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chromatin loop between the YY1-bound viral transcriptional enhancer and CTCF-bound
early gene region to attenuate early gene expression in undifferentiated cells. As the cells
differentiate, YY1 protein expression and recruitment to the viral genome is dramatically
reduced. This results in a loss of chromatin loop formation, epigenetic de-repression of
the viral genome, and enhanced viral early gene expression. The coordination of viral
gene expression with cellular differentiation is vital for persistence of infection and com-
pletion of the virus life cycle, and disruption of HPV transcriptional control is also a key
step in the development of cancer.

Introduction
Human papillomaviruses (HPVs) are a family of small, double-stranded DNA viruses that
infect epithelia at specific anatomical sites. Infection with any of the 12 mucosal oncogenic
HPV types is a risk factor for the development of epithelial cancers such as cancer of the uter-
ine cervix and oropharynx [1]. The majority of these epithelial cancers are caused by infection
with the HPV16 and 18 viral subtypes.

The HPV life cycle is dependent on the differentiation of infected keratinocytes. Infection is
established in the undifferentiated basal cells of epithelia, allowing the virus access to the cellu-
lar DNA replication machinery required to replicate viral episomes. To maintain the cell in a
proliferative state, the viral E6 and E7 oncoproteins work synergistically to delay differentia-
tion and prevent cell cycle exit. These essential viral proteins are encoded by transcripts that
initiate from a short promoter situated immediately upstream of the early transcription start
site, termed P105 in HPV18 [2]. The activity of P105 is controlled by enhancer and silencer
sequences upstream of the promoter in the 850 basepair (bp) viral long control region (LCR).
P105 contains a canonical TATA box, essential for the recruitment of the general transcription
factor II D (TFIID) and the initiation of RNA polymerase II (RNA Pol II)-dependent tran-
scription [3]. Proximal to the TATA box is a keratinocyte-specific 30 enhancer, which recruits
cellular transcription activators such as Sp1 and AP-1 (Fos/Jun) [4–6]. Situated within the 30

enhancer is a silencer region that contains an array of Yin Yang 1 (YY1) binding sites. YY1
recruitment within this region has strong repressive effects on early gene transcription by the
exclusion of AP-1 binding [7,8]. It has also been shown in the related HPV31 that the tran-
scription elongation factor TEF-1 and YY1 work cooperatively to activate a second 50 distal
enhancer within the viral LCR [9], and YY1 binding at this site increases as cells differentiate
[10]. However, YY1 binding to the 50 distal enhancer has minimal effects on transcription in
HPV16 [7].

The episomal papillomavirus genome associates with histones to form nucleosomes that are
subject to epigenetic modification through the specific recruitment of cellular transcription
factors that regulate viral transcription [11]. In HPV31, levels of acetylated histone H3 and H4
within the LCR increased upon cellular differentiation, particularly in the keratinocyte-specific
enhancer, and correlated with increased transcription [10].

It is clear that epigenetic regulation of HPV transcription plays an important role in the
HPV life cycle and in enhanced viral oncogene expression during disease progression [10,12];
however, the mechanisms involved in this regulation have not been determined. We have pre-
viously shown that the chromatin-organising transcriptional insulator protein CCCTC-bind-
ing factor (CTCF) associates with oncogenic HPV16 and 18 in the E2 open reading frame
(ORF), approximately 3,000 nucleotides downstream of the viral LCR [13]. CTCF is a ubiqui-
tously expressed host-cell chromatin-binding protein that associates with tens of thousands of
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Fig 2. CTCF regulates the topology, epigenetic status, and RNA Pol II recruitment to the HPV18 episome. (A)
The accessibility of chromatin was assessed by FAIRE. Data show the mean � SD of qPCR analysis of amplicons in the
HPV18 genome of FAIRE-extracted samples compared to input. A higher FAIRE extract/input ratio indicates a more
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3C analysis of HPV18 WT genomes consistently detected a PCR product of the correct size
formed by ligation of the E2 ORF to the LCR. In addition, the 346 bp PCR products were

Fig 3. Abrogation of CTCF binding to the E2 ORF reduces YY1 and polycomb recruitment to the HPV18 episome. YY1
(A), EED (B), Ring1B (C), and H2AK119Ub (D) enrichment were assessed by ChIP-qPCR of amplicons within the HPV18
LCR. Data are represented as mean � SD. (��< 0.05, ���< 0.01, ����< 0.001). Relative protein expression is shown in the
western blots. The viral LCR, Enh regions, and early and late promoters are indicated. All raw quantitative data are enclosed
in S1 Data. ChIP-qPCR, chromatin immunoprecipitation followed by quantitative PCR; CTCF, CCCTC-binding factor; E,
early promoter; EED, embryonic ectoderm development; Enh, enhancer; GAPDH, Glyceraldehyde-3-phosphate
dehydrogenase; H2AK119Ub, histone 2A lysine 119 ubiquitinylation; HPV, human papillomavirus; L, late promoter; LCR,
long control region; ORF, open reading frame; Ring1B, ring finger protein 1B; WT, wild-type; YY1, Yin Yang 1.

https://doi.org/10.1371/journal.pbio.2005752.g003
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cDNA was synthesised using Superscript III (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. qPCR was performed using a Stratagene Mx3005P detection
system with SyBr Green incorporation and the primers listed in Table 2.

FAIRE
Cells were fixed and chromatin extracted and sheared as described above for ChIP. FAIRE
analysis was then carried out as previously described [29]. Briefly, two aliquots of chromatin
were taken, each containing chromatin from approximately 2 � 106 cells, one for Input and
one for FAIRE. To the FAIRE samples, 150 �l water was added. To the Input sample, 150 �l
water and 10 �l of 5 M NaCl were added, and the samples were incubated at 95˚C for 15 min
to reverse the crosslinks. RNaseA (10 �g/�l) was added, and the samples incubated at 37˚C for
15 min. Proteinase K (0.5 �g/�l) was added followed by incubation at 67˚C for 15 min.

Both Input and FAIRE samples were then extracted with 200 �l phenol:chloroform:isoamy-
lalcohol (25:24:1) and the aqueous layer retained. DNA was precipitated by conventional
methods and the pellet resuspended in 50–150 �l 50 mM Tris-HCl, pH 7.4, 10 mM EDTA.

Table 1. Primer pairs used for ChIP and FAIRE analysis of HPV18 genomes.

Amplicon midpoint� Forward Primer (50-30) Reverse Primer (50-30)
–3,886 TATGTGTGCTGCCATGTCCC CTGTGGCAGGGGACGTTATT
–3,352 GGGGTCGTACAGGGTACATT GATGTTATATCAAACCCAGACGTG
–2,384 TCTGCCTCTTCCTATAGTAATGTAACG GGAATAAAATAATATAATGGCCACAAA
–2,092 CCTCCTTCTGTGGCAAGAGT GGTCAGGTAACTGCACCCTAA
–1,198 AGTCTCCTGTACCTGGGCAA AACACCAAAGTTCCAATCCTCT
–556 GTGTGTTATGTGGTTGCGCC GGATGCTGTAAGGTGTGCAG
–57 ACTTTCATGTCCAACATTCTGTCT ATGTGCTGCCCAACCTATTT
155 TGTGCACGGAACTGAACACT CAGCATGCGGTATACTGTCTC
751 CGAACCACAACGTCACACAAT ACGGACACACAAAGGACAGG
943 AGTGTGAAGCCAGAATTGAGC ACCACGGACACACAAAGGA
1,500 GCAATGTATGTAGTGGCGGC TACACTGCTGTTGTTGCCCT
2,200 TTATAGGCGAGCCCAAAAAC CCAATCTCCCCCTTCATCTAT
2,819 TGCAGACACCGAAGGAAACC CATTTTCCCAACGTATTAGTTGCC
2,989 GGCAACTAATACGTTGGGAAAA TGTCTTGCAGTGTCCAATCC
3,165 AGGTGGCCAAACAGTACAAGT GCCGTTTTGTCCCATGTTCC
3,488 TGGGAAGTACATTTTGGGAATAA TCCACAGTGTCCAGGTCGT

All primer pairs generated a single product as determined by dissociation curve analysis.
�Primer midpoint is stated relative to the 7857/1 nucleotide position on the HPV18 episome (Genbank: AY262282.1).
Abbreviations: ChIP, chromatin immunoprecipitation; FAIRE, formaldehyde-assisted isolation of regulatory elements; HPV, human papillomavirus.

https://doi.org/10.1371/journal.pbio.2005752.t001

Table 2. Primer sequences for qRT-PCR transcript analysis.

Primer Pair Forward Sequence (50-30) Reverse Sequence (50-30)
E6/E7 (121–295) ATCCAACACGGCGACCCTAC GCAGCATGCGGTATACTGTCTCTA
E6 (131–180) GCGACCCTACAAGCTACCTG GCAGTGAAGTGTTCAGTTCCG
CTCF (exon 5–6) ATGTGCGATTACGCCAGTGTA TGAAACGGACGCTCTCCAGTA
��-actin GCTGTGCTATCCCTGTACGC CAGGAAGGAAGGCTGGAAGA

Abbreviations: CTCF, CCCTC-binding factor; qRT-PCR, quantitative reverse transcriptase-PCR.

https://doi.org/10.1371/journal.pbio.2005752.t002
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