Interventions targeting sedentary behavior in non-working older adults: a systematic review

Justin Avery Aunger⁎, Paul Doody, Carolyn Anne Greig

School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, B15 2TT, United Kingdom

ARTICLE INFO

Keywords:
Sitting
Elderly
Behavior change
Aging
Sedentary
Older adults

ABSTRACT

Sedentary behavior has been found to be associated with negative health outcomes independently of physical activity in older adults. This systematic review collates interventions to reduce sedentary behavior in non-working older adults, assessing whether they are effective, feasible, and safe. A systematic search identified 2560 studies across five databases. Studies were included where participants were ≥ 60 years on average with none younger than 45, and participants did not work > 2 days per week. A total of six studies were identified, three of which included control groups, while the other three were repeated-measures pre-post designs. Only one study randomised participants. The overall level of quality of included studies was poor. A narrative synthesis was conducted, as the level of heterogeneity in outcomes and outcome reporting were too high for a meta-analysis to be performed. The narrative synthesis suggested that interventions have the potential to reduce sitting time in non-working older adults. Included studies reported feasible and safe implementations of their interventions in most samples, except for one subsample from a study of people in sheltered housing. Objectively measured reductions in sitting time were between 3.2% and 5.3% of waking time, or up to 53.9 min per day. Future studies should employ more rigorous designs to assess the effects of reducing sedentary behavior on health and physical function, and should include follow-ups to measure the duration of behavior change.

1. Introduction

1.1. Rationale

Sedentary behavior is defined by the Sedentary Behavior Research Network [1] as any activity performed in a sitting or reclining posture with an energy expenditure equivalent to ≤ 1.5 Metabolic Equivalent of Tasks (METs). Interventions to reduce sedentary behavior are important, as sedentary behavior has been found to be a risk factor for multiple metabolic diseases, independent of the degree of moderate-to-vigorous physical activity a person performs (MVPA) [2,3]. Specific populations are at greater risk than others for the negative consequences of sedentary behavior, particularly because these populations have low cardiorespiratory fitness and activity levels, both of which have been found to be independently related to risk for cardiovascular disease [4]. A demographic fitting these criteria is older adults aged > 60 years.

Older adults are growing significantly both as a segment of the UK and global population [5]. Globally, the number of people over 60 is expected to increase by 56% by 2030, and, is expected to double by 2050 [6]. This means that in the UK, in 2050, older adults are expected to constitute approximately 25% of the total population [7]. In older people, objectively-measured sedentary behavior manifests its negative health effects in terms of reduced physical function, greater risk for cardiovascular disease and type 2 diabetes, and increased mortality, independent of performance of MVPA [8–10]. Additionally, sedentary behavior is related to disease risk in a multitude of ways. For example, the manner in which sitting time is accumulated, such as in longer or shorter bouts, is differentially associated with cardiovascular disease risk in adults > 45 years [11]. In this sample, interrupting bouts of sitting time every 20 min had a significant enough effect on systolic blood pressure to lower all-cause mortality risk by 3–4% [11]. The morbidities of this population combined with the ongoing relative growth makes this segment of the population highly burdensome to healthcare facilities of their respective countries [5,12]. For example, in the UK, healthcare for older adults over-65 s account for 2/5ths of the total National Health Service’s budget [13]. Thus, designing, testing, and implementing interventions in older adults that target sedentary behavior specifically is important, has been found to have beneficial impacts on physical function, and is associated with improvements to cardiometabolic health [10,14]. Although there are many published studies focusing on reducing sedentary behavior, not many have
specifically targeted older adults, and no systematic reviews of seden-
tary behavior interventions exclusively in older adults have yet been
published [15]. Therefore, the aim of this review is to assess the fea-
sibility, safety and efficacy of interventions targeting sedentary
behavior in older adults.

1.2. Objectives

The objectives of the review are as follows:

1 To assess the efficacy of interventions to reduce sedentary behavior in older adults.
2 To investigate how sitting time is displaced to other behaviors in older adults.
3 To identify design methodologies and theoretical frameworks used in interventions to reduce sedentary behavior in older adults.
4 To assess the feasibility and safety of interventions to reduce sedentary behavior in older adults.
5 To analyse the current state of the research and propose future directions.

2. Methods

2.1. Prospero registration

The review was registered on PROSPERO (https://www.crd.york.ac.uk/PROSPERO/) on 20/01/2017 with registration number CRD42017054932.

2.2. Search

Systematic searches were run on the following databases: EMBASE including Epub, Ovid MEDLINE®, CINAHL Plus SportDiscus, and PsychInfo. The searches were run on the 13th of January 2017 and included papers from 1946 onwards.

A systematic search strategy was primarily developed for the OVID platform with EMBASE in mind, was checked by a senior librarian at the University of Birmingham, and then adapted for the other databases. The search strategy for Ovid is supplied in supplementary file 1. Additional articles were sought by reference-list and primary author searching of identified articles. After running the searches, articles were retrieved and imported into a citation manager and duplicates were removed. Two reviewers, JA and PD, screened all titles and abstracts for relevance and resulting articles were compared. Any disagreement was resolved through discussion. Full-text articles were then independently screened against inclusion criteria and any ineligible were removed.

2.2.1. Inclusion criteria

1 All participants aged 45 years or older with a mean age of all participants equalling 60 years or older.
2 In voluntary or paid employment ≤ 2 days per week (e.g. a typical retirement lifestyle).
3 Interventions specifically designed to reduce sedentary behavior.
4 Randomised controlled trials (RCTs), quasi-experimental study, controlled before-and-after studies, interrupted time series designs, and feasibility or pilot studies (pre-post) designs.
5 Papers must measure sitting time (mins/day, mins/week, mins/weekday, mins/weekend-day, percentage change), standing time (mins/day), stepping time (mins/day), number of breaks in sitting time and sitting time in bouts > 30 min measured using either self-report or objective tools.

2.2.2. Exclusion criteria

1 Articles not written in English.
3.3. Study characteristics

3.3.1. Study design

One study was quasi-experimental in design, meaning a control group was included, but randomisation was not performed [20]. Only one ‘true’ RCT was identified [22], with the four remaining studies all feasibility or pilot studies [21,23–25], of which only one utilised a comparison group [23].

3.3.2. Risk of bias within studies

Overall quality of the identified studies was poor. Three studies were assessed with the modified Delphi tool as they included control groups [20,22,23], and the other three were before-after designs and were thus assessed with the QABAS tool [21,24,25]. Of the modified Delphi-assessed studies (Table 1), one scored a 6/7 [22], and the other two scored 3/7 [20,23]. Regarding the QABAS-assessed studies, the scores were all determined as fair for pre-post designs. Independent quality assessment agreement was 100% for Delphi-assessed studies, and agreement was 97.2% for the QABAS-assessed items.

3.3.3. Samples

Sample sizes were small, ranging from 30 [24] to 59 [25]. Recruitment sources of older adults varied; one study recruited from a Public Health Centre in Korea [20], another from outpatient clinics and previous trials due to the focus on hypertensive patients [22], one from senior centres [23], two were convenience samples of community-dwelling older adults [24,25], and one compared two samples from among both sheltered housing and community-dwelling older adults [21]. Five studies included participants that were at least 60 years and older [20,21,23–25]. Only one study included participants younger than 60 years, however it should be noted that for this study, the mean age was 66.9 years with a SD = 12.7 years [21].

3.3.4. Duration

Duration of interventions varied from 2 to a maximum of 8 weeks, with a mean of 5.5 weeks.

3.4. Exploring relationships within and between studies

Methods adopted for this section of the narrative synthesis included the vote counting of study features (Table 3), tabulation of differences in study outcomes for sedentary behavior variables, standing, and stepping, (Table 4) and the following textual analysis outlining the variations in methodologies and effects within and between included studies.

3.4.1. Intervention components

All included interventions focused on decreasing sedentary behavior. Common intervention components included goal-setting, which all
interventions incorporated to some degree, and individualised feedback [24,25]. Motivational sessions were also employed, designed to inspire behavior change [20,22] and phone calls to achieve the same aim [22,24].

3.4.2. Theoretical frameworks

Theoretical frameworks employed included empowerment theory [20], social cognitive and behavioral choice theories [25], self-determination theory [24], the health action process approach and a habit dual-process framework [23], and a habit-formation model [21]. Only one study did not mention a theoretical foundation [22].

3.4.3. Sedentary behavior reduction targets

Of the included studies, one mentioned a 30 min/day reduction in sitting time as their minimum target that they would consider clinically significant, but did not support this with references [22] and another cited 60 min/day [24]. A further study cited a 5.6% reduction in sitting as a target, but gave no rationale [25], and another targeted keeping sedentary behavior to an 8 h/day maximum with standing or moving for at least 10 min per hour [23]. The remaining two studies did not set specific targets [20,21].

3.4.4. Sedentary behavior measurement

Three of the included studies used self-report methods alone for assessing sedentary behavior, with the International Physical Activity Questionnaire (IPAQ) being most common [20,21]. However, the IPAQ has not been well validated for sedentary behavior measurement as it was originally designed to assess physical activity [26]. Other studies used the Measure of Older Adults’ Sedentary Time (MOST) [21,23,27], and the Multimedia Activity Recall for Children and Adults (MARCA) [22,24]. Three studies used accelerometers to measure sedentary time, such as the ActiGraph GT1M [25], or an inclinometer such as the ActivPal3 [22,24].

3.4.5. Sedentary behavior outcomes

There was large heterogeneity in outcome measures and how they were reported in the studies (Table 4). All studies reported total sitting time, but some did so in minutes/week [20,21,23], average minutes/day [22,24], and a percentage of waking time reduction [24,25]. Only one study standardised measures for accelerometer wear time [21] and day [22,24], and a percentage of waking time reduction [24,25]. Only behavior change [20,22] and phone calls to achieve the same aim [22,24]. Motivational sessions were also employed, designed to inspire interventions incorporated to some degree, and individualised feedback [24,25].

Table 1

<table>
<thead>
<tr>
<th>Criteria ID</th>
<th>Question</th>
<th>Chang et al. [20]</th>
<th>English et al. [22]</th>
<th>Maher et al. [23]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Was a method of randomisation performed?</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1b</td>
<td>Was the treatment allocation concealed?</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Were the groups similar at baseline?</td>
<td>Yes</td>
<td>Don’t Know</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Were the eligibility criteria specified?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Was the outcome assessor blinded?</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>5*</td>
<td>Was the care provider/interventionist blinded?</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>6*</td>
<td>Was the patient/participant blinded?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Were the point estimates and measures of variability presented for the primary outcome measures?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Did the analysis include an intention-to-treat analysis?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>*</td>
<td>Total score</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Other comments</td>
<td>90% female sample</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These asterixes were used to designate that items 5 and 6 of the Delphi quality assessment tool were not utilised, as, for example, it is not possible to blind participants to their allocation. The Delphi quality assessment of included study with control groups.

3.4.6. Feasibility and safety outcomes

Five out of six included studies assessed either feasibility or safety, except for the study by Chang et al. [19]. Common methods of assessing feasibility included adherence to intervention components [21–23], attendance [23], completion of measurements [22,23], retention [24,25], reach (defined as amount of participants recruited of those screened and eligible) [25], satisfaction [20,24,25], burden [21,22,24], completion of questionnaires relating to acceptability [21,23], and semi-structured interviews [21]. Most of these measures were qualitative in nature and thus were difficult to synthesise.

Safety was assessed by English et al. [21], and Maher et al. [22]. In both, safety was measured by reporting of adverse events and, by English et al. [21] with assessment of self-reported pain, spasticity, and fatigue using the Checklist Individual Strength Questionnaire [32].

All included interventions reported a high degree of feasibility based on their qualitative assessments. Only Matei et al. [20] reported low feasibility in their sample of older adults from sheltered housing.
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Participant characteristics</th>
<th>Mean age of participants</th>
<th>Outcome Measures (efficacy)</th>
<th>Outcome Measures (feasibility)</th>
<th>Study was powered</th>
<th>Study used objective measurement and specific device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al.</td>
<td>Quasi-experimental</td>
<td>One 110-minute empowerment session per week & normal care</td>
<td>Standard hypertension education & normal care</td>
<td>Older adults > 60 years with hypertension</td>
<td>66.3</td>
<td>Sitting (total min.week$^{-1}$), Total physical activity (METS min.week$^{-1}$), Perceived health, Depression, Self-efficacy for physical activity</td>
<td>N/A</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>English et al.</td>
<td>Randomised</td>
<td>Four counselling sessions</td>
<td>Calcium supplement & attention-matching</td>
<td>Stroke survivors</td>
<td>66.9</td>
<td>Total sitting time (min.day$^{-1}$), Sitting time accumulated in bouts ≥ 30 min (min.day$^{-1}$), Standing time (min.day$^{-1}$), Stepping time (min.day$^{-1}$), MVPA, ≥ 1952 cpm (min.day$^{-1}$)</td>
<td>Pain, spasticity, fatigue, no. of falls, no. valid wear days activPAL3, waking wear hours activPAL3 (hr.day$^{-1}$), no. of valid wear days Actigraph, waking wear hours Actigraph (hr.day$^{-1}$)</td>
<td>Yes</td>
<td>Yes (Actigraph GT3+ and ActivPal3)</td>
</tr>
<tr>
<td>Gardiner et al.</td>
<td>Feasibility or pilot study</td>
<td>One session of individual and normative feedback, goal setting, and formulation of an action plan</td>
<td>None</td>
<td>Older adults > 60 years</td>
<td>74.3</td>
<td>Sedentary time, breaks, and physically active time</td>
<td>Reach, retention, and participant satisfaction</td>
<td>Yes</td>
<td>Yes (ActiGraph GT1M)</td>
</tr>
<tr>
<td>Lewis et al.</td>
<td>Feasibility or pilot study</td>
<td>'Small Steps' - individual goal-setting, normative feedback, phone calls</td>
<td>None</td>
<td>Older adults > 60 years</td>
<td>71.7</td>
<td>Total sitting time (min.day$^{-1}$), Sitting < 30 (min.day$^{-1}$), Sitting ≥ 30 (min.day$^{-1}$), % of waking time sitting, No. of bouts sitting ≥ 30 min (n), Standing (min.day$^{-1}$), Stepping (min.day$^{-1}$), TST1.5s (sitting time accrued with activities at less than 1 METs) (min.day$^{-1}$), TV (min.day$^{-1}$), Computer (min.day$^{-1}$), Reading (min.day$^{-1}$), Passive transport (min.day$^{-1}$), Light physical activity (min.day$^{-1}$), moderate-to-vigorous physical activity (min.day$^{-1}$), Total Daily Energy Expenditure (TDEE) (METS minutes)</td>
<td>Satisfaction, burden, feasibility (uptake and retention)</td>
<td>Yes</td>
<td>Yes (ActivPal3)</td>
</tr>
<tr>
<td>Maher et al.</td>
<td>Feasibility or pilot study</td>
<td>Focus group, video segment about risks, enhancement of outcome expectancies, action plan formulation</td>
<td>Social isolation intervention</td>
<td>Older adults > 60 years in senior centres</td>
<td>76.9</td>
<td>Sedentary behavior (separated into weekday and weekend for each sub-item) made up of following domains: total sedentary behavior, TV time, computer time, reading time, socialising time, transportation time, hobbies time, paperwork time, eating time, and ‘other’</td>
<td>Feasibility (participation, adherence, and measurement completion), participation (no. of centres with meaningful recruitment), acceptability, and safety.</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Matei et al.</td>
<td>Feasibility or pilot study</td>
<td>Booklet with tips & goals</td>
<td>None</td>
<td>Sample 1 from sheltered housing, sample 2 from community dwelling older adults. Over 55 years of age.</td>
<td>66.42 (sample 1); 66.91 (sample 2)</td>
<td>Sitting time (IPAQ; min.week$^{-1}$), sitting time (MOST; min.week$^{-1}$), sitting habit (1-7 scale), walking (min.week$^{-1}$), moderate PA (min.week$^{-1}$), vigorous PA (min.week$^{-1}$), PA habit (1-7 scale)</td>
<td>Adherence to tips (tick-sheets). Qualitative semi-structured covering experiences using leaflets, barriers to adherence, habit-formation, whether further support was required, and suggestions for improvement.</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
due to the unique circumstances of their lifestyles. However, these individuals still reported benefits to wellbeing due to the intervention. For other aspects of feasibility, the quantitative measure of satisfaction was reported between 8.2 [24] to 9 [25] out of 10. Compliance (or adherence) was also assessed by Lewis et al. [23], who achieved 90% adherence to goals. Likewise, Matei et al. [20] achieved 40% adherence to goals as assessed using tick-sheets in their sample from sheltered housing. In the sample of community-dwelling older adults, adherence was 58%, in line with the greater efficacy achieved in this group [20]. However, in comparison with Lewis et al. [23], the goals were pre-specified (not individualised), and some were reported to have lacked social desirability, which could explain the poorer outcome. Maher et al. [22] achieved 98% adherence to session attendance, and data completion was 98%. English et al. [21] reported 100% compliance to counselling sessions. These data suggest that overall compliance with the interventions was high.

Few safety concerns were reported. Maher et al. [22] reported that the most severe effect of the intervention was mild soreness from increasing standing and walking, and English et al. [21] reported that four non-injurious falls occurred, but that they were unrelated to the intervention. Participant ratings of pain improved in the intervention group, but this study was not powered to detect significant differences in safety measures [22]. Gardiner et al. [25] reported no adverse events, and Matei et al. [20] reported one death, and three illnesses, unrelated to study participation.

4. Discussion

The aim of this review was to assess the feasibility, safety, and efficacy of interventions targeting sedentary behavior in older adults living a typical retirement lifestyle. As evidenced by this review, most of the included studies were of low methodological quality with respect to assessing efficacy. Thus, the overall evidence pool is limited. Additionally, the discrepancy in reporting style, methodology, and subpopulations of included studies mean it is difficult to be conclusive about efficacy, feasibility, and safety. Nevertheless, since significant reductions in sitting time were attained by a few studies with good effect sizes, there is some indication that sedentary behavior interventions may be effective in older adults. It seems theoretically and ecologically possible to achieve reductions in sitting time of approximately one hour per day in older adults, as a 51.5 min reduction was reached by one of the included studies [24]. This is similar to a previous review in adults of all ages, which found a mean of 42 min./day reduction in studies that focused on reducing sedentary behavior [15]. Although feasibility was largely qualitatively-assessed, evidence suggests these interventions are feasible, at least in samples of community-dwelling individuals. The same is found in relation to safety, as reducing sedentary behavior should not expose individuals to more substantial risk than any other day-to-day activity.

4.1. A theory of interventions to reduce sedentary behavior in older adults

All the included studies had primary aims of reducing sedentary behavior. The most common technique used was goal-setting to reduce contextual sedentary behavior. Accomplishing this involves the displacement of time spent sitting to other slightly more active behaviors, such as light physical activity or standing. Sitting time, light physical activity, and standing were measured in the included studies, and therefore are placed in Fig. 2 as intermediate outcomes.

However, the ultimate purpose of interventions to reduce sedentary behavior relates to the assumed detrimental impact of sedentary behavior upon disease risk and physical function. All included studies mentioned the distinct effects of sedentary behavior on an aspect of health, most typically cardiovascular health, and that the effects of sedentary behavior are more severe in older adults. All included studies stated a mitigation of the negative health effects of sedentary behavior on disease risk as a main purpose of their interventions, either in the

<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention components</th>
<th>Measurement</th>
<th>Study assessed feasibility</th>
<th>Study assessed safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al. [20]</td>
<td>Phone Calls, Sedentary behavior</td>
<td>✓✓ ✓ ✓</td>
<td>✓✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>English et al. [22]</td>
<td>Motivational Sessions, Education</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Gardiner, Eaken et al. [25]</td>
<td>Goal Individually Feedback on Sedentary Time</td>
<td>✓✓ ✓✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Lewis et al. [24]</td>
<td>✓✓ ✓✓ ✓ ✓ ✓ ✓</td>
<td>✓✓ ✓✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Maher et al. [23]</td>
<td>✓ ✓✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Matei et al. [21]</td>
<td>✓ ✓✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
</tbody>
</table>

Table 3: Vote counting of intervention components, measurements, and whether studies included comparison groups.
Box 1

Definitions.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic Equivalent of Task (MET)</td>
<td>A measure of the energy cost of physical activities, defined as the ratio of metabolic rate during a specific activity to the resting metabolic rate (1 MET).</td>
</tr>
<tr>
<td>Sedentary behavior</td>
<td>Any activity performed in a sitting or lying posture, with an energy expenditure of 1.5 METs or less. Physical activity, such as walking at a slow pace, where the energy expenditure is between 1.5 to 3.0 METs.</td>
</tr>
<tr>
<td>Light physical activity (LPA)</td>
<td>Physical activity that is likely to increase your heart rate, such as bicycling or walking briskly, equivalent to between 3 and 6 METs.</td>
</tr>
<tr>
<td>Moderate physical activity (MPA)</td>
<td>Activities such as jogging that have an MET value of 6 or above. Physical activity guidelines usually target performance of MVPA, and this includes any activities above 3.0 METs.</td>
</tr>
<tr>
<td>Vigorous physical activity</td>
<td>A device that can measure movement, typically in counts per minute (CPM), where a higher CPM indicates a greater intensity of movement.</td>
</tr>
</tbody>
</table>

Discussions or conclusions of their studies. Additionally, Maher et al. [22] mentioned that benefits for physical function could be attained due to a decrease in sedentary behavior. Therefore, these aspects can be included in a theory of change as ultimate outcomes as depicted in Fig. 2. However, longer-term ultimate outcomes which result from improved health and function, namely a healthier ageing process and a reduction in the burden of older adults on healthcare services, were not mentioned in the included studies. These ultimate outcomes rely on the assumption that the achieved reductions in sitting time and/or subsequent increases in light physical activity are clinically meaningful (i.e. provide a detectable improvement to health or physical function) (Fig. 2). However, intermediate outcomes such as health and physical function, despite being repeatedly mentioned as key assumptions, have not yet been investigated as outcomes in sedentary behavior interventions in older adults. Therefore, the field is left in an intermediate stage in which the effectiveness of interventions on sitting time is being investigated, but the intended effect on ultimate outcomes, such as effects on disease risk, healthy ageing, healthy lifespan, and quality of life, remains unassessed (Fig. 2).

4.2. Robustness of the narrative synthesis

Overall robustness of this narrative synthesis is low, due to both the low methodological quality of included studies and the lack of quantitative synthesis in this review. Certain elements of the narrative synthesis were subjective, such as which information was chosen for inclusion in Table 2. Additionally, heterogeneity of study designs was very high, precluding the use of quantitative techniques, increasing risk of bias. Therefore, the results cannot be considered conclusive and must be interpreted with caution (Box 1).
4.3. Future directions and recommendations

Since five out of six of the included studies were published between 2013 and 2016, there is clearly a spotlight moving within the research community towards sedentary behavior, particularly in the demographic of older adults. However, this review identified a lack of studies with RCT designs of sufficient sample size and ecological validity. Although the included studies were powered to detect significant differences in sedentary behavior variables, sample sizes were limited to between 30 and 59 participants. Larger sample sizes are needed in future clinical trials to increase rigour, and detect smaller differences, as individual variation in magnitude of behavior change can be substantial [22]. Increasing sample sizes would also increase the sensitivity of analyses within studies, enabling the individual components of interventions to be assessed proportionally for their role in the degree of behavior change achieved. Adequate sensitivity of intervention sub-components was lacking in the included studies, as it was not clear which part of the multicomponent interventions contributed most to the observed effects. Where possible, such an analysis should be incorporated, so that ineffective aspects of interventions can be discarded and overall efficiency of design can be improved moving forward.

Despite efforts from organisations such as the Sedentary Behavior Research Network (2013), there is still large heterogeneity in reporting and assessment of outcomes within the field of sedentary behavior research. Half of the included studies used only self-report methods of sedentary behavior: either the IPAQ or MOST [20,21,23]. In these studies, there were substantially greater effects reported on sitting time; for one, a 28% reduction was reported [21], which far exceeds the maximum of 5.3% reported in the objectively-measured studies [24]. The sizeable reductions reported by these studies are likely due to response bias and information bias (bias resulting from measurement error), which are common in self-report methods compared with objective ones [33,34]. Half of the studies used at least one objective measurement tool, such as an accelerometer or inclinometer. However, there are also problems with heterogeneity of objective measures: an accelerometer such as the ActiGraph GT1M or an inclinometer such as the ActivPal3 do not have complete cross-comparability. For example, in direct observation of sitting, the ActiGraph GT3X+ has been found to have a correlation of $r^2 = 0.39$, whereas the ActivPal3 achieved a correlation of $r^2 = 0.94$ [35,36]. Likewise, the GT3X+ can misclassify standing activity as sitting or lying [37]. Although any kind of objective measurement device is considered more valid and reliable than self-report methods for measuring sedentary behavior, inclinometers such as the ActivPal3 are considered superior as they can detect and record the posture of the individual wearing them [28,29]. A recent critical review of sedentary behavior in older adults, that also covered measurement techniques, found that self-report methods significantly underestimate sedentary time in comparison to objective measures, whereas inclinometers are the current gold standard [30]. Inclinometers allow for more accurate measurement of sedentary behavior, as it includes the postural component of the definition. A recent review of interventions to reduce sedentary behavior in adults of all ages found that a combination of ActivPal3 to capture objective postural information, as well as at least one self-report measure to assess context, provides the optimal detection of a beneficial intervention effect [15]. Thus, pooling the data could lead to substantial problems if the assumption is that the data are based on a comparable measurement, since the tools have substantially different validity. This heterogeneity extends to how outcomes are reported, meaning that performance of any kind of statistical analysis when systematically reviewing such articles is obfuscated. For example, one study reported in minutes of sitting time per week [20], while another reported a reduction in

Fig. 2. Interventions to reduce sedentary behavior in older adults: an implicit theory of change model. Assessed outcomes are those investigated in the included studies of this review; unassessed outcomes represent the implicit purpose of the interventions and the future direction of the field.
average minutes per day [23] (Table 4). Future studies should endeavor to gravitate towards better-suited measurement tools that are directly applicable to sedentary behavior as the primary outcome, such as inclinometers which assess posture as well as detect movement, and not be satisfied with the use of self-report measures alone. Additionally, greater consensus within the field as to reporting of outcome measures is desirable; for example, reporting sedentary time in average minutes/day is more useful than minutes/week as it is more sensitive. This would allow for better synthesis of results within the field.

Older adults have varied lives – some are retired, some working, looking after grandchildren, or living in care homes. These lifestyle factors will have large effects on sedentary time and how it is accumulated. This means that differences in participant lifestyle are key considerations that should be addressed when designing interventions in these groups. For this reason, the decision was made not to include older adults in full-time employment in this review, as other studies have mixed working and non-working participants in their analyses despite their very different lifestyles [14,38]. If half of the participant base spends eight hours a day in the office whereas the rest are retired, and participants with both lifestyles are included, then there is significant heterogeneity in lifestyle within the same study. This presents a problem because the behavior change strategies used will have to be quite different, as one group will likely be sitting out of necessity at work, and the other for leisure purposes. If it is still necessary to include participants with different lifestyles in a single study, then subgroup analyses are suggested based on these lifestyle types (e.g., working and non-working). Likewise, motivations and lifestyle may change substantially within the week, as weekday versus weekend behavior patterns are very different in older adults, causing substantial changes in sedentariness within a single 7-day period [36]. Therefore, given this substantial difference, researchers suggest that sedentary behavior outcomes should be reported for weekends and week-days separately [39].

Since the overall trend of the included studies suggests that interventions have the potential to be safe, effective, and feasible in non-working older adults, it is now time for studies to assess physical function and cardiometabolic health following a reduction in sedentary time. The assumption is that interventions will improve these health factors. However, currently, the estimated magnitude of improvement to health and function is based largely on epidemiological studies that employ statistical techniques such as isostemal modelling, a statistical technique that allows the effect of displacing time spent in one activity to another, to estimate improvements from hypothetical reductions in sedentary behaviour, or is from associational data [40]. Two studies (identified in the search, but not eligible due to including working participants) assessed a measure of function using the Short Physical Performance Battery [14,41]. One did not detect a significant difference pre-to-post intervention [14], and another found a significant improvement [41]. No study, thus far, has experimentally assessed the impact of a sedentary behavior reduction in older adults on blood markers such as cholesterol, fasting insulin, triglycerides, or low-density lipoproteins, all of which are associated with disease factors influenced by sedentary behavior [42]. Thus, it is not yet clear from the interventional data what the required magnitude of change in sedentary behavior would be to confer clinically meaningful health benefits.

However, studies utilising isostemal substitution modelling suggest that replacing 30 min./day of sedentary behavior with MVPA, or even light physical activity in individuals with co-morbidities, could have positive effects on frailty in older adults [43]. Another isostemal substitution study suggests that replacing 30 min/day of sedentary behavior with light physical activity could reduce all-cause mortality by 11% and cardiovascular disease risk by 24% [44]. Based on intervention data alone, however, it is currently underdetermined whether reducing sedentary behavior is a powerful enough stimulus to confer a definite improvement in health and physical function in older adults.

Furthermore, follow-up measurements were not included within the included studies, which makes it impossible to assess whether lasting behavioral change could be accomplished by the interventions. To be able to inform policy design and clinical practice accurately and properly, sedentary behavior research must reliably demonstrate that interventions arising from the field have the potential to confer lasting positive behavioral change with a resultant impact on health and function.

5. Limitations

This review has several limitations. Firstly, due to the infancy of this specific field, there were too few studies with too high a degree of measurement heterogeneity to undertake meta-analysis, which means the efficacy of sedentary behavior interventions in older adults can only be estimated. Secondly, the review was of studies published only in the English language, thus, other potentially eligible studies may have been missed. Thirdly, although every effort was made to distinguish between studies relying solely on self-report and those involving objective measurement of sedentary behavior according to the definition, this review nonetheless relies partially on studies utilising self-report methodologies, as well as accelerometers, rather than inclinometers, for objective measurement (which could not provide postural information).

Finally, even in the included studies which used objective measures, some were of feasibility design or included small sample sizes, making them unsuitable for estimating efficacy.

6. Conclusion

This systematic review is the first to assess sedentary behavior interventions in older adults, who are simultaneously one of the most sedentary demographics and most at-risk for its negative health effects. Although the evidence is both limited in quantity and quality, sedentary behavior interventions in non-working older adults have the potential to lead to meaningful reductions in sedentary time. However, there is not yet experimental evidence for any impact of sedentariness on clinical outcomes such as physical function and cardiometabolic health. Additionally, a lack of follow-up in these studies means there is no evidence of the duration of behavior change elicited by the intervention. As multiple pilot studies of sedentary behavior interventions indicate that sedentary behavior can be reduced by up to 1 h/day in this demographic, future studies should be of RCT design, and should endeavor to assess changes in function and health as primary outcomes, with adequate follow-up assessment. In this manner, the underlying assumptions of the field can be tested, and it can be established what dose of sedentary behavior reduction is required to improve health and physical function in older adults.

Contributors

Justin Avery Aunger was the main author, and thus developed the search strategy, ran the searches, screened the results, assessed titles and abstracts for eligibility, performed full-text screening, data extraction, quality assessment, the narrative analysis, and prepared the manuscript.

Paul Doody performed independent screening of titles, abstracts, and full texts, and completed independent quality assessment.

Carolyn Anne Greig edited the manuscript and was in place as a third independent reviewer if needed.

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

This review was supported by a European Commission Horizon

