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Abstract. This study investigated differences in the magni-
tude and partitioning of the carbon (C) and greenhouse gas
(GHG) balances in an age sequence of four white pine (Pinus
strobusL.) afforestation stands (7, 20, 35 and 70 years old
as of 2009) in southern Ontario, Canada. The 4-year (2004–
2008) mean annual carbon dioxide (CO2) exchanges, based
on biometric and eddy covariance data, were combined with
the 2-year means of static chamber measurements of methane
(CH4) and nitrous oxide (N2O) fluxes (2006–2007) and dis-
solved organic carbon (DOC) export below 1 m soil depth
(2004–2005). The total ecosystem C pool increased with age
from 46 to 197 t C ha−1 across the four stands. Rates of or-
ganic matter cycling (i.e. litterfall and decomposition) were
similar among the three older stands. In contrast, consider-
able differences related to stand age and site quality were ob-
served in the magnitude and partitioning of individual CO2
fluxes, showing a peak in production and respiration rates in
the middle-age (20-year-old) stand growing on fertile post-
agricultural soil. The DOC export accounted for 10 % of
net ecosystem production (NEP) at the 7-year-old stand but
< 2 % at the three older stands. The GHG balance from the
combined exchanges of CO2, CH4 and N2O was 2.6, 21.6,
13.5 and 4.8 t CO2 equivalent ha−1 year−1 for the 7-, 20-,
35- and 70-year-old stands, respectively. The maximum an-
nual contribution from the combined exchanges of CH4 and

N2O to the GHG balance was 13 and 8 % in the 7- and 70-
year-old stands, respectively, but< 1 % in the two highly
productive middle-age (20- and 35-year-old) stands. Aver-
aged over the entire age sequence, the CO2 exchange was
the main driver of the GHG balance in these forests. The
cumulative CO2 sequestration over the 70 years was esti-
mated at 129 t C and 297 t C ha−1 year−1 for stands growing
on low- and high-productivity sites, respectively. This study
highlights the importance of accounting for age and site qual-
ity effects on forest C and GHG balances. It further demon-
strates a large potential for net C sequestration and climate
benefits gained through afforestation of marginal agricultural
and fallow lands in temperate regions.

1 Introduction

The global temperature increase over the past century has
been attributed to increasing concentrations of atmospheric
greenhouse gases (GHGs) such as carbon dioxide (CO2),
methane (CH4) and nitrous oxide (N2O), among others,
coupled with human activities (e.g. fossil fuel burning, de-
forestation) and natural processes in terrestrial ecosystems
(Houghton et al., 1998; IPCC, 2013; Schimel, 1995; Schulze
et al., 2009). Much effort has since been put into mitigating
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the atmospheric GHG concentrations through sequestration
and/or their emission reduction strategies through land use
management activities (Montzka et al., 2011; Nabuurs et al.,
2007; Smith et al., 2008).

Among land use types, forest ecosystems have the
strongest carbon (C) sink potential and provide stocks of 100
to 160 Gt C in biomass and soil in temperate regions alone
(Dixon et al., 1994; Goodale et al., 2002; Pan et al., 2011; Re-
ich, 2011). Moreover, much of the current CO2 sink strength
of the Northern Hemisphere has been attributed to re-growth
and afforestation of former agricultural land in the US and
Canada (Pan et al., 2011; Reich, 2011). Therefore, further
afforestation of former agricultural lands of low productivity
has been proposed to help offset the increasing concentra-
tion of atmospheric CO2 (Bárcena et al., 2014; Brown, 2002;
Goodale et al., 2002; Nabuurs et al., 2007; Niu and Duiker,
2006).

Afforestation of former agricultural lands and associated
changes in land management practices, however, do not only
result in accumulation of C into biomass, but may also alter
soil and micro-climatic conditions. Tree root development,
litterfall, canopy shading and cessation of N-fertilizer appli-
cation, for instance, may trigger changes in physical, bio-
geochemical and hydrological properties of the soil, which
may affect the net exchange of CH4 and N2O (Ball et al.,
2007; Christiansen and Gundersen, 2011; Christiansen et al.,
2012; Gundersen et al., 2012; Peichl et al., 2010b; Priemé
et al., 1997; Smith et al., 2003; Ullah and Moore, 2011),
as well as the cycling of dissolved organic carbon (DOC)
(Camino-Serrano et al., 2014; Gielen et al., 2011; Peichl et
al., 2007; Rosenqvist et al., 2010). Such alterations might
modify the net ecosystem production (NEP) and the GHG
balance (Luyssaert et al., 2010, 2012; Schulze et al., 2009,
2010). Moreover, since CH4 and N2O have a 34- and 298-
times-greater global warming potential (GWP) relative to
CO2 on molar basis over 100 years when including carbon-
climate feedbacks (IPCC, 2013), afforestation effects on the
exchange of these GHGs might be even more pronounced
with respect to the net radiative forcing (Inatomi et al., 2010;
Montzka et al., 2011; Schulze et al., 2009).

The impacts of afforestation on ecosystem C pools and
GHG fluxes may also change with stand age over time, in-
cluding short-term (< 10 years; Bjarnadottir et al., 2009; Don
et al., 2009; Zona et al., 2013), intermediate (∼ 10 to 50
years; Ball et al., 2007; Christiansen and Gundersen, 2011)
and long-term (> 50 years; Coursolle et al., 2012; Hiltbrun-
ner et al., 2012; Priemé et al., 1997) effects. In addition, site
quality (which includes all environmental factors influenc-
ing tree growth and thus biomass production and decompo-
sition) might exert a strong control on the forest CO2 ex-
change and C flux partitioning (Fernández-Martínez et al.,
2014; McLeod and Running, 1988; Peichl et al., 2010a; Van-
ninen et al., 1996; Vicca et al., 2012). Changes in the mag-
nitude of the CO2 exchange subsequently have implications
for the relative contribution of the individual C and GHG

fluxes to the total C and GHG budgets following afforesta-
tion. Thus, knowledge of the changes over the entire lifespan
of the afforested stand and of the initial site conditions and
quality are required to understand the overall implications
of such land use practices for the C and GHG balances at
ecosystem and regional scales.

To date, few attempts have been made to estimate the
full forest C and GHG balance by including measurements
of all relevant fluxes of CO2, CH4, N2O and DOC. Ball et
al. (2007) estimated that the combined contribution of CH4
and N2O to the total GHG balance was 6–7 % in maturing
(20–30 years old) coniferous forests. In a young poplar plan-
tation, the contribution of CH4 and N2O was reported to ac-
count for 50 % of the GHG balance (Zona et al., 2013). Using
a process-based model, Inatomi et al. (2010) estimated the
GHG balance of a 50-year-old temperate broadleaved forest
at 10 t CO2 ha−1 year−1 by including all three GHGs (CO2,
CH4, N2O), with a small (< 2 %) contribution from CH4 and
N2O fluxes. On a larger regional scale, Tian et al. (2010) sug-
gested in their model study that emissions of CH4 and N2O
from terrestrial ecosystems may offset about two-thirds of
the land CO2 sink over the North American continent. How-
ever, DOC fluxes were not included in these studies. Gie-
len et al. (2011) reported that the lateral export of DOC ac-
counted for 11 % of the NEP in forests. Thus, these previ-
ous studies indicate substantial contributions from non-CO2
carbon and GHG fluxes and the need for including these ex-
changes when estimating and/or modelling full forest C and
GHG budgets.

In this study, we estimated the C and GHG balances of four
afforested pine stands ranging from 7 to 70 years of age. The
main objectives were (i) to determine the effects of stand age
and site quality on the forest C and GHG balances and (ii)
to investigate the contribution of non-CO2 fluxes (i.e. CH4,
N2O and DOC) to the forest C and GHG balances.

2 Material and methods

2.1 Study sites

This study was conducted in four eastern white pine (Pinus
strobusL.) forests, which are part of the Turkey Point Flux
Station located on the north shore of Lake Erie in south-
ern Ontario, Canada (42◦71′ N, 80◦36′ W). The region has
a temperate climate with a 30-year mean annual tempera-
ture of 8.0◦C and an annual precipitation of 1036 mm (En-
vironment Canada norms from 1981 to 2010 at Delhi, On-
tario). The two older forests were planted in 1939 (TP39; 70
years old in 2009) and 1974 (TP74; 35 years old in 2009)
on cleared oak-savannah land, while the two younger stands
were established on former agricultural lands in 1989 (TP89;
20 years old in 2009) and in 2002 (TP02; 7 years old in
2009). At the oldest site, TP39, a moderate thinning was car-
ried out in 1983. Although all four stands grow on generally
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Table 1.Site characteristics of the four Turkey Point pine forest stands (adopted from Peichl et al., 2010a).

Site code TP02 TP89 TP74 TP39

Planting year 2002 1989 1974 1939
Age in 2009 (years) 7 20 35 70
Tree height (m)a 3.6± 0.4 13.4± 0.9 13.5± 0.7 22.5± 1.4
Tree diameter at breast height (cm)a 5.3± 0.9 18.2± 0.6 16.7± 0.3 35.9± 5.9
Stem density (stems ha−1)a 1683± 189 1317± 251 1608± 138 421± 166
Leaf area index (m2 m−2)b 1.5 12.8 5.6 8.0
Site index (SI25)

c 60 55 28 26
Forest floor C : N ratio N.A. 16.1 24.5 17.4
Mineral soil C : N ratio (0–10 cm) 11.4 14.2 19.4 15.4
Soil N (0–10 cm) (g m−2) 86 94 67 67
Soil C (0–55 cm) (g m−2) 3720 3390 3670 3670
Soil pH(CaCl) (0–10 cm) 6.3 4.3 3.7 4.1
Mean water table depth (m) 2–3.5 0.5–2 6–7 6–7

a in 2008,b Chen et al. (2006),c Peichl et al. (2010a), N.A. stands for not available.

similar sandy and dry soils, the two youngest sites (TP02 and
TP89) are characterized by greater site quality compared to
the two older sites (Table 1). The higher site quality at the
two younger stands might result from post-agricultural rem-
nants of nutrients (e.g. elevated soil nitrogen and pH; see
Table 1). In addition, high site productivity at the 20-year-
old site, TP89, is further due to a shallow ground water table
that allows trees to have continuous access to water (Peichl
et al., 2010a). Each site has a tower instrumented for eddy
covariance flux and meteorological measurements. A suite
of standard instruments for soil temperature and soil mois-
ture measurements at several depths is also installed at each
site. More details of site-specific instrumentation, stand and
soil characteristics are given in previous studies (Arain and
Restrepo-Coupe, 2005; Khomik et al., 2010; McLaren et al.,
2008; Peichl and Arain, 2006; Peichl et al., 2010a).

2.2 Biometric estimates of C pools and fluxes

Above- and belowground C pools in forest biomass and soil
were determined in permanent sample plots established at
each site in 2004 following the National Forest Inventory
Protocol (NFI, 2003) as described in detail in Peichl and
Arain (2006) and Peichl et al. (2010c). Using data from these
NFI inventory plots, biomass and detritus pools of canopy
and understorey trees, ground vegetation and forest floor
(LFH layer) were determined each year in autumn. Forest
floor woody debris pools were determined using the line in-
tersect method (Van Wagner, 1968). Soil C and fine root
biomass pools were determined from soil coring in 2004. Lit-
terfall was collected using litter traps bi-weekly to seasonally
(i.e. every three months) in 2004–2006 and bi-annually in
2007–2008 (once immediately after the peak litterfall period
in autumn capturing∼ 80 % of the annual litterfall and once
in spring after the snowmelt) (Peichl et al., 2010c). Forest
floor litter decomposition rates were determined over 4 years

(from autumn 2004 to autumn 2008) at the three older sites.
Litter bags with 1 mm mesh size were filled with 10 g of air-
dried pine needles, and 20 bags were retrieved annually to
determine the mass loss.

Net primary production (NPP) was determined from the
annual changes in living biomass (1BL) and detritus (1BD)
pools based on annual inventory and litterfall data combined
with site-specific allometric biomass equations (Peichl and
Arain, 2007) (Eq. 1). Soil respiration (RS) was measured
from 2004 to 2007 using a LiCor LI-6400 portable chamber
system (Khomik et al., 2006, 2009). Soil heterotrophic res-
piration (RHs) was computed using a site-specific soil respi-
ration model derived from trenched plot respiration data and
further partitioned into heterotrophic respiration from min-
eral soil (RHM) and litter layer (RHLFH) (Eq. 2) (Peichl et
al., 2010b, c). Heterotrophic respiration from aboveground
woody debris (RHWD) was derived from woody debris de-
composition rates (Black et al., 2007; Law et al., 2001) and
woody debris pools and added to RHs to obtain total het-
erotrophic respiration (RH) (Eq. 3). Autotrophic root respi-
ration (RAR) was determined from the difference between
RS and RHS (Eq. 4), while autotrophic aboveground canopy
respiration (RAC) was derived by subtracting RAR from RA
(Eq. 5), with RA being the difference between biometric es-
timates of NPP and gross primary production (GPP; Peichl
et al., 2010c). The biometric estimate of GPP was estimated
from NPP assuming that NPP is a constant fraction (47 %) of
GPP on the annual scale as suggested for coniferous forests
by Waring et al. (1998).

www.biogeosciences.net/11/5399/2014/ Biogeosciences, 11, 5399–5410, 2014
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The biometric estimate of RE was calculated as the sum of
the individual respiration terms (Eq. 6).

NPP= 1BL + 1BD (1)

RHS = RHM + RHLFH (2)

RH = RHS+ RHWD (3)

RAR = RS− RHS (4)

RAC = RA − RAR (5)

RE= RHS+ RHWD + RAR + RAC (6)

The biometric estimates of individual component fluxes
were used to demonstrate their within-ecosystem partition-
ing, whereas total RE and GPP were further combined with
EC-derived estimates on the stand level as described further
below (Sect. 2.4).

2.3 DOC export

The DOC export as the difference between input via precip-
itation and soil leaching below 1 m depth was estimated for
the snow-free periods (April–December) of 2004 and 2005.
Precipitation was collected in plastic buckets equipped with
a funnel on top of meteorological towers at bi-weekly to
monthly intervals and analysed for its DOC concentration
using a Shimadzu 5050 Analyzer. Soil samples from 1 m
depth were taken to estimate the null-point DOC concentra-
tion (DOCnp) as an indicator of the potential for DOC con-
centrations leaching below this depth (Moore et al., 1992).
The export of DOC via soil water leaching was calculated
by multiplying seasonal water leaching rates with DOCnp
concentration at 1 m depth. The water leaching rate was esti-
mated as the difference between precipitation and evapotran-
spiration (based on EC measurements) during the frost-free
period, assuming zero run-off at these flat and sandy sites. A
more detailed description is provided by Peichl et al. (2007).

2.4 Measurements of GHG (CO2, CH4 and N2O) fluxes

2.4.1 CO2 fluxes

Annual GPP, ecosystem respiration (RE) and NEP were es-
timated from eddy covariance (EC) measurements at all four
sites from 2004 to 2008. Instrument setup and the data pro-
cessing procedure are described in detail in Arain and Re-
strepo (2005) and Peichl et al. (2010a). Briefly, a closed-
path eddy covariance system (infrared gas analyser (IRGA),
model LI-7000, LI-COR Inc.; sonic anemometer model
CSAT-3, Campbell Scientific Inc. (CSI); fine-wire thermo-
couple) was operated at the 70-year-old stand, TP39, while
an open-path system (IRGA model LI-7500; LI-COR Inc.;
sonic anemometer model CSAT-3, CSI; fine-wire thermocou-
ple) was rotated at bi-weekly to monthly intervals among the
three younger sites from 2004 to 2007. In 2008, measure-
ments were terminated at the 20-year-old stand, TP89, while
continuous measurements were started at the 35- and 7-year-

old (i.e. TP74 and TP02) sites using closed-path EC systems,
comprising Li-7000 IRGAs and CSAT3 sonic anemometers.
For each of the three younger sites, data from all years were
pooled and site-specific models were developed based on pa-
rameterization to environmental variables to fill the missing
flux data (Peichl et al., 2010a). Since the absolute values for
the EC estimates of NEP, GPP and RE differed from their re-
spective biometric estimates, their means from both EC and
biometric estimates are presented to obtain a more robust es-
timate that is constrained by both methods. The mean RE and
GPP fluxes therefore do not exactly match the sum of their
individual biometric component flux estimates.

2.4.2 CH4 and N2O fluxes

Fluxes of CH4 and N2O were determined at monthly inter-
vals at all four sites from April to December of 2006 and
2007 using the static chambers as described by Peichl et
al. (2010b). Briefly, air samples (20 mL) were withdrawn
using syringes at 0, 30, 60 and 90 min through a plastic
tube inserted into evacuated glass vials (13 mL) equipped
with a grey butyl septum in the field and analyzed within
one week for CH4 concentrations using a Shimadzu Mini
Gas Chromatograph (GC) (Shimadzu Scientific Instruments,
Columbia, ML, USA) equipped with a methanizer and a
flame ionization detector (FID) detector and for N2O concen-
trations using a Shimadzu 14-A GC (Shimadzu Scientific In-
struments, Columbia, ML, USA) equipped with an electron
capture detector (ECD). Fluxes were calculated from the lin-
ear increase in gas concentrations over the sampling period.
To obtain cumulative sums, fluxes were linearly interpolated
and converted to CO2 equivalent (CO2 eq) using the GWP
(over a 100-year time frame including carbon–climate feed-
backs) of 34 and 298 for CH4 and N2O, respectively (IPCC,
2013). The mean of the 2 measured years was combined with
the 4-year mean C balance (i.e. NEP minus DOC export) in
CO2 eq to obtain an estimate of the total GWP. Exchanges
of CH4, N2O and DOC were not estimated during the snow-
covered months (January to March), which might have led to
underestimation of the total annual exchange. Especially in
regions with discontinuous snow cover and frequent freeze–
thaw events, large winter emissions of N2O may occur during
these periods (Luo et al., 2012; Teepe et al., 2001). However,
winter season fluxes of CH4, N2O and DOC in forests that
experience severe winters with continuous snow cover are
generally small (Ågren et al., 2007; van Bochove et al., 2000;
Yashiro et al., 2006). Since our study sites experience tem-
peratures below freezing and continuous snow cover from
December to March, these winter fluxes were assumed to
have a negligible effect on the total C and GHG balances
in our study.

Biogeosciences, 11, 5399–5410, 2014 www.biogeosciences.net/11/5399/2014/
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Figure 1. Needle litter decomposition rates over 4 years (2004–
2008) at the three older Turkey Point pine forest sites: TP89, TP74
and TP39 (20, 35 and 70 years old, respectively).

2.5 Site quality effects on cumulative NEP

To estimate the total C sequestration from the cumulative
NEP over the entire age sequence, measured annual NEP
values from the four sites were linearly interpolated to ob-
tain a 70-year record of annual NEP. Following Peichl et
al. (2010a), two scenarios were developed in which NEP
values for the four sites were normalized by differences in
their site indices (SIs). The SI is a common measure to de-
scribe the site quality and is used as a predictor for tree
growth in forest stands (e.g. Milner, 1992). In the first “low-
productivity” scenario, it was assumed that all four stands
grow on low-quality soils by applying an SI correction on
NEP for TP02 and TP89 to match the SI of TP74 and TP39.
Conversely, in the second “high-productivity” scenario, NEP
at TP74 and TP39 was normalized to match the SI of TP02
and TP89 following the assumption that all four stands grow
on high-quality soils.

3 Results

3.1 Forest C pools and fluxes

Needle litter decomposition rates did not differ significantly
among the three older sites, with the exponential annual de-
cay coefficientk ranging from 0.28 to 0.31 (Fig. 1). The rates
of needle litterfall exceeded those of decomposition, result-
ing in a net accumulation of 3.7, 2.0 and 3.2 t ha−1 year−1 at
the 20-, 35- and 70-year-old stands, respectively (Fig. 2).

The total ecosystem C pool (including vegetation and soil)
increased with age from 46 t C ha−1 at the youngest site to
197 t C ha−1 at the oldest site (Fig. 3). The largest age-related
differences in C pools among sites occurred in stem and root
biomass, whereas the canopy (foliage and branches) C pool

Figure 2. Needle litterfall, decomposition and net accumulation on
the forest floor over 4 years (2004–2008) at the three older Turkey
Point pine forest sites: TP89, TP74 and TP39.

was similar among the three older stands. The sum of the
secondary C pools – such as woody debris, understorey and
ground vegetation – was small and similar among the three
younger sites (ranging from 1.5 to 2.7 t C ha−1) compared to
that of the 70-year-old stand (11.3 t C ha−1).

The NPP ranged between 379 g C m−2 year−1 at the 7-
year-old stand to 835 g C m−2 year−1 at the 20-year-old
stand. Age-related differences in RE were mainly driven by
changes in RA and RH from aboveground biomass and lit-
ter, whereas belowground root respiration and soil RH were
similar among the four stands.

3.2 Forest C balance

The mean NEP over the 4 years was 70, 590, 280 and 130 g
C m−2 year−1 at the 7-, 20-, 35- and 70-year-old stands, re-
spectively (Fig. 3). The 2-year mean DOC export decreased
with stand age from 7 g C m−2 year−1 at the 7-year-old stand
to 4, 3 and 2 g C m−2 year−1 at the 20-, 35- and 70-year-
old stands, respectively (Fig. 3). The relative contribution of
the net DOC export (i.e. the difference between DOC input
via precipitation and DOC export at 1 m depth) to NEP de-
creased from 10 % at the 7-year-old stand to less than 1–2 %
at the three older stands (Fig. 4a).

3.3 Forest GHG balance

Across the four stands, the combined N2O and CH4 flux
ranged from−0.4 to 0.1 t CO2 eq ha−1 year−1 during the
2 measurement years (Fig. 3). The net GHG balance de-
rived from the mean C balance and the combined N2O
and CH4 flux was −2.6, −21.6, −13.5 and−4.8 t CO2
eq ha−1 year−1 at the 7-, 20-, 35- and 70-year-old stands,
respectively (Fig. 3). The combined relative contribution of
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Figure 3. Ecosystem carbon (C) pools (square boxes;t C ha−1), C fluxes (gross and net primary production (GPP, NPP), litter-fall and DOC
flux = solid arrows, ecosystem respiration (RE) fluxes = dotted arrows; g C m−2 year−1), CH4 and N2O fluxes (t CO2 eq ha−1 year−1) and
GHG balance expressed as global warming potential (GWP;t CO2 eq ha−1 year−1) at the four Turkey Point pine forest sites, TP02, TP89,
TP74 and TP39. Abbreviations: C = canopy; F = foliage; B = branches; ST = stem; LFH = forest floor; WD = woody debris; CR = coarse
roots; FR = fine roots; U = understorey; G = ground vegetation; M = mineral soil; R = roots; RH = heterotrophic respiration; RA = autotrophic
respiration; L = litter-fall; DOC = dissolved organic carbon; NA = not available

CH4 and N2O to the GHG balance ranged from< 1 % at the
20- and 35-year-old stands to 13 and 8 % at the 7- and 70-
year-old stands, respectively (Fig. 4b).

3.4 Site quality effect on the cumulative NEP

Over the initial 70 years following afforestation, the cumu-
lative CO2 sequestration ranged from 129 t C ha−1 for a low-
productivity (i.e. site index= 26) forest to 297 t C ha−1 for
highly productive (i.e. site index= 60) forest (Fig. 5). The
C compensation point (i.e. the timing when net CO2 accu-

mulation becomes positive) was reached about 10 years after
plantation establishment in both scenarios.

4 Discussion

4.1 The forest C balance across stand age and
site quality

Following afforestation of low-productivity agricultural and
other marginal land, the balance of needle litter production
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(a)

(b)

Figure 4. (a)Relative contributions of the DOC export (below 1 m
depth) and NEP to the total C balance and(b) relative contribution
of the CO2 exchange and the combined CH4 and N2O exchange to
the GHG balance at the four Turkey Point pine forest sites: TP02,
TP74, TP89 and TP39.

and decomposition is a major determinant of the accumula-
tion and partitioning of organic matter into soil organic car-
bon accumulation and losses due to heterotrophic respiration
(Yang et al., 2011). In our study, we did not find any age-
related differences for organic matter turnover when compar-
ing litterfall and decomposition rates among the three older
sites. Decomposition rates were within the range of those
previously reported for other Canadian coniferous forests
(Moore et al., 1999; Trofymow et al., 2002) and appeared
to be unaffected by either stand age or site quality. In con-
trast, age-related differences in the litterfall rates were appar-
ent when comparing the 35- and 70-year-old stands, with the
latter one having higher rates (but similar SI values). How-
ever, across the entire age sequence, an age effect on litterfall
previously observed in other studies (e.g. Law et al., 2001)
was likely masked by the high litterfall rates at our 20-year-
old high-productivity site.

Figure 5. Cumulative C sequestration assuming high (site in-
dex= 60; solid line) and low (site index= 26; dashed line) site qual-
ity for all four Turkey Point pine stands.

In contrast to the small differences in organic matter
turnover, we observed manifold changes in the magnitudes
and partitioning of the C fluxes among the four stands. These
changes were primarily driven by the differences in above-
ground biomass and flux components. It is further notewor-
thy that the changes in individual biomass pools did not al-
ways reflect the changes in their associated in- and/or out-
going C fluxes. For instance, a small difference in RAR de-
spite manifold changes in fine root biomass among the four
stands was observed. This might have resulted from (i) a tem-
poral mismatch in measurements (fine root biomass was de-
termined in 2004 when seedling trees at the youngest site
were only 2 years old, whereas root respiration was also esti-
mated during the subsequent years (2004–2008) of rapid tree
seedling and herbaceous ground cover development), (ii) a
masking effect from greater understorey and/or groundcover
root respiration at the youngest and oldest stands and (iii)
contrasting patterns in the allocation of assimilates from the
canopy to the roots in the high- vs. low-productivity stands
(Vicca et al., 2012). Thus, this observation indicates some
limitations to inferring C fluxes solely from the magnitude
of the biomass pools.

Although stand age and site quality were not fully repli-
cated among the four sites, we suggest that, given the similar
climatic conditions, most of the observed differences in the
C balances might be explained by either one or both factors.
Age-related differences become most evident when compar-
ing the two younger (both having a similar high SI) and the
two older sites (both having a similar low SI), respectively. In
both cases, the comparison suggests greater NEP and NPP in
the middle-age stands (20 and 35 years old) compared to the
young and mature stand. An additional effect of site quality
may explain the large difference in NEP and NPP between
the two middle-age stands, with considerably higher values
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noted at the 20-year-old stand characterized by a higher (i.e.
double) SI value. In contrast to NEP and NPP, mean GPP and
RE increased from the 7- to the 20-year-old stand as well as
from the 35- to 70-year-old stand. This indicates that GPP
and RE have not yet reached their maxima in this 70-year-
old age sequence. Higher GPP and RE at the 20-year-old site,
compared to the two older sites, were likely due to the addi-
tional effect of higher site quality due to greater water avail-
ability at this site (Peichl et al., 2010a). These results based
on the mean values for NEP, GPP and RE from biometric
and EC estimates agree with those from using estimates from
only one of these two methods since their age-related pat-
terns among sites are generally similar although their abso-
lute values differ between 9 and 56 %. A detailed discussion
on the underlying reasons for the deviation between the two
methods was previously provided by Peichl et al. (2010c).
Similar age patterns for forest production and respiration
were reported for other forest age sequences (Goulden et al.,
2011; Law et al., 2003; Luyssaert et al., 2007; Pregitzer and
Euskirchen, 2004). However, in contrast to naturally regen-
erating forests, the switch from source to sink and the peak
in NEP and NPP occurred about 10–20 years earlier in our
afforested plantation stands, which highlights their potential
for rapid C sequestration.

The contribution of DOC to NEP was considerable at the
youngest site (10 %), while it was rather low (< 2 %) at the
three older sites. Previous work at these sites suggested that
the reduced DOC export resulted from both a decrease in
DOC concentrations at 1 m soil depth with increasing stand
age as well as from decreased water leaching in the older
stands compared to the youngest stand (Peichl et al., 2007).
In agreement with our study, Kindler et al. (2011) found that
DOC leaching hardly affected NEP at the majority of the
forests investigated in their study. A decrease in soil solution
leaching due to greater canopy interception and root water
uptake and/or the increase in adsorption of DOC to soil par-
ticles due to accumulation of Fe and Al with stand age might
explain the diminished DOC export in older forest stands
(Camino-Serrano et al., 2014; Kothawala et al., 2009; Peichl
et al., 2007). In contrast, a higher contribution of DOC of
11 % was observed in a 80-year-old Belgian Scots pine stand
(Gielen et al., 2011). Thus, depending on site productivity
and hydrology, the relative contribution of the DOC export to
the forest C balance might vary across forest ecosystems and
become significant also at some of the mature forest sites.

The accumulated C sequestration simulated over the en-
tire 70 years of the age sequence was substantial in both
the high- and low-productivity scenarios. Moreover, the dif-
ference (by a factor of 2) due to site quality was consider-
able. The importance of site quality effects on forest growth
is widely recognized in traditional forest research (McLeod
and Running, 1988; Milner, 1992; Pietrzykowski, 2014; Vose
and Allen, 1988) as well as in recent studies on the C alloca-
tion within forest stands (e.g. Vicca et al., 2012). Our study
further highlights the need to account for differences in site

quality when assessing forest C and GHG balances across
forest ecosystems and to improve their up-scaling beyond
ecosystem boundaries.

4.2 Forest GHG balance across stand age and
site productivity

To date, few attempts have been made to quantify the total
forest GHG balance and the relative contribution of individ-
ual components by including all relevant fluxes (i.e. CO2,
CH4, N2O and DOC) (Ball et al., 2007; Luyssaert et al.,
2012; Schulze et al., 2009; Zona et al., 2013). Previous stud-
ies estimated GHG balances for individual forests at about
+3 t CO2 eq ha−1 year−1 for a young short-rotation poplar
plantation (Zona et al., 2013) and approximately−15 t CO2
eq ha−1 year−1 for a middle-age pine forest (Ball et al.,
2007), which is close to the range observed in our study.
Both of these studies also agree with our findings of non-
CO2 GHGs contributing considerably to the GHG balance
in recently established plantations (as well as in the ma-
ture 70-year-old forest in our study), whereas the CO2 ex-
change dominates the GHG balance in middle-aged forests.
Using a process-based model, Inatomi et al. (2010) similarly
found that the GHG balance was mainly driven by the CO2
exchange in a 50-year-old cool-temperate deciduous forest.
However, the contribution of non-CO2 GHG could be sub-
stantial in poorly drained locations within temperate forests
(Ullah and Moore, 2011). The relative contribution of CH4
and N2O to the forest GHG balance might further be con-
siderably affected by more frequent freeze–thaw events (Luo
et al., 2012; Teepe et al., 2001), altered N input (Liu and
Greaver, 2009) as well as by contrasting forest management
and tree growth responses to climatic changes in the future
(Metsaranta et al., 2011; Ximenes et al., 2012). For instance,
Metsaranta et al. (2011) suggested that the cumulative GWP
over 70 years for a coniferous forest in British Columbia
may vary between−67 and 67 t CO2 eq ha−1 in the best-
and worst-case modelling scenario. Thus, the manifold vari-
ation in the magnitude of GWP and the relative contribution
of non-CO2 gases to the GWP in these studies and among the
four stands in our study emphasize that the forest GHG bal-
ance may vary widely within a heterogeneous (i.e. in terms
of age and site quality) forest landscape, which needs to be
considered when extrapolating findings from individual for-
est stands to regions.

Overall, our study advances the current understanding of
the forest GHG balance by demonstrating that the magni-
tude and contribution of individual GHGs may have mani-
fold variations in forests due to differences in stand age and
site quality. Both factors determine the forest NEP and thus
the magnitude of the CO2 flux, while in comparison having
a relatively small effect on the CH4, N2O and DOC fluxes.
Thus, our findings suggest a link between NEP and the rel-
ative contribution of individual gases to the GHG balance,
with the implication that the ecosystem exchange of CO2 is
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the dominant driver of the forest GHG balance partitioning.
As a consequence, the contribution of CH4, N2O and DOC
fluxes to the GHG balance might be low in highly produc-
tive (e.g. middle-age) forests, whereas it may be more im-
portant in low-productivity (e.g. recently established and ma-
ture) forests due to the differences in NEP (as opposed to
changes in the non-CO2 fluxes). Understanding the changes
in individual contribution of forest C and GHG exchanges
to the total GWP throughout their life cycle is imperative to
evaluate the potential of these ecosystems as a tool in miti-
gating global warming and the increase of atmospheric GHG
concentrations.

5 Conclusions

We combined C pools and fluxes of CO2, CH4, N2O and
DOC to estimate C and GHG balances for an age sequence
(spanning 7–70 years) of afforested white pine stands in the
temperate region of southern Ontario, Canada. Based on our
findings we conclude that

– the magnitudes and within-stand partitioning of CO2
fluxes were highly variable with stand age and site qual-
ity;

– the role of DOC export for the C balance was substantial
in the recently established pine plantation, but small to
marginal in the highly productive maturing stands;

– the combined exchanges of CH4 and N2O significantly
contributed to the GHG balance of the young and ma-
ture pine forests due to their lower NEP;

– stand age and site quality may cause manifold differ-
ences in the forest C and GHG balances and need to be
accounted for to improve their up-scaling from ecosys-
tems to regions;

– overall these temperate pine afforestation stands act as
a substantial C sink and provide a considerable negative
GWP throughout the maturing phase.
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