0–128.0]</td>
<td>60/240 (25.0)</td>
<td>137 : 103</td>
<td>Older adults: 2.4-mg bolus once every 2 months + 10 µg daily</td>
<td>Carers: placebo</td>
<td>1 year</td>
<td>ARI (1y)</td>
<td>URI and LRI, both assessed from daily symptom diary</td>
<td>240/240 (100.0)</td>
</tr>
<tr>
<td>Simpson 2015<sup>10</sup></td>
<td>Australia</td>
<td>Healthy adults</td>
<td>32.2 (12.2) [18.0–52.0]</td>
<td>14 : 20</td>
<td>LC-MS/MS</td>
<td>67.9 (23.0) [32.0–132.0]</td>
<td>0/33 (0.0)</td>
<td>18 : 16</td>
<td>0.5 mg weekly</td>
<td>Placebo</td>
<td>17 weeks</td>
<td>ARI (1y)</td>
<td>ARI assessed with symptom score</td>
<td>34/34 (100.0)</td>
</tr>
<tr>
<td>Dubnov-Raz 2015<sup>25</sup></td>
<td>Israel</td>
<td>Adolescent swimmers with vitamin D insufficiency</td>
<td>15.2 (1.6) [12.9–18.6]</td>
<td>34 : 20</td>
<td>RIA (DiaSorin)</td>
<td>60.4 (11.9) [28.0–74.6]</td>
<td>0/54 (0.0)</td>
<td>27 : 27</td>
<td>50 µg daily</td>
<td>Placebo</td>
<td>12 weeks</td>
<td>ARI (1y)</td>
<td>URI assessed with symptom score</td>
<td>25/54 (46.3)</td>
</tr>
<tr>
<td>Castro 2014<sup>10</sup></td>
<td>USA</td>
<td>Adults with asthma</td>
<td>39.2 (12.9) [18.0–85.0]</td>
<td>130 : 278</td>
<td>CLA (DiaSorin)</td>
<td>47.0 (16.9) [10.0–74.6]</td>
<td>55/408 (13.5)</td>
<td>201 : 207</td>
<td>2.5-mg bolus then 100 µg daily</td>
<td>Placebo</td>
<td>28 weeks</td>
<td>Asthma exacerbation (2y), ARI (2y)</td>
<td>URI assessed with symptom score</td>
<td>408/408 (100.0), ARI and asthma exacerbation</td>
</tr>
<tr>
<td>Tachimoto 2016<sup>26</sup></td>
<td>Japan</td>
<td>Children with asthma</td>
<td>9.9 (2.3) [6.0–15.0]</td>
<td>50 : 39</td>
<td>RIA (DiaSorin)</td>
<td>74.9 (24.6) [20.0–187.2]</td>
<td>1/89 (1.1)</td>
<td>54 : 35</td>
<td>20 µg daily, first 2 months</td>
<td>Placebo</td>
<td>6 months</td>
<td>Asthma exacerbation (2y), ARI (2y)</td>
<td>URI assessed with symptom score</td>
<td>89/89 (100.0), ARI and asthma exacerbation</td>
</tr>
<tr>
<td>Kerley 2016<sup>27</sup></td>
<td>Ireland</td>
<td>School children with asthma</td>
<td>8.6 (2.8) [5.0–15.0]</td>
<td>24 : 15</td>
<td>LC-MS/MS</td>
<td>54.4 (17.4) [26–92]</td>
<td>0/39 (0.0)</td>
<td>17 : 22</td>
<td>50 µg daily</td>
<td>Placebo</td>
<td>15 weeks</td>
<td>Asthma exacerbation (2y)</td>
<td>n/a</td>
<td>38/51 (76.5)</td>
</tr>
<tr>
<td>Jensen 2016<sup>28</sup></td>
<td>Canada</td>
<td>Preschool children with asthma</td>
<td>2.9 (1.1) [1.6–5.5]</td>
<td>7 : 15</td>
<td>LC-MS/MS</td>
<td>64.2 (14.0)</td>
<td>0/22 (0.0)</td>
<td>11 : 11</td>
<td>2.5-mg bolus then 10 µg daily</td>
<td>Placebo</td>
<td>6 months</td>
<td>Asthma exacerbation (2y)</td>
<td>n/a</td>
<td>22/22 (100.0)</td>
</tr>
<tr>
<td>Ginde 2017<sup>29</sup></td>
<td>USA</td>
<td>Institutionalised older adults</td>
<td>80.7 (9.9) [60.0–95.0]</td>
<td>45 : 62</td>
<td>LC-MS/MS</td>
<td>57.3 (22.7) [11.7–106.1]</td>
<td>12/107 (11.2)</td>
<td>55 : 52</td>
<td>2.5-mg bolus monthly + ≤ 25 µg per day equivalent</td>
<td>Placebo + 10–25 µg per day equivalent</td>
<td>1 year</td>
<td>ARI (1y)</td>
<td>ARI: medical record diagnosis</td>
<td>107/107 (100.0)</td>
</tr>
</tbody>
</table>

1y, primary outcome; 2y, secondary outcome; CLA, chemiluminescent assay; EIA, enzyme immunoassay; EQA, external quality assessment; ILL, influenza-like illness; LC-MS/MS, liquid chromatography tandem-mass spectrometry; n/a, not applicable; RIA, radioimmunoassay; RIDT, rapid influenza diagnostic test.

Notes

1 µg vitamin D₃ = 40 IU.

25(OH)D concentrations reported in ng/ml were converted to nmol/l by multiplying by 2.496.
<table>
<thead>
<tr>
<th>First author and year</th>
<th>Sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants and personnel</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete outcome data</th>
<th>Selective reporting</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-Ng 200953</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Urashima 201045</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Manaseki-Holland 201054</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Laaksi 201055</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Majak 201156</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trilok Kumar 201152</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lehouck 201228</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Manaseki-Holland 201258</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Camargo 201239</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Murdoch 201240</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bergman 201259</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Marchisio 201360</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rees 201361</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tran 201463</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Goodall 201461</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Urashima 201444</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Grant 201562</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Martineau 201529 (ViDiCO)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Martineau 201547 (ViDiAs)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Martineau 201548 (ViDiFlu)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Simpson 201563</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dubnov-Raz 201564</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Denlinger 201655</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tachimoto 201642</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kerley 201657</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Jensen 201648</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ginde 201769</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓, low risk of bias; ?, unclear risk of bias.
TABLE 3 One-step IPD meta-analysis, proportion of participants experiencing at least one ARI: overall and by subgroup

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Number of trials</th>
<th>Proportion with ≥ 1 ARI subgroup (%)</th>
<th>aOR (95% CI)</th>
<th>p-value</th>
<th>p-value for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>25</td>
<td>2204/5225 (42.2)</td>
<td>2303/5708 (40.3)</td>
<td>0.88 (0.81 to 0.96)</td>
<td>0.003</td>
</tr>
<tr>
<td>Baseline 25(OH)D (nmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>14</td>
<td>137/249 (55.0)</td>
<td>117/289 (40.5)</td>
<td>0.58 (0.40 to 0.82)</td>
<td>0.002</td>
</tr>
<tr>
<td>≥ 25</td>
<td>19</td>
<td>1027/1639 (62.7)</td>
<td>1179/1995 (59.1)</td>
<td>0.89 (0.77 to 1.04)</td>
<td>0.15</td>
</tr>
<tr>
<td>Dosing regimen type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolus dose ≥ 30,000 IU given</td>
<td>10</td>
<td>994/2786 (35.7)</td>
<td>1097/3014 (36.4)</td>
<td>0.97 (0.86 to 1.10)</td>
<td>0.67</td>
</tr>
<tr>
<td>Bolus dose not given</td>
<td>15</td>
<td>1210/2439 (49.6)</td>
<td>1206/2694 (44.8)</td>
<td>0.81 (0.72 to 0.91)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Daily dose equivalent (IU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 800</td>
<td>5</td>
<td>629/1321 (47.6)</td>
<td>619/1435 (43.1)</td>
<td>0.80 (0.68 to 0.94)</td>
<td>0.006</td>
</tr>
<tr>
<td>800–1999.9</td>
<td>9</td>
<td>945/2796 (33.8)</td>
<td>1023/3077 (33.2)</td>
<td>0.90 (0.79 to 1.01)</td>
<td>0.08</td>
</tr>
<tr>
<td>≥ 2000</td>
<td>11</td>
<td>630/1108 (56.9)</td>
<td>661/1196 (55.3)</td>
<td>0.98 (0.81 to 1.18)</td>
<td>0.84</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>4</td>
<td>832/2744 (30.3)</td>
<td>854/2827 (30.2)</td>
<td>0.94 (0.83 to 1.06)</td>
<td>0.33</td>
</tr>
<tr>
<td>1.1–15.9</td>
<td>8</td>
<td>241/513 (47.0)</td>
<td>194/566 (34.3)</td>
<td>0.60 (0.46 to 0.77)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>16–65</td>
<td>17</td>
<td>854/1459 (58.5)</td>
<td>885/1592 (55.6)</td>
<td>0.93 (0.79 to 1.10)</td>
<td>0.41</td>
</tr>
<tr>
<td>> 65</td>
<td>11</td>
<td>277/509 (54.4)</td>
<td>370/723 (51.2)</td>
<td>0.86 (0.67 to 1.09)</td>
<td>0.21</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>19</td>
<td>972/1943 (50.0)</td>
<td>956/2074 (46.1)</td>
<td>0.85 (0.74 to 0.97)</td>
<td>0.02</td>
</tr>
<tr>
<td>≥ 25</td>
<td>17</td>
<td>659/1039 (63.4)</td>
<td>754/1235 (61.1)</td>
<td>0.95 (0.79 to 1.14)</td>
<td>0.58</td>
</tr>
<tr>
<td>Comorbidity: asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>518/1008 (51.4)</td>
<td>520/1101 (47.2)</td>
<td>0.82 (0.68 to 0.99)</td>
<td>0.04</td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>296/534 (55.4)</td>
<td>285/542 (52.6)</td>
<td>0.95 (0.73 to 1.25)</td>
<td>0.73</td>
</tr>
<tr>
<td>Comorbidity: COPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>7</td>
<td>477/763 (62.5)</td>
<td>493/791 (62.3)</td>
<td>1.00 (0.80 to 1.26)</td>
<td>0.98</td>
</tr>
<tr>
<td>Yes</td>
<td>6</td>
<td>122/230 (53.0)</td>
<td>120/238 (50.4)</td>
<td>0.84 (0.57 to 1.24)</td>
<td>0.38</td>
</tr>
<tr>
<td>Influenza vaccination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>255/373 (68.4)</td>
<td>253/407 (62.2)</td>
<td>0.74 (0.52 to 1.03)</td>
<td>0.08</td>
</tr>
<tr>
<td>Yes</td>
<td>10</td>
<td>564/779 (72.4)</td>
<td>577/826 (69.9)</td>
<td>0.86 (0.68 to 1.09)</td>
<td>0.22</td>
</tr>
</tbody>
</table>

aOR, adjusted odds ratio.

Notes:
- Some trials did not contribute data to a given subgroup, either because individuals within that subgroup were not represented, or because data relating to the potential effect modifier were not recorded; accordingly the number of trials represented varies between subgroups.
- Adjusted for age, sex and study duration.
FIGURE 4 Cates plots illustrating reduction in risk of ARI with vitamin D supplementation, irrespective of dosing frequency. (a) All participants, irrespective of baseline vitamin D status; (b) participants with baseline serum 25(OH)D concentration of < 25 nmol/l; and (c) participants receiving daily or weekly vitamin D supplementation regimens without any additional bolus doses.
RESULTS

One-step IPD meta-analysis testing the effects of vitamin D on the rate of asthma exacerbations requiring treatment with systemic corticosteroids revealed a statistically significant protective effect of the intervention (aIRR 0.74, 95% CI 0.56 to 0.97; \(p = 0.03; 955 \) participants in seven studies). Two-step IPD meta-analysis revealed a similar effect size (aIRR 0.69, 95% CI 0.52 to 0.92, \(p = 0.01; p \) for heterogeneity = 0.56; 719 participants in four studies). Consistent trends were seen for analysis of the proportion of participants experiencing at least one asthma exacerbation requiring treatment with systemic corticosteroids in both one-step analysis (aOR 0.75, 95% CI 0.51 to 1.09; \(p = 0.13; 955 \) participants in seven studies) and two-step analysis (aOR 0.69, 95% CI 0.46 to 1.02, \(p = 0.06; p \) for heterogeneity = 0.74; 719 participants in four studies).

TABLE 4 One-step IPD meta-analysis, ARI event rate: overall effect and subgroup analyses by baseline vitamin D status and dosing regimen

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Number of trials</th>
<th>Number of individuals</th>
<th>Rate of ARI per participant-year, subgroup</th>
<th>aIRR (95% CI)(^a)</th>
<th>(p)-value</th>
<th>(p)-value for Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>25</td>
<td>10,703</td>
<td>1.15</td>
<td>1.13</td>
<td>0.96 (0.92 to 0.997)</td>
<td>0.04</td>
</tr>
<tr>
<td>Baseline 25(OH)D (nmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>14</td>
<td>509</td>
<td>2.15</td>
<td>1.67</td>
<td>0.78 (0.66 to 0.93)</td>
<td>0.004</td>
</tr>
<tr>
<td>≥ 25</td>
<td>19</td>
<td>3458</td>
<td>2.12</td>
<td>1.91</td>
<td>0.95 (0.90 to 1.00)</td>
<td>0.04</td>
</tr>
<tr>
<td>Dosing regimen type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolus dose ≥ 30,000 IU given</td>
<td>10</td>
<td>5595</td>
<td>0.73</td>
<td>0.76</td>
<td>0.99 (0.94 to 1.05)</td>
<td>0.83</td>
</tr>
<tr>
<td>Bolus dose not given</td>
<td>15</td>
<td>5133</td>
<td>2.23</td>
<td>2.09</td>
<td>0.93 (0.88 to 0.98)</td>
<td>0.008</td>
</tr>
</tbody>
</table>

\(a \) Adjusted for age, sex and study duration.

TABLE 5 One-step IPD meta-analysis, time to first ARI: overall effect and subgroup analyses by baseline vitamin D status and dosing regimen

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Number of trials</th>
<th>Number of individuals</th>
<th>Median time (days) to first ARI, subgroup (IQR)</th>
<th>aHR (95% CI)(^a)</th>
<th>(p)-value</th>
<th>(p)-value for Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>18</td>
<td>9108</td>
<td>452 (79 to –) 502 (81 to –)</td>
<td>0.95 (0.89 to 1.01)</td>
<td>0.09</td>
<td>–</td>
</tr>
<tr>
<td>Baseline 25(OH)D (nmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>10</td>
<td>229</td>
<td>159 (56 to –) 172 (74 to –)</td>
<td>0.92 (0.66 to 1.28)</td>
<td>0.62</td>
<td>0.61</td>
</tr>
<tr>
<td>≥ 25</td>
<td>12</td>
<td>2231</td>
<td>104 (41 to 280) 110 (40 to 328)</td>
<td>0.97 (0.88 to 1.06)</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Dosing regimen type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolus dose ≥ 30,000 IU given</td>
<td>8</td>
<td>4795</td>
<td>– (121 to –) – (117 to –)</td>
<td>0.98 (0.89 to 1.08)</td>
<td>0.74</td>
<td>0.30</td>
</tr>
<tr>
<td>Bolus dose not given</td>
<td>10</td>
<td>4313</td>
<td>138 (57 to 331) 153 (61 to 351)</td>
<td>0.91 (0.84 to 0.99)</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

\(a \), these values cannot be defined.

\(a \) Adjusted for age, sex and study duration.

Overall results: asthma exacerbation

One-step IPD meta-analysis testing the effects of vitamin D on the rate of asthma exacerbations requiring treatment with systemic corticosteroids revealed a statistically significant protective effect of the intervention (aIRR 0.74, 95% CI 0.56 to 0.97; \(p = 0.03; 955 \) participants in seven studies). Two-step IPD meta-analysis revealed a similar effect size (aIRR 0.69, 95% CI 0.52 to 0.92, \(p = 0.01; p \) for heterogeneity = 0.56; 719 participants in four studies). Consistent trends were seen for analysis of the proportion of participants experiencing at least one asthma exacerbation requiring treatment with systemic corticosteroids in both one-step analysis (aOR 0.75, 95% CI 0.51 to 1.09; \(p = 0.13; 955 \) participants in seven studies) and two-step analysis (aOR 0.69, 95% CI 0.46 to 1.02, \(p = 0.06; p \) for heterogeneity = 0.74; 719 participants in four studies).
FIGURE 5 Two-step IPD meta-analysis, proportion of participants experiencing at least one ARI. Data from the trial by Simpson et al.63 were not included in this two-step meta-analysis, as an estimate for the effect of the intervention in the study could not be obtained in the regression model because of the small sample size.
Similarly, trends towards a delay to first exacerbation with vitamin D versus placebo were seen in both one-step analysis (aHR 0.78, 95% CI 0.55 to 1.10; p = 0.16; 868 participants in five studies) and two-step analysis (aHR 0.74, 95% CI 0.52 to 1.05, p = 0.09; p for heterogeneity = 0.58; 680 participants in three studies).

RESULTS

Overall results: chronic obstructive pulmonary disease exacerbation

One-step IPD meta-analysis testing the effects of vitamin D on the rate of COPD exacerbations requiring treatment with antibiotics and/or systemic corticosteroids did not reveal a statistically significant protective effect of the intervention overall (aIRR 0.95, 95% CI 0.82 to 1.10; p = 0.50; 422 participants in two studies). Two-step IPD meta-analysis revealed a similar estimate (aIRR 0.96, 95% CI 0.83 to 1.10; p = 0.54; 422 participants in two studies). Consistent results were seen for analysis of the proportion of participants experiencing at least one study-defined exacerbation in both one-step IPD meta-analysis (aOR 0.80, 95% CI 0.51 to 1.25; p = 0.32; 422 participants in two studies) and two-step IPD meta-analysis (aOR 0.79, 95% CI 0.50 to 1.24; p = 0.31; 422 participants in two studies). Similarly, no statistically significant effects of the intervention on time to first exacerbation were seen for one-step IPD meta-analysis (aHR 0.95, 95% CI 0.75 to 1.21; p = 0.67; 422 participants in two studies) or two-step IPD meta-analysis (aHR 0.96, 95% CI 0.76 to 1.22; p = 0.75; 422 participants in two studies) overall.

Subgroup analyses: acute respiratory infection incidence

In order to explore reasons for heterogeneity, subgroup analyses were conducted to investigate whether or not the effects of vitamin D supplementation on ARI risk differed according to baseline vitamin D status, dosing frequency, dose size, age, body mass index, the presence or absence of comorbidity (asthma or COPD) or influenza vaccination status. Race/ethnicity was not investigated as a potential effect-modifier, as data for this variable were missing for 3680 out of 10,933 (34%) participants, and power for subgroup analyses was limited by small numbers in many racial/ethnic subgroups that could not be meaningfully combined. Similarly, baseline data relating to environmental exposure to particulate matter, nutritional supplement use and vitamin D-related genotype were unavailable or available only in a very small number of studies, precluding investigation of these factors as potential effect modifiers. The results are presented in **Overall results: acute respiratory infection incidence** (see Table 3). Subgroup analysis revealed a strong protective effect of vitamin D supplementation among individuals at a baseline circulating 25(OH)D concentration level of < 25 nmol/l (aOR 0.58, 95% CI 0.40 to 0.82; NNT 8, 95% CI 5 to 21; 538 participants in 14 studies; within subgroup, p = 0.002; Cates plot, see Figure 4), and no statistically significant effect among those at a baseline 25(OH)D concentration level of ≥ 25 nmol/l (aOR 0.89, 95% CI 0.77 to 1.04; 3634 participants in 19 studies; within subgroup, p = 0.15; for interaction, p = 0.01). This evidence was assessed as being of high quality.

A meta-analysis of data from trials in which vitamin D was administered using a daily or weekly regimen without additional bolus doses revealed a protective effect of vitamin D against ARI (aOR 0.81, 95% CI 0.72 to 0.91; NNT 20, 95% CI 13 to 43; 5133 participants in 15 studies; within subgroup, p < 0.001; Cates plot, see Figure 4). No such protective effect was seen among participants in trials in which at least one bolus dose of vitamin D was administered (aOR 0.97, 95% CI 0.86 to 1.10; 5800 participants in 10 studies; within subgroup, p = 0.67; for interaction, p = 0.05). This evidence was assessed as being of high quality. The p-values for interaction were > 0.05 for all other potential effect modifiers investigated. For both of these subgroup analyses, broadly consistent effects were observed for event rate analysis (see Table 4) and survival analysis (see Table 5).

Having identified two potential factors that modified the influence of vitamin D supplementation on the risk of ARI (i.e. baseline vitamin D status and dosing frequency), we then proceeded to investigate whether or not these factors were acting as independent effect modifiers, and whether or not they were confounded by each other or by another potential effect modifier, such as age. Dot plots revealed a trend towards lower median baseline serum 25(OH)D concentration and higher median age for studies employing bolus versus daily or weekly dosing (Figures 6 and 7). In order to establish which of these potential effect modifiers was acting independently, we repeated the analysis to include treatment–covariate interaction terms for baseline vitamin D status, dosing frequency and age. In this model, interaction terms for baseline vitamin D
status and dosing frequency were statistically significant ($p = 0.01$ and $p = 0.004$, respectively), but the interaction term for age was not statistically significant ($p = 0.20$), consistent with the hypothesis that baseline vitamin D status and dosing frequency, but not age, independently modified the effect of vitamin D supplementation on ARI risk.

We then proceeded to stratify the subgroup analysis presented in Table 3 according to dosing frequency, in order to provide a ‘cleaner’ look at the results of the subgroup analyses under the assumption that administration of bolus doses was ineffective. The results of this exploratory analysis are presented in Table 6.

This analysis reveals that daily or weekly administration of vitamin D was associated with an even greater degree of protection against ARI among participants with baseline circulating 25(OH)D concentrations of < 25 nmol/l than in the unstratified analysis (aOR 0.30, 95% CI 0.17 to 0.53; NNT 4, 95% CI 3 to 7; 234 participants in six studies; within subgroup, $p < 0.001$; Cates plot, Figure 8). Moreover, administration of daily or weekly vitamin D also protected against ARI among participants with higher baseline 25(OH)D concentrations (aOR 0.75, 95% CI 0.60 to 0.95; NNT 15, 95% CI 9 to 86; 1603 participants in six studies; within subgroup, $p = 0.02$; Cates plot, see Figure 8). The p-value for interaction for this subgroup analysis was 0.006, indicating that protective effects of daily or weekly vitamin D supplementation were significantly greater in the subgroup of participants with profound vitamin D deficiency. No other statistically significant interaction was seen; notably, bolus-dose vitamin D supplementation did not offer any protection against ARI even when administered to those with circulating 25(OH)D concentrations of < 25 nmol/l (aOR 0.82, 95% CI 0.51 to 1.33; 304 participants in eight studies; within subgroup, $p = 0.43$).
<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Number of trials</th>
<th>Proportion with ≥ 1 ARI subgroup (%)</th>
<th>Daily or weekly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Intervention</td>
<td>aOR (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>Overall</td>
<td>10</td>
<td>994/2786 (35.7)</td>
<td>1097/3014 (36.4)</td>
</tr>
<tr>
<td>Baseline 25(OH)D (nmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>8</td>
<td>73/142 (51.4)</td>
<td>77/162 (47.5)</td>
</tr>
<tr>
<td>≥ 25</td>
<td>8</td>
<td>550/910 (60.4)</td>
<td>663/1121 (59.1)</td>
</tr>
<tr>
<td>Daily dose equivalent (IU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 800</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>800–1999.9</td>
<td>3</td>
<td>467/1931 (24.2)</td>
<td>542/2127 (25.5)</td>
</tr>
<tr>
<td>≥ 2000</td>
<td>7</td>
<td>527/855 (61.6)</td>
<td>555/887 (62.6)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>2</td>
<td>321/1634 (19.6)</td>
<td>322/1637 (19.7)</td>
</tr>
<tr>
<td>1.1–15.9</td>
<td>1</td>
<td>50/100 (50.0)</td>
<td>35/93 (37.6)</td>
</tr>
<tr>
<td>16–65</td>
<td>8</td>
<td>432/678 (63.7)</td>
<td>466/716 (65.1)</td>
</tr>
<tr>
<td>> 65</td>
<td>8</td>
<td>191/374 (51.1)</td>
<td>274/568 (48.2)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>8</td>
<td>215/372 (57.8)</td>
<td>231/417 (55.4)</td>
</tr>
<tr>
<td>≥ 25</td>
<td>8</td>
<td>406/677 (60.0)</td>
<td>509/867 (58.7)</td>
</tr>
<tr>
<td>Asthma</td>
<td>No</td>
<td>5</td>
<td>303/484 (62.6)</td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>224/371 (60.4)</td>
<td>232/364 (63.7)</td>
</tr>
<tr>
<td>COPD</td>
<td>No</td>
<td>5</td>
<td>410/632 (64.9)</td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>117/233 (52.5)</td>
<td>119/231 (51.5)</td>
</tr>
</tbody>
</table>

RESULTS

NIHR Journals Library www.journalslibrary.nihr.ac.uk
Subgroup Analysis

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Number of trials</th>
<th>Proportion with ≥ 1 ARI subgroup (%)</th>
<th>aOR (95% CI)</th>
<th>p-value</th>
<th>p-value for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>5</td>
<td>119/163 (73.0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>286/396 (72.2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intervention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>5</td>
<td>121/178 (68.0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>274/421 (65.8)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- **Daily or weekly**: Some trials did not contribute data to a given subgroup, either because individuals within that subgroup were not represented, or because data relating to the potential effect modifier were not recorded. Accordingly, the number of trials represented varies between subgroups.

- **Adjusted for age, sex and study duration**.

- **Values could not be estimated as models did not converge**.

- **N/A, not applicable**.
Subgroup analyses: asthma exacerbation

Subgroup analyses were conducted to investigate whether or not the effects of vitamin D supplementation on the rate of asthma exacerbations requiring treatment with systemic corticosteroids differed according to baseline vitamin D status, age, body mass index, administration of bolus doses of vitamin D, amount of vitamin D administered and concomitant use of inhaled corticosteroids. The results are presented in Table 7. Vitamin D supplementation reduced the rate of asthma exacerbations requiring treatment with systemic corticosteroids among individuals with baseline circulating 25(OH)D concentrations of < 25 nmol/l (aIRR 0.33, 95% CI 0.11 to 0.98; 92 participants in three studies; within subgroup, $p = 0.046$) and in those with baseline 25(OH)D concentrations of \geq 25 nmol/l (aIRR 0.77, 95% CI 0.58 to 1.03; 764 participants in six studies within subgroup, $p = 0.08$). The treatment–covariate interaction term (ratio of aIRRs) for this subgroup analysis was 0.56 (95% CI 0.20 to 1.52; for interaction, $p = 0.25$). The p-values for interaction for all other subgroup analyses were also > 0.05.

![Cates plot illustrating reduction in risk of ARI with daily or weekly vitamin D supplementation without additional bolus doses. (a) Participants with baseline serum 25(OH)D concentrations of < 25 nmol/l; and (b) participants with baseline serum 25(OH)D concentrations of \geq 25 nmol/l.](image)

FIGURE 8 Cates plot illustrating reduction in risk of ARI with daily or weekly vitamin D supplementation without additional bolus doses. (a) Participants with baseline serum 25(OH)D concentrations of < 25 nmol/l; and (b) participants with baseline serum 25(OH)D concentrations of \geq 25 nmol/l.
TABLE 7 One-step IPD meta-analysis, rate of asthma exacerbations requiring treatment with systemic corticosteroids: overall and by subgroup

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Number of trials*</th>
<th>Number of individuals</th>
<th>Event rate per participant-year subgroup</th>
<th>iRR (95% CI)b</th>
<th>p-value</th>
<th>p-value for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>7</td>
<td>955</td>
<td>121/284.7 (0.43)</td>
<td>0.74 (0.56 to 0.97)</td>
<td>0.03</td>
<td>–</td>
</tr>
<tr>
<td>Baseline 25(OH)D (nmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>3</td>
<td>92</td>
<td>14/33.0 (0.42)</td>
<td>0.33 (0.11 to 0.98)</td>
<td>0.046</td>
<td>0.25</td>
</tr>
<tr>
<td>≥ 25</td>
<td>6</td>
<td>764</td>
<td>107/233.8 (0.46)</td>
<td>0.77 (0.58 to 1.03)</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 16</td>
<td>5</td>
<td>290</td>
<td>26/57.6 (0.45)</td>
<td>0.64 (0.34 to 1.20)</td>
<td>0.16</td>
<td>0.56</td>
</tr>
<tr>
<td>≥ 16</td>
<td>3</td>
<td>665</td>
<td>95/227.2 (0.42)</td>
<td>0.70 (0.51 to 0.97)</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>7</td>
<td>547</td>
<td>80/163.6 (0.49)</td>
<td>0.61 (0.43 to 0.88)</td>
<td>0.008</td>
<td>0.17</td>
</tr>
<tr>
<td>Male</td>
<td>7</td>
<td>408</td>
<td>41/121.1 (0.34)</td>
<td>0.91 (0.58 to 1.42)</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Body habitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not overweight</td>
<td>7</td>
<td>381</td>
<td>38/110.5 (0.34)</td>
<td>0.91 (0.55 to 1.51)</td>
<td>0.71</td>
<td>0.31</td>
</tr>
<tr>
<td>Overweightc</td>
<td>7</td>
<td>574</td>
<td>83/174.3 (0.48)</td>
<td>0.68 (0.49 to 0.95)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Bolus-dose vitamin D given</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>4</td>
<td>275</td>
<td>13/53.8 (0.24)</td>
<td>0.65 (0.26 to 1.63)</td>
<td>0.36</td>
<td>0.49</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>680</td>
<td>108/230.9 (0.47)</td>
<td>0.71 (0.52 to 0.95)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Daily dose equivalent (IU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2000</td>
<td>4</td>
<td>258</td>
<td>13/52.1 (0.25)</td>
<td>0.62 (0.26 to 1.44)</td>
<td>0.26</td>
<td>0.78</td>
</tr>
<tr>
<td>≥ 2000</td>
<td>3</td>
<td>697</td>
<td>108/232.7 (0.46)</td>
<td>0.73 (0.54 to 0.98)</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Inhaled corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>4</td>
<td>92</td>
<td>1/18.8 (0.05)</td>
<td>1.11 (0.07 to 18.40)</td>
<td>0.94</td>
<td>0.19</td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>764</td>
<td>120/248.0 (0.48)</td>
<td>0.71 (0.54 to 0.95)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Study duration (months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6</td>
<td>2</td>
<td>138</td>
<td>13/25.0 (0.52)</td>
<td>0.50 (0.18 to 1.37)</td>
<td>0.18</td>
<td>0.62</td>
</tr>
<tr>
<td>≥ 6</td>
<td>5</td>
<td>816</td>
<td>108/259.8 (0.42)</td>
<td>0.72 (0.53 to 0.96)</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

* Some trials did not contribute data to a given subgroup, either because individuals within that subgroup were not represented, or because data relating to the potential effect modifier were not available; accordingly, the number of trials represented varies between subgroups.

b Adjusted for age and sex.

c Overweight defined as body mass index z-score ≥ 1.0 for participants aged < 19 years and as body mass index ≥ 25 kg/m² for participants aged ≥ 19 years.
Subgroup analyses: chronic obstructive pulmonary disease exacerbation

Subgroup analyses were conducted to investigate whether or not the effects of vitamin D supplementation on the rate of study-defined COPD exacerbation differed according to baseline vitamin D status, COPD severity, inhaled corticosteroid requirement at baseline and body mass index. The results are presented in Table 8. Vitamin D supplementation reduced the rate of COPD exacerbations among individuals with baseline circulating 25(OH)D concentrations of < 25 nmol/l (aIRR 0.56, 95% CI 0.39 to 0.81; 81 participants in two studies; within subgroup, p = 0.002) but not in those with baseline 25(OH)D concentrations of ≥ 25 nmol/l (aIRR 1.05, 95% CI 0.89 to 1.23; 341 participants in two studies; within subgroup, p = 0.65).

The treatment–covariate interaction term (ratio of aIRRs) for this subgroup analysis was 1.85 (95% CI 1.24 to 2.75; for interaction, p = 0.003). The p-values for interaction for other subgroup analyses were > 0.05.

Secondary outcomes: efficacy

Results of one-step IPD meta-analysis of secondary outcomes are presented in Table 9.

When all studies were analysed together, no statistically significant effect of vitamin D was seen on the proportion of participants with at least one URI, LRI, hospitalisation or emergency department attendance for ARI, use of a course of antimicrobials for ARI, work/school absence as a result of ARI, severe asthma exacerbation or severe COPD exacerbation. When this analysis was stratified by dosing frequency in an exploratory analysis, a borderline significant protective effect of daily or weekly vitamin D supplementation against URI was seen (aOR 0.88, 95% CI 0.78 to 1.00; 4483 participants in 11 studies, p = 0.05; Table 10).

TABLE 8 One-step IPD meta-analysis, COPD exacerbation rate: overall and by subgroup

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Number of trials</th>
<th>Number of individuals</th>
<th>Event rate per participant-year, group subgroup</th>
<th>aIRR (95% CI)*</th>
<th>p-value</th>
<th>p-value for interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>2</td>
<td>422</td>
<td>374/189.75 (1.97) Control 364/193.67 (1.88) Intervention</td>
<td>0.95 (0.82 to 1.10)</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Baseline 25(OH)D (nmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>2</td>
<td>81</td>
<td>76/35.87 (2.12) Control 46/39.45 (1.16) Intervention</td>
<td>0.56 (0.39 to 0.81)</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>≥ 25</td>
<td>2</td>
<td>341</td>
<td>298/153.88 (1.94) Control 318/154.23 (2.06) Intervention</td>
<td>1.05 (0.89 to 1.23)</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>COPD severity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOLD stage 1/2</td>
<td>2</td>
<td>223</td>
<td>123/100.82 (1.22) Control 130/104.25 (1.25) Intervention</td>
<td>1.03 (0.81 to 1.32)</td>
<td>0.79</td>
<td>0.45</td>
</tr>
<tr>
<td>GOLD stage 3/4</td>
<td>2</td>
<td>199</td>
<td>251/88.93 (2.82) Control 234/89.42 (2.62) Intervention</td>
<td>0.92 (0.77 to 1.10)</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Concomitant inhaled corticosteroid at baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2</td>
<td>112</td>
<td>55/45.31 (1.21) Control 55/53.53 (1.03) Intervention</td>
<td>0.91 (0.62 to 1.32)</td>
<td>0.61</td>
<td>0.70</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>310</td>
<td>319/144.44 (2.21) Control 309/140.14 (2.20) Intervention</td>
<td>0.97 (0.83 to 1.14)</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>2</td>
<td>199</td>
<td>200/97.92 (2.04) Control 172/82.07 (2.10) Intervention</td>
<td>0.99 (0.81 to 1.21)</td>
<td>0.91</td>
<td>0.70</td>
</tr>
<tr>
<td>≥ 25</td>
<td>2</td>
<td>223</td>
<td>174/91.83 (1.89) Control 192/111.60 (1.72) Intervention</td>
<td>0.92 (0.75 to 1.13)</td>
<td>0.42</td>
<td></td>
</tr>
</tbody>
</table>

GOLD, Global Initiative for Chronic Obstructive Lung Disease.

* Adjusted for age, sex and COPD severity.
Secondary outcomes: safety

Administration of vitamin D did not influence the risk of serious adverse events of any cause (aOR 0.98, 95% CI 0.80 to 1.20) or death attributable to any cause (aOR 1.39, 95% CI 0.85 to 2.27) (see Table 9). Instances of potential adverse reactions to vitamin D were rare. Hypercalcaemia was detected in 21 out of 3850 (0.5%) and renal stones were diagnosed in 6 out of 3841 (0.2%); both events were equally represented in the intervention and control arms (see Table 9). Stratification of this analysis by dosing frequency did not reveal any statistically significant increase in the risk of adverse events with either bolus or daily or weekly supplementation (see Table 10).

Risk of bias across studies

A funnel plot for the proportion of participants experiencing at least one ARI showed a degree of asymmetry, raising the possibility that small trials showing adverse effects of vitamin D may not have been included in the meta-analysis (Figure 9).

Responder analyses

The results of responder analyses for the outcome of the proportion of participants with at least one ARI are presented in Table 11. Among participants randomised to the intervention arm of included studies for whom end-study 25(OH)D concentration data were available, no difference in risk of ARI was observed between those who attained a serum 25(OH)D concentration of ≥ 75 nmol/l and those who did not.
<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of trials</th>
<th>Proportion with ≥ 1 event subgroup (%)</th>
<th>aOR (95% CI)a</th>
<th>p-value</th>
<th>Number of trials</th>
<th>Proportion with ≥ 1 event subgroup (%)</th>
<th>aOR (95% CI)a</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>URI</td>
<td>8</td>
<td>606/1052 (57.6)</td>
<td>730/1284 (56.9)</td>
<td>1.03 (0.86 to 1.24)</td>
<td>0.72</td>
<td>11</td>
<td>1050/2234 (47.0)</td>
<td>1077/2449 (44.0)</td>
</tr>
<tr>
<td>LRI</td>
<td>4</td>
<td>424/1889 (22.4)</td>
<td>427/1922 (22.2)</td>
<td>0.96 (0.82 to 1.13)</td>
<td>0.60</td>
<td>5</td>
<td>118/1396 (8.5)</td>
<td>134/1491 (9.0)</td>
</tr>
<tr>
<td>Use of antimicrobials for treatment of ARI</td>
<td>4</td>
<td>201/348 (57.8)</td>
<td>203/367 (55.3)</td>
<td>0.79 (0.56 to 1.10)</td>
<td>0.16</td>
<td>5</td>
<td>196/635 (30.9)</td>
<td>210/754 (27.9)</td>
</tr>
<tr>
<td>Work/school absence as a result of ARI</td>
<td>4</td>
<td>219/409 (53.5)</td>
<td>196/411 (47.7)</td>
<td>0.78 (0.59 to 1.04)</td>
<td>0.10</td>
<td>3</td>
<td>102/223 (45.7)</td>
<td>123/273 (45.1)</td>
</tr>
<tr>
<td>Severe asthma exacerbation</td>
<td>3</td>
<td>73/343 (21.3)</td>
<td>57/337 (16.9)</td>
<td>0.72 (0.49 to 1.07)</td>
<td>0.11</td>
<td>4</td>
<td>8/140 (5.7)</td>
<td>6/146 (4.1)</td>
</tr>
<tr>
<td>Severe COPD exacerbation</td>
<td>2</td>
<td>140/207 (67.6)</td>
<td>133/213 (62.4)</td>
<td>0.77 (0.50 to 1.20)</td>
<td>0.25</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Serious adverse event of any cause</td>
<td>10</td>
<td>107/2822 (3.8)</td>
<td>115/3070 (3.8)</td>
<td>1.00 (0.74 to 1.35)</td>
<td>0.99</td>
<td>15</td>
<td>109/2549 (4.3)</td>
<td>106/2783 (3.8)</td>
</tr>
<tr>
<td>Death as a result of any cause</td>
<td>10</td>
<td>29/2822 (1.0)</td>
<td>35/3070 (1.1)</td>
<td>1.29 (0.71 to 2.35)</td>
<td>0.40</td>
<td>15</td>
<td>19/2549 (0.7)</td>
<td>21/2783 (0.8)</td>
</tr>
<tr>
<td>Death as a result of ARI/respiratory failure</td>
<td>10</td>
<td>4/2797 (0.1)</td>
<td>3/3038 (0.1)</td>
<td>0.61 (0.12 to 3.02)</td>
<td>0.54</td>
<td>15</td>
<td>3/2533 (0.1)</td>
<td>3/2765 (0.1)</td>
</tr>
<tr>
<td>Death as a result of any infection</td>
<td>10</td>
<td>8/2801 (0.3)</td>
<td>5/3040 (0.2)</td>
<td>0.55 (0.17 to 1.80)</td>
<td>0.32</td>
<td>15</td>
<td>7/2537 (0.3)</td>
<td>11/2773 (0.4)</td>
</tr>
<tr>
<td>Hospitalisation or emergency department</td>
<td>6</td>
<td>4/2081 (0.2)</td>
<td>–b</td>
<td>–b</td>
<td>5</td>
<td>43/1805 (2.4)</td>
<td>34/1862 (1.8)</td>
<td>–b</td>
</tr>
<tr>
<td>Hypercalcaemia</td>
<td>8</td>
<td>8/1062 (0.8)</td>
<td>11/1303 (0.8)</td>
<td>–b</td>
<td>–b</td>
<td>6</td>
<td>1/677 (0.1)</td>
<td>1/808 (0.1)</td>
</tr>
<tr>
<td>Renal stones</td>
<td>6</td>
<td>0/764 (0.0)</td>
<td>1/1011 (0.1)</td>
<td>–b</td>
<td>–b</td>
<td>8</td>
<td>4/943 (0.4)</td>
<td>1/1123 (0.1)</td>
</tr>
</tbody>
</table>

a Adjusted for age, sex and study duration.

b Values could not be estimated as model did not converge.
Sensitivity analyses

A meta-analysis using IPD of the proportion of participants experiencing at least one ARI, excluding two trials assessed as being at an unclear risk of bias,55,64 revealed protective effects of vitamin D supplementation consistent with the main analysis (aOR 0.82, 95% CI 0.70 to 0.95; 10,744 participants; \(p = 0.01\)). Sensitivity analyses for the same outcome, restricted to the 14 trials that investigated ARI as a primary or coprimary outcome, also revealed protective effects of vitamin D supplementation consistent with the main analysis (aOR 0.82, 95% CI 0.68 to 1.00; 5739 participants; \(p = 0.05\)).

<table>
<thead>
<tr>
<th>25(OH)D status</th>
<th>Number of trials</th>
<th>Impact on ARI</th>
<th>Ratio</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion with (\geq 1) ARI (%)</td>
<td>aOR (95% CI)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention, end-study 25(OH)D level of < 75 nmol/l</td>
<td>18</td>
<td>542/1120 (48.4)</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>Intervention, end-study 25(OH)D level of (\geq 75) nmol/l</td>
<td>18</td>
<td>784/1291 (60.7)</td>
<td>0.96 (0.78 to 1.18)</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Median time (days) to first ARI (IQR)	aHR (95% CI)			
Intervention, end-study 25(OH)D level of < 75 nmol/l	11	190 (63, –)a	1	–
Intervention, end-study 25(OH)D level of \(\geq 75 \) nmol/l	12	102 (39–312)	1.02 (0.88 to 1.19)	0.76

Rate of ARI per participant-year	aIRR (95% CI)			
Intervention, end-study 25(OH)D level of < 75 nmol/l	18	1.51	1	–
Intervention, end-study 25(OH)D level of \(\geq 75 \) nmol/l	18	2.04	1.01 (0.94 to 1.10)	0.72

IQR, interquartile range.
\(a\) Adjusted for age, sex and study duration.
\(b\) The 75th percentile for time to first ARI in this group cannot be defined.
Chapter 5 Discussion

Principal findings

We report the results of the first IPD meta-analysis of RCTs of vitamin D to prevent ARI. In the study population as a whole, vitamin D supplementation reduced the risk of experiencing at least one ARI. Subgroup analysis revealed that daily or weekly vitamin D supplementation without additional bolus doses protected against ARI, while regimens containing large bolus doses did not. Among those receiving daily or weekly vitamin D, protective effects of vitamin D were strongest in individuals with profound vitamin D deficiency at baseline, although those with higher baseline 25(OH)D concentrations also experienced benefit. This evidence was assessed as being of high quality, using the GRADE criteria.52 As baseline vitamin D status and use of bolus doses varied significantly between studies, our results suggest that the high degree of heterogeneity between trials may be at least partly attributable to these factors. Administration of vitamin D was safe: potential adverse reactions were very rare, and the risk of such events was the same among both participants randomised to intervention arms and those randomised to control arms.

Why might administration of a bolus dose of vitamin D be ineffective for prevention of ARI? One explanation relates to potentially adverse effects of wide fluctuations in circulating 25(OH)D concentrations, which are seen following administration of bolus doses but not with daily or weekly supplementation. Vieth70 has proposed that high circulating 25(OH)D concentrations following bolus dosing may chronically dysregulate activity of the enzymes responsible for synthesis and degradation of the active vitamin D metabolite 1,25-dihydroxyvitamin D, resulting in decreased concentrations of this metabolite in extrarenal tissues. Such an effect could attenuate the ability of 25(OH)D to support protective immune responses to respiratory pathogens. Increased efficacy of vitamin D supplementation in individuals with lower baseline vitamin D status is more readily explicable, based on the principle that individuals who are the most deficient in a micronutrient will be the most likely to respond to its replacement.

One question raised by our results relates to whether or not vitamin D supplementation will be more beneficial in reducing ARI risk for individuals or for the population as a whole. A targeted approach aimed at individuals would involve testing baseline vitamin D status and offering supplements to those who are deficient. This approach would be likely to result in relatively good adherence (motivation to take a supplement will be higher if an individual knows that they are deficient), but it will be costly and it may not reach a large proportion of the people who stand to benefit. Making additional vitamin D available to the population as a whole in an untargeted fashion (e.g. via food fortification) has some inefficiencies, in that some vitamin D-replete individuals will receive extra vitamin D unnecessarily. However, the strategy also has potential advantages, in that it would provide superior coverage to a ‘test-and-treat’ approach. The relative merits of the two strategies need to be formally evaluated with a health economic analysis, as suggested in Future research.

Our study also investigated the effects of vitamin D supplementation on the risk of acute exacerbations of asthma and COPD. Vitamin D supplementation reduced the rate of asthma exacerbation requiring treatment with systemic corticosteroids overall; non-statistically significant trends towards protection were also seen when the outcome of asthma exacerbation was analysed as the proportion of participants with at least one event and the time to first event. Subgroup analyses for this outcome revealed a trend towards greater protection in participants with a baseline 25(OH)D concentration level of < 25 nmol/l than in those with a higher baseline 25(OH)D concentration level; however, the p-value for interaction for this subgroup analysis was 0.25, indicating that we found no statistically significant evidence to implicate baseline vitamin D status as an effect modifier. By contrast, vitamin D supplementation had no statistically significant effect on the risk of COPD exacerbation requiring treatment with antibiotics and/or systemic corticosteroids overall. Subgroup analyses for this outcome revealed a strong protective effect in individuals with baseline 25(OH)D concentrations of < 25 nmol/l, but no
protective effect among individuals with higher baseline 25(OH)D concentration levels. The \(p \)-value for interaction for this subgroup analysis was 0.003, indicating that baseline vitamin D status modifies the effects of vitamin D supplementation on the risk of COPD exacerbation.

Strengths and limitations

Our study has several strengths. We obtained IPD for all 25 trials identified by our search, the proportion of randomised participants with missing outcome data was small (3.4%), participants with diverse characteristics in multiple settings were represented and 25(OH)D concentration levels were measured using validated assays in laboratories that participated in external quality-assessment schemes. Our findings therefore have a high degree of internal and external validity. Moreover, the subgroup effects we report fulfil published ‘credibility criteria’ relating to study design, analysis and context.71 Specifically, the relevant effect modifiers were specified a priori and measured at baseline, \(p \)-values for interaction remained significant after adjustment for potential confounders and subgroup effects were consistent when analysed as proportions and event rates. Survival analysis revealed consistent trends that did not attain statistical significance, possibly owing to lack of power (fewer studies contributed data to survival analyses than to analyses of proportions and event rates). As discussed above, the concepts that vitamin D supplementation may be (1) more effective when given to those with lower baseline 25(OH)D concentration levels and (2) less effective when bolus doses are administered are also biologically plausible. Although the results are consistent with the hypothesis that baseline vitamin D status and dosing regimen independently modify effects of vitamin D supplementation, we cannot exclude the possible influence of other effect modifiers linked to these two factors. The risk of residual confounding by other effect modifiers is increased for analyses in which relatively few trials are represented within a subgroup, for example when subgroup analyses were stratified by dosing regimen. We therefore suggest caution when interpreting the results in Tables 6 and 10.

Our study has some limitations. One explanation for the degree of asymmetry seen in the funnel plot (see Figure 9) is that some small trials showing adverse effects of vitamin D may have escaped our attention. With regard to the potential for missing data, we made strenuous efforts to identify published and (at the time) unpublished data, as illustrated by the fact that our meta-analysis includes data from 25 studies, which is 10 more than the largest aggregate data meta-analysis in the field.24 However, if one or two small trials showing large adverse effects of vitamin D were to emerge, we do not anticipate that they would greatly alter the results of the one-step IPD meta-analysis, as any negative signal from a modest number of additional participants would probably be diluted by the robust protective signal generated from analysis of data from nearly 11,000 participants. A second limitation is that our power to detect effects of vitamin D supplementation was limited for some subgroups [e.g. individuals with baseline 25(OH)D concentration of < 25 nmol/l on bolus dosing regimens] and for some secondary outcomes (e.g. incidence of LRI). Null and borderline significant results for analyses of these outcomes may have arisen as a consequence of type II error. Additional RCTs investigating the effects of vitamin D on the risk of ARI and exacerbation of asthma and COPD are ongoing, and inclusion of data from these studies in future meta-analyses has the potential to increase statistical power to test for subgroup effects. However, all three of the largest such studies for ARI prevention (NCT01169259, ACTRN12611000402943 and ACTRN12613000743763) are being conducted in populations in which profound vitamin D deficiency is rare, and two are using intermittent bolus dosing regimens (ACTRN12611000402943 and ACTRN12613000743763): their results are therefore unlikely to alter our finding of benefit in very deficient individuals, or in those receiving daily or weekly regimens. A third potential limitation relates to the fact that data relating to adherence to study medication were not available for all subjects. However, inclusion of non-adherent participants would bias the results of our intention-to-treat analysis towards the null: thus, we conclude that effects of vitamin D in those who are fully adherent to supplementation will be no less than those reported for the study population overall. Our definition of ARI was wide, incorporating both URI and LRI and, consequently, our overall findings cannot necessarily be generalised to specific ARIs (e.g. those confined to a specific anatomical site or caused by a single pathogen). Finally, we caution that virological, microbiological and/or radiological confirmation was
obtained for a minority of ARI events. ARI is often a clinical diagnosis in practice, however, and, as all studies were double-blind and placebo-controlled, differences in incidence of events between study arms cannot be attributed to observation bias.

Future research

Incorporation of additional IPD from ongoing trials in the field has the potential to increase the statistical power of subgroup analyses; this IPD meta-analysis should therefore be updated when a significant new body of data has accumulated. Given the major impact of ARIs on economic productivity and health-care use, our findings are likely to influence the economic case for the introduction of vitamin D fortification of foods in the UK. Economic models of the cost-effectiveness of vitamin D fortification in the UK should therefore be updated to take account of the previously unappreciated protective effects of vitamin D against ARIs. Such models will need to be populated with accurate data regarding vitamin D intake and the prevalence of vitamin D deficiency in the general population and in subpopulations deemed to be at particular risk of vitamin D deficiency, intake of vitamin D-fortifiable foods and drinks in these populations, attitudes towards different fortification strategies (mandatory vs. voluntary) and the costs of adverse health outcomes such as fractures, falls and ARIs that could be reduced by realising improvements in population vitamin D status. Such modelling would also need to take into account differential profiles of URI compared with LRI in terms of frequency, severity and health-care costs.

Conclusions

Our synthesis of the current evidence suggests that vitamin D supplementation can prevent ARI, broadly defined. We identified that the greatest potential benefit is for those individuals who are very deficient in vitamin D. Those receiving daily or weekly supplementation without additional bolus doses also experienced particular benefit. Our results add to the body of evidence supporting the introduction of public health measures, such as food fortification, to improve vitamin D status in settings in which profound vitamin D deficiency is common.
Acknowledgements

We thank all the people who participated in the primary RCTs, the teams who performed them and our PPI representatives, Charanjit Patel and Jane Gallagher, for comments on study design and drafts of this manuscript.

Contributions of authors

Adrian R Martineau (Professor of Respiratory Infection and Immunity) led the funding application, assessed the eligibility of studies for inclusion, was directly involved in the acquisition of data for the work, designed statistical analyses in consultation with authors contributing IPD and wrote the first draft of the report.

David A Jolliffe (Postdoctoral Research Fellow) assessed the eligibility of studies for inclusion, designed statistical analyses in consultation with authors contributing IPD and undertook statistical analyses.

Lauren Greenberg (Medical Statistician) designed statistical analyses in consultation with authors contributing IPD and undertook statistical analyses.

John F Aloia (Professor of Medicine), Peter Bergman (Associate Professor), Gal Dubnov-Raz (Consultant Paediatrician), Susanna Esposito (Professor of Paediatrics), Davaasambuu Ganmaa (Assistant Professor), Adit A Ginde (Professor of Emergency Medicine), Emma C Goodall (Assistant Professor), Cameron C Grant (Associate Professor), Wim Janssens (Professor of Pneumonology), Megan E Jensen (Postdoctoral Clinical Researcher), Conor P Kerley (Postdoctoral Clinical Researcher), Ilkka Laaksi (Chief Administrative Medical Officer), Semira Manaseki-Holland (Senior Clinical Lecturer), David Mauger (Professor of Public Health Sciences and Statistics), David R Murdoch (Professor of Pathology), Rachel Neale (Associate Professor), Judy R Rees (Assistant Professor), Steve Simpson Jr (Postdoctoral Research Fellow), Iwona Stelmach (Professor of Paediatric Allergy), Geeta Trilok Kumar (Professor of Paediatric Allergy) and Mitsuyoshi Urashima (Professor of Molecular Epidemiology) were all directly involved in the acquisition of data for the work.

Carlos A Camargo Jr (Professor of Emergency Medicine, Medicine and Epidemiology) was a co-applicant in the funding application, assessed the eligibility of studies for inclusion and was directly involved in the acquisition of data for the work.

Christopher J Griffiths (Professor of Primary Care) was a co-applicant in the funding application and was directly involved in the acquisition of data for the work.

Richard L Hooper (Reader in Medical Statistics) assisted in the funding application, designed statistical analyses in consultation with authors contributing IPD and undertook statistical analyses.

All authors critically revised the manuscript for important intellectual content, gave final approval of the version to be published and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work were appropriately investigated and resolved.
Publications

Data-sharing statement

All data requests should be submitted to the corresponding author for consideration. Access to anonymised data may be granted following review.
References

15. Greiller CL, Martineau AR. Modulation of the immune response to respiratory viruses by vitamin D. *Nutrients* 2015;7:4240–70. https://doi.org/10.3390/nu7064240

34. Sanders KM, Stuart AL, Simpson JA, Kotowicz MA, Young D, Nicholson GC. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. *JAMA* 2010;303:1815–22. https://doi.org/10.1001/jama.2010.594

Appendix 1 Electronic search strategy

The full electronic search strategy for MEDLINE is presented.

Cochrane highly sensitive search strategy for identifying randomised controlled trials

#2. animals [mh] NOT humans [mh]

#3. #1 NOT #2

Terms specific to vitamin D

#4. Vitamin D OR vitamin D2 OR vitamin D3 OR cholecalciferol OR ergocalciferol OR alphacalcidol OR alfalcalfidol OR calcitriol OR paricalcitol OR doxerocalciferol

Terms specific to acute respiratory infection

#5. Acute Respiratory Infection OR Upper Respiratory Infection OR Lower Respiratory Infection OR Respiratory Tract Infection OR Common Cold OR Sinusitis OR Pharyngitis OR Laryngitis OR Laryngotracheobronchitis OR Tonsillitis OR peritonsillar abscess OR Croup OR Epiglottitis OR supraglottitis OR Otitis Media OR Pneumonia OR Bronchopneumonia OR Bronchitis OR Pleurisy OR Pleuritis

Terms specific to asthma

#6 Asthma OR bronchial hyperreactivity OR bronchial hyper-reactivity OR respiratory hypersensitivity OR reactive airway

Terms specific to chronic obstructive pulmonary disease

#7 Chronic obstructive pulmonary disease OR COPD OR COAD OR emphysema OR chronic bronchitis OR AECB OR AECOPD

Combination of terms to identify randomised controlled trials of vitamin D for the prevention of acute respiratory infection

#3 AND #4 AND #5

Combination of terms to identify randomised controlled trials of vitamin D conducted in patients with asthma

#3 AND #4 AND #6

Combination of terms to identify randomised controlled trials of vitamin D conducted in patients with chronic obstructive pulmonary disease

#3 AND #4 AND #7
This report presents independent research funded by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.