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In complex colloidal systems, particle-poor regions can develop within particle-rich phases during sedi-
mentation or creaming. These particle-poor regions are overlooked by 1D pro�les, which are typically
used to assess particle distributions in a sample. Alternative methods to visualise and quantify these
regions are required to better understand phase separation, which is the focus of this paper. Magnetic
resonance imaging has been used to monitor the development of compositional heterogeneity in a
vesicle-polymer mixture undergoing creaming. T2 relaxation time maps were used to identify the distri-
bution of vesicles, with vesicle-poor regions exhibiting higher T2 relaxation times than regions richer in
vesicles. Phase separated structures displayed a range of different morphologies and a variety of image
analysis methods, including �rst-order statistics, Fourier transformation, grey level co-occurrence matri-
ces and Moran�s I spatial autocorrelation, were used to characterise these structures, and quantify their
heterogeneity. Of the image analysis techniques used, Moran�s I was found to be the most effective at
quantifying the degree and morphology of phase separation, providing a robust, quantitative measure
by which comparisons can be made between a diverse range of systems undergoing phase separation.
The sensitivity of Moran�s I can be enhanced by the choice of weight matrices used.
� 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Many consumer and pharmaceutical products are based on col-
loidal suspensions [1�3], but density differences between the par-
ticles and �uid can lead to sedimentation or creaming which will
affect the ��shelf-life� of such products. Polymers are frequently
added to suspensions to enhance the shelf-life of the product, as
well as its ef�cacy or dispensability [2]. However, adding a non-
adsorbing polymer can cause particles to aggregate, via depletion
�occulation, causing a gel to form and changing the rate and mech-
anism of phase separation [3]. By observing suspensions over time,
it is possible to better understand phase separation processes,
enabling the sedimentation and re-suspendability of a system to
be assessed and predicted [1]. For example, creaming in vesicle-
polymer mixtures has been studied by using visual inspection
[3,4] and optical characterisation [5] to monitor the development
of the vesicle-poor, vesicle-rich interface over time. However, visu-
alising phase separation in these suspensions is often dif�cult, as
they are frequently opaque [1].

Magnetic resonance imaging (MRI), however, provides a means
by which sedimentation and creaming can be observed, non-
invasively, in opaque systems [1,2,6�13]. Previously, 1H MR images
of spin density have been used to study sedimentation of polymer
particles [2,6] and paliperidone palmitate particles [1], and T2

relaxation time maps have been used to study sedimentation of
polymer particles [10,11], glass beads [10] and rayon �bres [9] as
well as separation of asphaltenes from crude oil [7] and phase sep-
aration in moisturising creams [8]. Chemical shift imaging has also
been used to investigate sedimentation and creaming in biodiesel
[12] and multinuclear (1H and 19F) MRI has been used to study sed-
imentation of polymer particles [13]. In these studies, phase sepa-
ration has been predominantly probed using vertical pro�les of
MRI signal intensity, relaxation time or volume fraction, identify-
ing regions either rich or poor in suspended particles. By monitor-
ing these pro�les over time, the rate of phase separation can be
determined [1,2,7]. However, this approach assumes that the vol-
ume fraction of particles only varies vertically, controlled by the
direction of gravity, and that there is a complete separation of
the different phases, which may not be the case [3,6]. Particle-
poor regions within the particle-rich phase have been identi�ed
in sedimentation [6] and creaming [3,4] in colloidal suspensions,
particularly in suspensions with viscoelastic properties [6]. Yet,
these regions are overlooked in 1-dimensional (1D) pro�les and
analysis, but must be visualised and quanti�ed in order to gain
meaningful insight into phase separation processes [6].

By using 2-dimensional (2D) MRI, phase separation can be bet-
ter monitored and, through image analysis, quanti�ed. An example
of such image analysis is segmentation [14], where regions of sim-
ilar composition can be identi�ed within a sample by comparing
the signal intensity or T2 relaxation time, for a pixel, to a threshold
value. This method could provide a means by which the amount of
phase separated material may be quanti�ed and can lead to an
increase in image contrast and a simpli�cation of features within
the MR image [14,15]. Other forms of segmentation include cluster
analysis [16], which looks for regions of homogeneous signal inten-
sity, and independent component analysis (ICA) [16,17], which
identi�es statistically independent groups of pixels. However, the
information available by segmentation can be limited and is
dependent on the technique chosen. Alternative image analysis
techniques include methods based on Fourier transformations or
wavelet transformations [18], which determine the spatial fre-
quency of heterogeneity in pixel intensities. These methods can
distinguish both �ne (high frequency) and coarse (low frequency)
features in an image [19]. For example, wavelet transformation
allows spatial information to be extracted at speci�c length scales
[20] and can be monitored over time. However, these methods do
not easily provide a quanti�able measure by which samples can be
compared.

Image analysis methods based on �rst order statistics have been
employed in medical imaging [21], and can be used to describe the
distribution of pixel intensities and differentiate between homoge-
neous and heterogeneous images. Unfortunately, they are unable
to provide information about the relative position of features or
their connectivity [21]. First order statistics of MRI data have been
used to distinguish between healthy and tumorous brain tissue
[22]. Other statistical methods include grey level run length matri-
ces (GLRLM) and grey level co-occurrence matrices (GLCM) which
assess the probability that speci�c grey levels occur within a spec-
i�ed spatial relationship and allow the calculation of various
parameters, such as local homogeneity, contrast and entropy of
the pixel intensities [21,23,24]. However, the number of grey levels
chosen in these analyses may affect the result. While using fewer
grey levels makes the calculation less computationally demanding,
it can also result in a loss of image detail [25].

Image analysis methods using segmentation, transformation
and statistical methods have yielded useful information from MR
images, however, they can discard useful information about the
spatial localisation of the features, be dif�cult to interpret or over
simplify features within an image. An approach used to overcome
the limitations of these image analysis methods, is autocorrelation,
which quanti�es the heterogeneity or clustering in an image. Spa-
tial autocorrelation determines whether an observed variable, at a
particular location, is signi�cantly dependant on the value of that
variable in a neighbouring region [26]. By quantifying the spatial
autocorrelation of a parameter, it is possible to determine whether
the data is clustered, as well as quantify how strongly it is clus-
tered [16]. There are a variety of measures of spatial autocorrela-
tion including Moran�s I [27], Geary�s C [28] and Getis and Ord
Gi⁄ [29], enabling the spatial distribution of a variable to be quan-
ti�ed using a single number. The most widely used of these mea-
sures is Moran�s I, which has been applied to analyse optical
images [30], X-ray CT images [31�33] and clinical MR images
[16,30,31,34,35]. This method provides a simple means of assess-
ing the degree of spatial autocorrelation, with values ranging from
�1, for negative correlations, to 1, for positive correlations. As
shown in the images in Fig. 1, increased clustering leads to higher
values of Moran�s I. Where pixel intensities are randomly dis-
tributed, Moran�s I is equal to 0, and more alternating features lead
to lower, more negative, values of Moran�s I [34,36].

In the MRI studies, Moran�s I has been used to assess noise
levels [30,31,35], study neural networks [16] and distribution of
fat in muscles [34]. In the study by Derado et al. [16], Moran�s I
was used to investigate neural networks, which were identi�ed
using segmentation techniques. Spatial clustering of fat, in MR
images of muscles, has also been quanti�ed using Moran�s I [34].
However, Moran�s I has not yet been employed to quantify the
amount of heterogeneity within an MR image or characterise the
compositional heterogeneity of complex �uids.

In this paper, a vesicle-polymer mixture undergoing creaming
was visualised over time using 2D MRI, which revealed vesicle-
poor regions with the vesicle-rich phase. The resulting 2D MR
images were analysed using �rst-order statistics, Fourier transfor-
mations, GLCM and Moran�s I. The results were compared between
all image analysis methods and their potential for quantifying
phase separation and spatial heterogeneity was assessed. A
detailed description of the Moran�s I calculation is presented and
explained. Different spatial weight matrices were evaluated and
it was found that careful selection of the spatial weight matrix
made it possible to quantify smaller structures than have been pre-
viously accessible [34] using this method.



I = 0
II

Fig. 1. Schematic diagram showing images containing equal numbers of black and white pixels. The central image is a random distribution of black and white pixels giving a
Moran�s I of 0, the images left of the center having more alternating black and white pixels and lower, more negative values of Moran�s I and the images right of the center
show more clustering and higher, more positive values of Moran�s I.
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2. Theory: Moran’s I calculation

Moran�s I quanti�es spatial clustering and connectivity between
clusters by assessing the correlation of parameters between spa-
tially close or contiguous pixels. The more clustered pixels are in
an image, the closer the value of Moran�s I is to 1 (Fig. 1). Using
Eq. (1), Moran�s I can be determined for a 2D image containing N
pixels, indexed by i and j [36]. Each pixel has a measurable vari-
able, Xi/j, and the vector X contains the difference between Xi/j

and the mean of that measurable variable, X, for the whole image
(Eq. (2)). The tensor product, X � X, creates a matrix Cij which
de�nes the proximity of i and j, based on Euclidean distance [36].
Wij is a spatial weight matrix, de�ning the degree of spatial close-
ness, or contiguity, of pixels i and j [34].
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While, the choice of weight matrix in�uences the value of Mor-
an�s I calculated [36], this is frequently not discussed when using
Moran�s I as a tool for image analysis [16,34]. Yet, the choice of spa-
tial contiguity controls whether the calculated Moran�s I value is a
measure of global, long-range, short-range or local autocorrelation.
Local autocorrelation provides a measure of spatial localisation,
which can identify clustering between adjacent pixels within a
Fig. 2. Schematic representation of which pixels neighbour a central pixel,
indicated using arrows, when (a) edge sharing pixels are contiguous (Rook�s case)
and (b) when edge and corner sharing pixels are contiguous (Queen�s case).
sample (an image)[37]. Whether pixels are considered adjacent
or not can be de�ned in a number of ways, such as using the
Queen�s or Rook�s case neighbourhood relationships (Fig. 2) [38].
In the case of the Queen�s case, correlations between a pixel and
its edge and corner sharing pixels are considered, whereas Rook�s
case only considers correlations between a pixel and the pixels
sharing an edge [38]. A spatial weight matrix, Wij, is constructed
based on the choice of spatial contiguity (Eq. (3)) and is a binary
matrix, where wij = 1 if pixels i and j are contiguous. The �nal
weight matrix must be symmetric, such that the matrix equals
the transpose of itself, Wij = Wij

0, and wij = 0 on the diagonal so that
a pixel cannot correlate with itself. The cross product of Cij and Wij

can be used to determine the �nal value of Moran�s I.

3. Materials and methods

3.1. Sample preparation

Dispersions of vesicles formed with the cationic surfactant
diethylesterdimethyl ammonium chloride (DEEDMAC) were inves-
tigated in this study, which are of particular interest as biocompat-
ible fabric enhancers [39] and have typical vesicle sizes ranging
from 100 nm to 5 µm. Aqueous dispersions of DEEDMAC vesicles,
with an approximate vesicle volume fraction (U) of 0.5, were pre-
pared according to standard procedures developed by P&G Brus-
sels. Vesicle dispersions were thoroughly mixed with an aqueous
solution of the polydiallyldimethyl ammonium chloride (Mw =
150000 g mol�1) polymer, Merquat 100 (Lubrizol), giving a �nal
polymer concentration of 0.25% wt, and 5 cm tall samples were
stored in 20 mm (outer diameter) glass test tubes (Cole-Parmer
Instrument Co.). A sample was prepared, which trapped air bubbles
during the mixing process. These bubbles were then subsequently
extracted using a vacuum pump and then this sample was imaged
after t = 21 days. A second sample was prepared in a vacuum, to
prevent the trapping of air bubbles, and measurements were made
at t = 0 (20 min), 2, 7, 14, 21, 35 and 180 days.

3.2. MRI experiments

MRI data were collected on a Bruker DMX 300 spectrometer
equipped with a 7 T vertical wide-bore superconducting magnet,
operating at a proton resonance frequency of 300.13 MHz with a
micro2.5 imaging probe and 25 mm radio frequency (RF) bird cage
coil. All experiments were recorded at 293 – 0.3 K, which was
maintained by the temperature of the water cooled micro2.5 gra-
dient coils. The RF pulses were calibrated for each sample. Vertical
1H MR images of water in the vesicle dispersion were acquired
using the spin-echo imaging sequence RARE (Rapid Acquisition
with Relaxation Enhancement) [40]. Vertical images were acquired
with a 1 mm slice thickness and a 256 � 128 pixel matrix were
used, resulting in square pixels of width 0.156 mm or 0.176 mm.
The speci�c parameters for each image can be found in the
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Supplementary Information (Fig. S1). T2 relaxation maps were pro-
duced from 16 echo images with an echo time of TE = 7 ms and a
RARE factor of 16, leading to echo times ranging from 60 to
1740 ms. A repetition time of TR = 10 s was used. All MRI data were
analysed using Prospa [41]. A schematic diagram of the slice orien-
tation relative to the sample tube is shown in Fig. 3.

3.3. T2 relaxation time map image analysis

Sections, 50 pixels � 50 pixels in size, were extracted from T2

relaxation maps for analysis. These sections were normalised, to
account for different mean T2 relaxation times between the images,
by dividing the T2 relaxation time for each pixel by the mean T2

relaxation time for the image section. Histogram plots of the pop-
ulation distribution of T2 relaxation times were generated from
each normalised image section. Standard deviation, skewness (c),
kurtosis (r) and Sarle�s bimodality coef�cient (b) (Eq. (4)) [42] were
calculated for the normalised image sections using MatLab [43]. 2D
Fourier transformations of the selected T2 relaxation time map sec-
tions were generated using Prospa [41]. A grey-level co-occurrence
matrix was calculated for each image section, using Phyton,
according to Eq. (5), where i and j are the different grey levels
and the co-occurrence is dependent on the distance (d) and angle
(h) over which co-occurrences are allowed [44]. 256 grey-levels
were considered for each image section and co-occurrences were
considered between horizontally adjacent pixels (d = 1, h = 90�).
Scalar statistics were then calculated for the co-occurrence matrix,
which included values for the homogeneity (Eq. (6)), presented
here, as well as contrast, correlation and dissimilarity values,
which are presented in the Supplementary information [44]. Mor-
an�s I values were calculated for each T2 relaxation time map sec-
tion, for both the Queen�s case and Rook�s case neighbourhood
relations, using MatLab [43].
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Fig. 3. Schematic diagram showing MRI image slice relative to the sample tube.
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4. Results

Fig. 4a shows selected sections from a range of T2 relaxation
time maps for vesicle-polymer mixtures, at different stages of
phase separation. The average T2 relaxation time of water, for the
entire section, was in the region 420�490 ms, depending on the
sample and its age. T2 relaxation times were found to distinguish
between vesicle-rich or poor regions most effectively, with
vesicle-rich regions having values between 370 and 470 ms and
vesicle-poor regions between 510 and 800 ms. This is expected
to arise from the increase in mobility of water in the vesicle-poor
region and decrease in mobility in the vesicle-rich region [45].
The T2 relaxation time is shorter in vesicle-rich regions, because
there is a greater proportion of water molecules inside the vesicles
with restricted mobility [45]. The image sections in Fig. 4a(i�iii)
and Fig. 4(vi) are of the same sample, which was prepared in a vac-
uum, to prevent the trapping of air bubbles in the suspension, and
were collected immediately after (t = 20 min) the sample was pre-
pared (Fig. 4a(i)), after 2 days (Fig. 4a(ii)), after 7 days (Fig. 4a(iii))
and after 6 months (Fig. 4a(vi). For the t = 20 min sample (Fig. 4a
(i)), the image appears homogeneous and does not display any evi-
dence of phase separation or the formation of vesicle-poor regions.
The image sections in Fig. 4a(ii) and Fig. 4a(iii) were acquired when
vesicle-poor regions had formed in the vesicle-rich phase of the
sample. The image section in Fig. 4a(vi) was acquired after the
sample had fully phase separated into layers and no vesicle-poor
regions remained in the vesicle-rich layer. The image sections in
Fig. 4a(iv) and Fig. 4(v) are different sections of the same T2 relax-
ation time map, which was of a sample which had trapped air bub-
bles during mixing, that were subsequently extracted using a
vacuum pump. The T2 map was acquired at t = 21 days. The image
section in Fig. 4a(iv) displays many, predominantly, vertical
vesicle-poor regions in the vesicle-rich phase and the image sec-
tion in Fig. 4(v) shows the region of the sample where it had phase
separated into layers, but with vesicle-poor regions remaining in
the vesicle-rich phase. Where the sample developed into two lay-
ers (Fig. 4a(v) and (vi)), the vesicle-poor phase appears beneath
the vesicle-rich phase, because the vesicles are less dense than
the aqueous continuous phase [4].

Histogram plots, showing the population distribution of T2

relaxation times for each image section, are show in Fig. 4b. The
histogram plots for the �rst three image sections Fig. 4b(i�iii) are
unimodal. The spread of the T2 relaxation times increases in the
plots in Fig. 4b(iv�v), with the plot in Fig. 4b(vi) showing a bimodal
distribution. Larger versions of these histograms can be found in
the Supplementary information (Fig. S2). Statistical analysis of
the data displayed in the histogram plots from Fig. 4b are pre-
sented in Fig. 4c�e, giving the standard deviation (Fig. 4c), the
skewness and kurtosis values (Fig. 4d) and Sarle�s bimodality coef-
�cient (Fig. 4e) for each plot. Fourier transforms of the image sec-
tions in Fig. 4a are presented in Fig. 4 f. These are all mostly similar
in appearance, except for the Fourier transformation in Fig. 4f(vi),
which shows a region of higher intensity running diagonally along
the Fourier transformation. The homogeneity values, from the
GLCM analysis of image sections (i)�(vi), are shown in Fig. 4 g, with
the corresponding contrast, correlation and dissimilarity values in
the Supplementary Information (Fig. S3). Finally, in Fig. 4 h, the
values for the Moran�s I, calculated using both Queen�s and Rook�s
case neighbourhood relations, are presented for each for image
section in Fig. 4a.



Fig. 4. (a) 50 � 50 pixel sections from T2 relaxation maps of a sample prepared in a vacuum, to prevent the trapping of air bubbles at: (i) t = 0, (ii) t = 2 days, (iii) t = 7 days, and
(vi) t = 180 days; and a sample not prepared in a vacuum, where trapped air bubbles were removed following sample preparation at: t = 21 days, (v) and (vi) for different
regions of the sample. (b) For each image section in (a), there are (b) histogram plots, (c) standard deviations, (d) skewness and kurtosis values, (e) Sarle�s bimodality
coef�cients, (f) Fourier transforms (g) homogeneity value calculated from GLCM analysis and (h) Moran�s I values, calculated using weight matrices based on either the
Queen�s case or Rook�s case neighbourhood relations. Larger histogram plots can be found in Supplementary Information. (For interpretation of the references to colour in this
�gure, the reader is referred to the web version of this article.)
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Fig. 5. (a) A time series of T2 relaxation time maps for a sample prepared, without the inclusion of air bubbles, in a vacuum, (b) graph of Moran�s I against time, (c) graph of ln
(Moran�s I) against time in hours (top axis) and days (bottom axis). (For interpretation of the references to colour in this �gure, the reader is referred to the web version of this
article.)
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Fig. 5a shows T2 relaxation time maps for a single sample over
time, giving the Moran�s I value for each image. Vesicle-poor
regions can be seen to develop in this sample after 2 days, with
the sample splitting into two layers after 14 days. However, it is
only after 35 days that the vesicle-poor phase can be observed by
eye. The value of Moran�s I is plotted as a function of time in
Fig. 5b and there is a general trend of increasing Moran�s I as the
sample becomes more phase separated over time. In Fig. 5c, a plot
of the natural logarithm of Moran�s I against time (Fig. 5c) in pre-
sented, which shows a linear relationship at the earlier time points
(�35 days).
5. Discussion

From the T2 relaxation time maps in Fig. 3a, it is apparent that
not all the systems separate into two distinct layers. Also, of the
two examples, where two layers can be observed (Fig. 3a(v and
vi)), only one of them is fully separated, with one of them still
showing signi�cant heterogeneity in the top layer (Fig. 3a(v)).
Hence, 2D imaging and image analysis is essential to detect and
quantify phase separation in these vesicle-polymer mixtures. From
the histogram plots (Fig. 4b), showing the T2 relaxation time distri-
bution for each image section (Fig. 4a), it can be seen that the for-
mation of vesicle-poor regions only becomes apparent once the
there is signi�cant phase separation (Fig. 4a(iv�vi)). While, the
presence of smaller, partial, phase separation (Fig. 4b(ii) and (iii))
cannot be detected in their corresponding histogram plots, which
look almost identical to the one for the homogeneous sample
(Fig. 4b(i)). Similarly, the values calculated for the standard devia-
tion and Sarle�s bimodality coef�cient also showed little difference
between the �rst three image sections. It is only when larger
vesicle-poor regions are formed or when different layers form that
this can be detected using the standard deviation or Sarle�s
bimodality coef�cient (image sections (iv�vi)). The skewness and
kurtosis values were found to vary the most between systems,
but not in a unique manner, preventing a means of quantifying
the developing phase separation. For example, the features
observed in image sections (ii) and (iv) gave similar kurtosis val-
ues, while the image sections (iv) and (vi) had similar skewness
values. However, all three images showed very different degrees
and morphologies of phase separation. The Fourier transforms
were less able to distinguish between the different image sections,
unable to identify the change in the spatial frequency of sample
heterogeneity and did not offer a simple quanti�able measure of
phase separation. From the GLCM analysis of the image sections,
only the homogeneity values were found to show any correlation
with the extent of phase separation, with there being a general
trend of an increasing homogeneity value as the phase separation
progressed. While the GLCM homogeneity value was able to distin-
guish between the slight phase separation observed in image sec-
tions (ii) and (iii), from the homogeneous image section in (i), it
was unable to distinguish between different degrees of phase sep-
aration, such as those observed for image sections (ii) and (iii) from
that observed in image section (iv).

It is only the values of Moran�s I, shown in Fig. 4 g, that provide
a means of quantifying the heterogeneity of phase separation,
where the degree of phase separation appears to correlate with
the value of Moran�s I. Moran�s I is lowest for the most homoge-
neous sample, where no phase separation is detected, but steadily
increases as the area of the vesicle-poor regions increases. It is only
the Moran�s I value that is able to detect the small heterogeneities
in image sections (ii) and (iii) and monitor the evolution of phase
separation. The Moran�s I values for image sections (v) and (vi)
are the highest, as all pixels with the higher T2 values, in the lower
phase, correlate strongly with each other and there is little
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variation in T2 in this region. It is found that, in certain situations,
the value of Moran�s I depends on which weight matrix is used, as
demonstrated in the case of the two image sections showing the
least phase separation ((ii) and (iii)). These weight matrices have
enabled smaller features to be detected by Moran�s I, than has been
previously observed [34], and where the Rook�s case weight matrix
is used, the values for Moran�s I are higher, suggesting it is the most
effective at detecting small heterogeneities and distinguishing
between samples at the early stages of phase separation. This is
demonstrated in the time series of images in Fig. 5a, which show
the development of phase separation before the sample has formed
the two distinct layers (at 35 days) that can be observed visually.
The plot of Moran�s I vs time indicates an exponential relationship,
which is con�rmed in the plot of ln (Moran�s I) vs time. As there is a
linear relationship between ln (Moran�s I) vs time, at early time
points (�35 days), the rate of phase separation appears to follow
�rst-order kinetics. This has been previously observed during the
creaming process of other vesicle-polymer mixtures [3]. In these
studies on the kinetics of phase separation, the process has been
described as poroelastic consolidation [3]. From the plot in
Fig. 5c, a rate constant of 0.002 h�1 was determined, which leads
to a value for the timescale for collapse, s, of 500 h. This timescale
is believed to be dependent on viscosity, particle volume fraction,
initial sample height, network permeability and the elastic
strength of the gel [3,46]. A previous study of a similar system
found a s value of 20�180 h, for samples of comparable height,
though at lower vesicle volume fraction and with a smaller poly-
mer, [3]. However, this study was only able to observe the cream-
ing process once the vesicle-poor lower phase had formed, which
prevented the kinetics of this process being characterised in the
early stages. Thus, we have shown, in this paper, that by combining
2D MRI, with Moran�s I analysis, it is possible to detect and quan-
tify phase separation, immediately after onset, and hence gain
insight into the kinetics of these processes much earlier than
through visual observation.
6. Conclusion

Sedimentation and creaming of colloidal suspensions can lead
to particle-poor regions in the particle-rich phase [3,4,6]. These
regions are ignored when sedimentation is considered as a 1D pro-
cess, controlled only by gravity and hence, 1D imaging and analysis
[1,2,7] is not always appropriate. In this paper, we have shown that
particle-poor regions can form in the particle-rich phase, during
creaming in vesicle-polymer mixtures by using 2D T2 relaxation
time maps. By observing creaming in a range of vesicle-polymer
mixtures, over time, and applying a variety of image analysis tech-
niques, it has been found that Moran�s I is the most effective at
quantifying compositional heterogeneity caused by phase separa-
tion. Moran�s I was the only technique able to differentiate a homo-
geneous, pre-phase separation, image from an image displaying
small heterogeneities, at the early stages of phase separation and
able to quantify the degree of phase separation. This sensitivity
to small heterogeneities is especially important when quantifying
phase separation which is not characterised by a vertical variation
in volume fraction [3,4,6]. As such, Moran�s I has a provided a
robust and sensitive means of quantifying phase separation, which
enables the relationships between sample composition, environ-
mental history and time to be correlated. The importance of the
choice of weight matrix was demonstrated as it was found that
by choosing the right weight matrix made it possible to quantify
very small heterogeneities more effectively. Moran�s I was also
used to follow phase separation over time and it was found that
the phase separation process followed �rst order kinetics as
expected for a colloidal gel undergoing poroelastic consolidation
[3,46]. However, by using Moran�s I to quantify the heterogeneity
in 2D T2 relaxation maps, information about the rate of phase sep-
aration was obtained prior to formation of the lower, vesicle-poor,
phase. For all these reasons, Moran�s I has been shown to be an
invaluable tool in the study, and improved prediction, of highly
complex, multi-factor, sedimentation or creaming of colloidal sus-
pensions. To this end, we believe greater insight is possible, into
the mechanisms controlling creaming and sedimentation in
vesicle-polymer mixtures, using Moran�s I.
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