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Pathways of Pathogenicity: Transcriptional Stages of
Germination in the Fatal Fungal Pathogen Rhizopus delemar

Poppy C. S. Sephton-Clark,a Jose F. Muñoz,b Elizabeth R. Ballou,a Christina A. Cuomo,b Kerstin Voelza

aInstitute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United
Kingdom

bInfectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts,
USA

ABSTRACT Rhizopus delemar is an invasive fungal pathogen responsible for the fre-
quently fatal disease mucormycosis. Germination, a crucial mechanism by which in-
fectious spores of Rhizopus delemar cause disease, is a key developmental process
that transforms the dormant spore state into a vegetative one. The molecular mech-
anisms that underpin this transformation may be key to controlling mucormycosis;
however, the regulation of germination remains poorly understood. This study de-
scribes the phenotypic and transcriptional changes that take place over the course
of germination. This process is characterized by four distinct stages: dormancy, iso-
tropic swelling, germ tube emergence, and hyphal growth. Dormant spores are
shown to be transcriptionally unique, expressing a subset of transcripts absent in
later developmental stages. A large shift in the expression profile is prompted by
the initiation of germination, with genes involved in respiration, chitin, cytoskeleton,
and actin regulation appearing to be important for this transition. A period of tran-
scriptional consistency can be seen throughout isotropic swelling, before the tran-
scriptional landscape shifts again at the onset of hyphal growth. This study provides
a greater understanding of the regulation of germination and highlights processes
involved in transforming Rhizopus delemar from a single-cellular to multicellular or-
ganism.

IMPORTANCE Germination is key to the growth of many organisms, including fun-
gal spores. Mucormycete spores exist abundantly within the environment and ger-
minate to form hyphae. These spores are capable of infecting immunocompromised
individuals, causing the disease mucormycosis. Germination from spore to hyphae
within patients leads to angioinvasion, tissue necrosis, and often fatal infections. This
study advances our understanding of how spore germination occurs in the mucor-
mycetes, identifying processes we may be able to inhibit to help prevent or treat
mucormycosis.

KEYWORDS RNA-Seq, Rhizopus delemar, fungi, germination, mucormycosis,
pathogens, spores, time course, transcription

Fungal spores are found ubiquitously within the environment and are key to the
dispersal and survival of many fungal species (1, 2). Spores can endure severe

temperatures, desiccation, and high levels of radiation and radical exposure, conditions
fatal to many other life-forms (3). The ability to survive in harsh environments has
enabled the spread of fungal spores by wind, water, and animal dispersal across the
globe. Once distributed, spores may stay dormant for thousands of years (4), before
germination is initiated under favorable conditions.

Germination cues can include, but are not limited to, the introduction of nutrients,
the presence of light, temperature modulation, changes in osmolarity, pH shifts, the
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removal of dormancy factors, and the introduction of extracellular signaling molecules
(5–15). Once germination is initiated, spores begin to swell and take up water. At a
critical point, the cell polarizes (16) and hyphae emerge from the swollen spore bodies.
Given the correct conditions, the transition from dormancy to vegetative hyphal
growth can occur in as little as 6 h, allowing the fungi to rapidly colonize favorable
environments. Fungal spores are the infectious agents of many fungal diseases (17–19)
(e.g., mucormycosis, aspergillosis, blastomycosis, cryptococcosis, coccidioidomycosis,
and histoplasmosis). The transition from dormancy to vegetative growth allows for the
onset of disease within a host, yet we currently have a limited understanding of the
molecular pathways regulating this fundamental developmental process in human-
pathogenic fungi (20–28).

Mucormycosis is an emerging fungal infectious disease with an extremely high
mortality rate of over 90% in disseminated cases (29). Current antifungal treatments are
ineffective, resulting in the reliance upon surgical debridement of infected tissues (30),
often leading to long-term disability. Disease can be caused by several species of the
Mucorales order; however, Rhizopus delemar, previously known as Rhizopus oryzae,
accounts for 70% of cases (31). Spores are the infectious agents of mucormycosis. While
immunocompetent individuals control spore germination through phagocytic uptake,
mucormycete spores can survive within immune effector cells, causing latent infection
(32). In immunocompromised patients, inhibition of spore germination by phagocytes
fails, enabling fungal growth (33). Hyphal extension within tissue leads to angioinva-
sion, thrombosis, tissue necrosis, and eventually death (30, 34). Given the significance
of spore germination in mucormycosis pathogenesis, medical interventions that target
and inhibit this developmental process might improve patient prognosis. Therefore, we
aimed to comprehensively characterize the transcriptional and phenotypic changes
that occur over time during this process.

Phenotypic and transcriptional approaches were taken to follow the germination of
Rhizopus delemar over time. With the previously annotated genome of Rhizopus
delemar (35), shown to have undergone whole-genome duplication, our transcriptome
sequencing (RNA-Seq) data were analyzed and used to create an updated gene set. Our
data reveal a clear progression of transcriptional regulation over time, linked to
observed phenotypic changes. Together, this work represents the most comprehensive
analysis of the transcriptional landscape during germination in a human fungal patho-
gen to date.

RESULTS
Phenotypic characteristics of germinating R. delemar. Germination is character-

ized by three distinct transitions: dormancy to swelling, swelling to germ tube emer-
gence, and the switch to sustained filamentous growth. This process is common to
many filamentous fungi, although the timing of germination varies among species (36).
We therefore characterized the phenotypic progression of Rhizopus delemar strain RA
99-880 through germination by live-cell imaging (Fig. 1). The switch from dormancy to
swelling was triggered by exposure to rich medium. Swelling, characterized by an
isotropic increase in size, continued for 4 to 6 h (Fig. 1A). Between resting and fully
swollen, the average spore diameter increased from 5 �m to 13 �m (Fig. 1B). Once fully
swollen, germ tubes emerged from the spore bodies. Most spore bodies (75.5%
[Fig. 1C]) produced hyphae that exceeded the diameter of the spore body in length by
4 to 5 h. At this time point, the spores were considered fully germinated. Hyphal
growth continued from 6 to 24 h, demonstrated by increase in optical density
(Fig. 1D), with the average width of hyphae being 5 � 1.03 �m and the average
length being 135 � 30 �m.

Transcription over time: experimental design. Our phenotypic analysis of spore
germination established the temporal pattern for the development of spores from
dormancy to filamentous growth. These dramatic morphological changes require vast
cellular reprogramming. In this study, we performed transcriptional analysis of each
stage outlined in this process. For high-resolution capture of the transcriptional regu-
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lation of spore germination, we isolated and sequenced mRNA from resting spores (0 h)
and swelling spores (1, 2, 3, 4, and 5 h) and during filamentous growth (6, 12, 16, and
24 h). Three biological replicates were produced for each time point, and mRNA from
each sample was sequenced with Illumina HiSeq technology, with 100-bp paired end
reads. Reads were aligned to the R. delemar genome (35), giving an average alignment
rate of over 95% per sample, with an average of 68% (12,170 genes) of all genes
expressed over all time points. We utilized our RNA-Seq data to revise the current
annotation of the available R. delemar genome, using BRAKER 2.1.0 (37) to improve
gene structures and incorporate these into an updated annotation. Compared to the
previous annotation (35), this updated set included 475 new predicted genes, 370 new
protein family domains (Pfam terms), 103 new pathway predictions (KEGG-EC), and 96
new transmembrane domains (TMHMM terms). The updated annotation was assessed
for completeness with BUSCO v3 (38) and was shown to include a good representation
of expected core eukaryotic genes, with minimal missing BUSCOs (2%) (see Fig. S1 in
the supplemental material).

FIG 1 Phenotypic characterization of germinating spores. (A) Spores germinated in SAB were imaged at hours (indicated by white numbers)
postgermination. Scale bar � 50 �m for all images. Micrographs representative of �3 replicate experiments are shown. (B) Diameter of
ungerminated spore bodies (n � 3; time [T] � 0 h) compared to spore body size measured immediately prior to germ tube emergence for each
spore (n � 3; T � 4 to 6 h). (C) Spore germination as a percentage over time, determined by live-cell imaging (n � 3). (D) Fungal mass over time,
determined by optical density at 600 nm.
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Principal-component analysis (PCA) of TMM normalized read counts per gene (Fig. 2)
showed that the biological replicates grouped closely together, with time points
grouping into 3 clusters separated by time (principal component 1 [PC1]) and stage
(PC2), as determined by k-means clustering (see Fig. S2 in the supplemental material).

Dormant spores are transcriptionally unique. In examining the overall transcrip-
tional profiles of our cells, we observed a set of 482 transcripts that were only expressed
in ungerminated spores (Fig. 3, top, time 0 h [T0]), representing 3.76% of total
transcripts expressed in ungerminated spores (Fig. 3). As a result, genes expressed in
resting spores account for 71.5% of all genes in the genome, whereas the highest
percentage of the genome covered by germinated spores is 68.8% (Fig. 3, top, time
24 h [T24]). Resting-spore-specific transcripts that were coexpressed with other resting-
spore-specific transcripts have predicted roles in lipid storage and localization, as well
as transferase activity on phosphorous-containing compounds (Fig. 3, bottom). As
these transcripts are absent in germinated spores, they may have roles in the mainte-
nance of spore dormancy.

Clustering of transcriptional changes over time. We performed a series of
analyses to identify the transcriptional changes occurring during spore germination
(see Materials and Methods). PCA highlighted that the fungal transcriptome displayed
a time-dependent shift across 3 major clusters corresponding to the phenotypic
developmental stages swelling, germ tube emergence, and hyphal growth, indicating
that spore germination is underpinned by progressive shifts in transcriptional regula-
tion (Fig. 2). The transcriptome of resting spores was distinct from that of all other
developmental stages, changing dramatically between 0 and 1 h. Thereafter, the
transcriptional profiles of swelling spores and of those developing germ tubes were
distinct but clustered together (2 to 6 h). Furthermore, fully established filamentous
growth was characterized by a specific transcriptional signature (12, 16, and 24 h)
(Fig. 2). Consistent with stage-specific transcriptional changes, progressive change in
differential gene expression was observed during examination of the transcriptional
profiles of each time point. A total of 7,924 genes were differentially expressed across
the entire time course (Fig. 4A).

Analysis of differentially expressed genes by k-means clustering identified seven
major clusters of expression variation over time (Fig. 4). Genes in clusters 1 and 3 are
expressed at low levels in resting spores, with abundance increasing upon germination
(1 h) (Fig. 4B). Both clusters are enriched (hypergeometric test, corrected P value of
�0.05) for transcripts with predicted roles in regulation of the cytoskeleton, protein
metabolism, the electron transport chain, translation, and sugar metabolism (Fig. 4C;
see Table S1 in the supplemental material), suggesting these processes are important
for germination initiation. Clusters 4 and 6 show gene expression levels moving from

FIG 2 Principal-component analysis of 7,942 genes differentially expressed across all time points (n �
3 for each time point; T � 0, 1, 2, 3, 4, 5, 6, 12, 16, or 24 h postgermination). Each time point is color
coded.
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FIG 3 Resting-spore-specific expression. (Top) Heat map displaying the absence (blue) or presence (red) of 10 or more transcripts for a given gene
over time. The average percentage of the transcriptome expressed at any given time point is given below. (Bottom) Coexpression diagram, where
each node represents a gene only expressed in ungerminated spores. Nodes linked to 10 or more others are highlighted in yellow, with their
functions shown adjacent.
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FIG 4 Clustering of expression over time. (A) Heat map displaying differentially expressed genes. Expression levels are plotted in log2, space and mean centered
(FDR of �0.001) across the entire time course. k-means clustering has partitioned genes into 7 clusters, as indicated by colored bars and numbered graphs
below the heat map. (B) Graphs displaying cluster expression over time (0 to 24 h). (C) Table displaying categories enriched (hypergeometric test, corrected
P value of �0.05), indicated in red, for clusters 1 to 7.
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low to high over time, peaking during hyphal growth (Fig. 4B). These clusters are
enriched (hypergeometric test, corrected P value of �0.05) for transcripts with pre-
dicted functions related to kinase, transferase, transposase, and oxidoreductase activ-
ities, along with pyrimidine and phosphorous metabolism, stress response, transport,
and signaling (Fig. 4C; Table S1). This is consistent with the established roles for these
processes in starting and maintaining vegetative growth (28, 39–41). Cluster 5 contains
genes that have high expression levels in both ungerminated spores and the hyphal
form, but low levels during initial swelling (Fig. 4B). Cluster 5 is enriched (hypergeo-
metric test, corrected P value of �0.05) for transcripts with predicted functions in
regulation of the cytoskeleton, transferase and hydrolase activities, and phosphorous
metabolism (Fig. 4C; Table S1). This suggests that these functions may be repressed
during isotropic growth to maintain swelling. Clusters 7 and 2 contain genes with
expression levels peaking in ungerminated spores (Fig. 4B). These clusters are enriched
(hypergeometric test, corrected P value of �0.05) for transcripts with predicted func-
tions relating to glycerone kinase, pyrophosphatase, transferase, hydrolase, and oxi-
doreductase activities, as well as cofactor and coenzyme metabolism, pyrimidine, sulfur,
nitrogen, sugar, and aromatic compound metabolism. These clusters are also enriched
for reduction-oxidation (redox) processes, respiration, and stress responses (Fig. 4C;
Table S1). Notably, every cluster is enriched for transcripts involved in ion transport
regulation, specifically potassium, sodium, and hydrogen ions. This suggests tight
regulation of transmembrane transport of these particular ions is important for the
survival of R. delemar.

Pairwise comparison shows transcriptional changes over time correspond to
phenotypic changes during germination. Ungerminated spores have a radically

different expression profile from germinated spores (6,456 significantly differentially
expressed genes; false-discovery rate [FDR] of �0.001): this is reflected by the functions
of transcripts enriched in ungerminated spores. By pairwise comparisons of differen-
tially expressed genes between time points, the largest transcriptional changes were
seen during the first hour of germination (3,476 genes upregulated and 2,573 genes
downregulated [Fig. 5A]). This was followed by a period of transcriptional consistency
over the course of isotropic swelling, where few or no genes were found differentially
expressed (Fig. 5A). A noticeable shift in differential expression then bridges the
beginning and later stages of hyphal growth (6 to 12 h [Fig. 5A]). At the beginning of
germination, an increase is observed in expression of transcripts with predicted roles in
stress response, mitochondrial ribonucleases (MRP), the prefoldin complexes, organo-
phosphate and sulfur metabolism, and transposase, ATPase, nucleoside triphosphatase,
and glycerone kinase activities (Fig. 5B). A decrease in expression of genes with
predicted functions in the organization of the actin cytoskeleton, carbohydrate metab-
olism, translation initiation factors, hexon binding, and phosphodiesterase, arylforma-
midase, galactosylceramidase, and precorrin-2 dehydrogenase activities is also seen
(Fig. 5B). Notably, some categories are both positively and negatively regulated at the
beginning of germination: transcripts predicted to have roles in ion channel activity
and hydrolase and pyrophosphatase activities do not always trend together (Fig. 5B). It
is likely these processes may involve several regulatory mechanisms implicated in
initializing germination.

After initiation (1 to 2 h), there is an overall trend of downregulation. The majority
of transcripts that were upregulated at 1 h are downregulated at 2 h (Fig. 5B),
suggesting a reorganization of the transcriptome upon germination initiation. Notably,
metabolism of sulfur, organophosphate, and thiamine diphosphate remains downregu-
lated at both 2 and 3 h. After the transcriptional stability during isotropic growth and
hyphal emergence, transcripts with predicted roles in stress response, respiration,
ATPase and nucleoside triphosphatase activities, and redox increase during early
hyphal growth (Fig. 5B). Between 6 and 12 h, the proportion of downregulated
transcripts decreases, with hydrolase and pyrophosphatase activities appearing both
up- and downregulated.
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FIG 5 Differential gene expression over time. (A) The number of genes significantly differentially expressed (multiply corrected P value of �0.05) between
time points, shown over time. Green bars indicate genes with an increase in expression (log fold change [FC] of �2), while red bars indicate genes with
a decrease in expression (log FC of ��2). (B) Enriched categories for the up- or downregulated genes over time. Green boxes indicate an overall
upregulation of this category, red indicates an overall downregulation and red-green hatching indicates mixed regulation of this category. (C) Expression
profiles of transcripts in specific categories over time, with the number of transcripts represented by each trend shown in parentheses.
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By examining expression profiles of predicted genes with biologically interesting func-
tions (Fig. 5C), we observe that iron acquisition transcripts rapidly increase during the initial
phase of germination. This is consistent with literature that suggests iron scarcity induces
abnormal germination and growth phenotypes in Mucorales species (42). Expression pro-
files for classes of genes related to actin, chitin, and ion channels showed two or more
contrasting trends (i.e., genes with the same class do not always travel together). However,
when the opposing profiles are viewed simultaneously, we see upregulation in both
ungerminated spores and the hyphal form. Phenotypic data indicate that the availability of
chitin (calcofluor white [CFW] stain) (Fig. 6A) within the cell wall increases rapidly over time,
with spore cell walls containing high levels by 3 h. The increase in cell wall protein content,
denoted by fluorescein isothiocyanate (FITC) staining (Fig. 6A), also increases over time,
with high concentrations present by 6 h. Levels of transcripts involved in the production
and activity of trehalose, known as a stress response molecule in fungi (43), are also high
in resting spores, but decrease upon initiation of germination. Consistent with a primed
stress response, we observed that the reactive oxygen species (ROS) effectors SOD (Cu/Zn
and Fe/Mn superoxide dismutase) and catalase have increased expression levels in resting
spores. These levels then decrease once germination is initiated, suggesting that a protec-
tive ROS stress response is involved in germination, perhaps to internal ROS produced
through metabolic activity. We measured the production of endogenous ROS over time
during germination (Fig. 6A). We observed that the level of endogenously generated ROS

FIG 6 Cell wall dynamics and inhibition of germination. (A) Spores germinated for 0, 3, 6, 12, and 24 h,
stained with calcofluor white (CFW), fluorescein (FITC), and ROS stain carboxy-H2DCFDA (ROS). (B)
Germination is inhibited by 5 mM hydrogen peroxide and over 1.5 nM antimycin A, as determined by
live-cell imaging, after 5 h of germination in SAB. The hydrogen peroxide control consists of an
equivalent volume of H2O, and the antimycin A control consists of an equivalent volume of 100%
ethanol.
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within spores increases over the course of germination, but is limited to the spore body
following germ tube emergence. We investigated the significance of ROS detoxification
during germination by testing for resistance to exogenous (H2O2) and endogenous
(mitochondrial-derived) ROS (Fig. 6B). Treatment with 5 mM but not 1 mM H2O2 was
sufficient to inhibit spore germination. In contrast, spores were highly sensitive to treatment
with 1.5 or 10 nM antimycin A, a mitochondrial inhibitor that impairs cytochrome c
reductase activity leading to the accumulation of superoxide radicals within the cell. The
impact of antimycin A on germination may be 2-fold, as we also observed that the
expression of storage molecule transcripts appears high in both ungerminated spores and
the hyphal form. High sensitivity to inhibition of oxidative phosphorylation with antimycin
A is consistent with reports that utilization of these storage molecules as energy reserves is
important for the initiation and maintenance of growth (44–46).

Transcriptional hallmarks of germination are conserved across species, while
R. delemar exhibits unique germination responses lacking in Aspergillus niger. It is
unclear whether the mechanisms that underpin germination are conserved throughout the
diverse fungal kingdom. To explore the extent of conservation, we compared our data set
to other available transcriptional data sets for Aspergillus niger (see Materials and Methods).
When expression profiles of homologous genes from A. niger and R. delemar are compared
over the course of germination, genes with common or unique functions specific to that
time point can be identified. The largest shift in the transcriptional landscape of A. niger can
be seen at the initial stage of germination (26, 28); we also observed this shift in R. delemar
(Fig. 7). Transcripts with predicted functions involved in transport and localization, prote-
olysis, and glucose, hexose, and carbohydrate metabolism increase at the initial stages of
germination in both A. niger and R. delemar, while transcripts with predicted functions in
translation, tRNA and rRNA processing, and amine carboxylic acid and organic acid me-
tabolism decrease. We also observe differences between the two data sets: over isotropic
and hyphal growth, homologous genes with predicted functions in valine and branched-
chain amino acid metabolism were upregulated only in R. delemar, while homologous
genes with predicted roles in noncoding RNA (ncRNA) metabolism, translation, amino acid
activation, and ribosome biogenesis were downregulated exclusively in R. delemar. A 5%

FIG 7 Number of homologous genes significantly differentially expressed (multiply corrected P value of �0.05)
between time points, shown over time. Green represents the number of A. niger genes, red represents the number
of R. delemar genes, and dark red represents the number of R. delemar genes found in high-synteny regions of the
R. delemar genome.
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increase in genes that are uniquely up- or downregulated in R. delemar is found in
high-synteny regions of the genome, compared to genes that are up- or downregulated in
both R. delemar and A. niger. The duplicated nature of the R. delemar genome may allow
for specific and tight regulation of the germination process, a feature unique to R. delemar.

It should be noted that A. niger and R. delemar were cultivated under conditions with
different media. Aspergillus complete medium (ACM) (26), used to cultivate A. niger, and
Sabouraud dextrose broth (SAB), used to cultivate R. delemar, both contain a complex
mix of salts, inorganic nutrients, and organic components. Peptides are provided in SAB
by mycological peptone, whereas peptides are provided by Bacto peptone in ACM. The
main carbon source is the same for both ACM and SAB. Both media have a relatively
low pH (ACM, pH 6.5; SAB, pH 5.6), and it is known that pH is important for regulating
germination in both R. delemar (10) and A. nidulans (47). There are currently limited
studies that address differences in gene expression, when germination is initiated in
filamentous fungi, under different growth media. Growth characteristics of Aspergillus
nidulans have been shown to vary when contents of media differ (48), while various
growth cultivation methods also alter gene expression in Aspergillus oryzae (49). The
effect of adding or removing specific organic and inorganic nutrients from media on
the growth of filamentous fungi is also better understood (50–54). When comparing
data sets or designing experiments to address these issues, the effects of using
distinctly different media should be considered. This is an area that would benefit from
further work aimed at exploring these effects.

DISCUSSION

Regulation of germination in the Mucorales remains an underexamined area. Cues
for germination include the availability of sufficient water, iron, a suitable carbon
source, and pH (10, 42, 55), although the mechanisms remain unclear. This study aims
to expand current knowledge on the molecular processes that determine germination.

Dormant spores. Ungerminated spores show the least exposure of chitin and
protein in the cell wall, suggesting these constituents may be masked prior to germi-
nation. It is established that the ungerminated conidia of various Aspergillus species are
coated by a layer of hydrophobins that confer hydrophobicity to the conidia, and these
structures rearrange upon germination to reveal a more heterogeneous and hydro-
philic surface (56, 57). It may be the case that similar structures coat the outside of R.
delemar spores prior to germination, inhibiting the visualization of internal compounds
such as chitin and protein. Transcripts involved in chitin processes, such as the
predicted chitinases (Fig. 5C), appear at higher levels in ungerminated spores, a feature
that can also be seen in the dormant spores of Aspergillus niger (28). This suggests that
the turnover or degradation of the fungal cell wall may be an important process
involved in the formation of the spore, the maintenance of dormancy, or the initial
stages of germination. Pyrophosphatase, transferase, hydrolase, and oxidoreductase
activities also appear to be important in ungerminated spores. The presence of pyro-
phosphates has been implicated in aiding pathogenicity and survival in nutrient-scarce
environments for the fungal pathogen Cryptococcus neoformans (58). Interestingly, the
signaling properties of pyrophosphates combined with inositol, also upregulated in
ungerminated R. delemar spores, have been associated with metabolic regulation of
yeast (59) and stress tolerance (60). There also appears to be a conserved requirement
for sulfur in the early stages of germination across fungal species: sulfur and aromatic
compound metabolism is upregulated in ungerminated spores of R. delemar, while
sulfur metabolism is induced minutes after germination initiation in Phomopsis viticola.
Sulfur has also been shown to be important for pathogenicity and the regulation of iron
homeostasis in A. fumigatus (61). This may help explain the sharp increase in the levels
of transcripts with predicted functions in iron recruitment upon the initiation of
germination in R. delemar (Fig. 5C). Compared to all growth states, resting spores also
show an upregulation of transcripts involved in the latter stages of iron-sulfur cluster
biosynthesis (see Fig. S3 in the supplemental material).
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Ungerminated spores are also enriched with transcripts involved in nitrogen me-
tabolism. Nitrogen-containing compounds have been shown to trigger germination in
A. niger, correlating with the upregulation of transcripts involved in nitrogen utilization
during the initial stages of germination (28, 62).

Ungerminated R. delemar spores were also enriched for transcripts with roles in
redox processes, respiration, and stress responses. Predicted catalase, Cu/Zn, and
Fe/Mn superoxide dismutase genes appeared highly expressed in ungerminated
spores, suggesting that they may form part of the stress response, as they are often
utilized to resist internal metabolic ROS, as well as harsh conditions (63). An increased
level of transcripts with predicted functions in the synthesis and phosphorylation of the
stress response molecule trehalose (43) was also found in ungerminated spores
(Fig. 4C). This suggests regulation of trehalose processes may also be implicated in the
resistance to harsh conditions by R. delemar spores.

Interestingly, transcripts only present in the ungerminated spores of R. delemar had
roles in lipid storage. Lipid droplets have been observed in the spores of Schizosac-
charomyces pombe, where it is thought they serve as energy reserves in nutritionally
poor environments (64). It is likely these transcripts play roles in maintaining lipid
storage molecules, crucial for spore survival in nutritionally scarce environments. Other
transcripts unique to ungerminated spores had predicted roles in transference of
phosphorous groups. Transcripts involved in the degradation of the phosphorous
storage molecule phytate also appeared to be upregulated in ungerminated R. delemar
spores, but downregulated upon the onset of germination. This indicates spores may
depend on phosphorous reserves for the initiation of germination.

Swelling spores. During isotropic growth, the available chitin, protein, and spore ROS
contents increase, and this is reflected by changes in the transcriptome. Transcripts
predicted to play roles in cell wall biogenesis, protein synthesis and protein modification
are enriched in cluster 3 (Fig. 4), which shows an immediate increase in expression levels
upon initiation of isotropic growth. The observation that alterations in the structure and
composition of the cell wall are seemingly required for germination suggests that identi-
fication of potential methods of inhibiting germination and therefore invasive infection is
possible. For example, treatment with inhibitors of chitin synthesis and transporter ma-
chinery might offer a solution for inhibiting isotropic growth and germination (65). Pre-
dicted ROS scavenger transcripts such as catalase and some SODs are also downregulated
after germination is initiated (Fig. 5C). This correlates with the observation of increased
levels of ROS in germinated spores. There does appear, however, to be a separate subset
of Cu/Zn and Fe/Mn SOD transcripts that also remain abundant over time (Fig. 5C, upper
panel), providing a possible explanation as to why the swollen and hyphal forms are able
to withstand the increased levels of ROS internally. ROS and SOD activities may also be
involved in directing hyphal growth (40, 66), or they may serve as signaling or metabolic
molecules through compartmentalization (67).

Clusters with expression levels that increase as isotropic growth begins (Fig. 4) are
also enriched in transcripts with predicted roles in the electron transport chain,
translation, and sugar metabolism. This suggests that respiration is a key metabolic
process utilized throughout isotropic growth. Phenotypic data showing the inhibition
of germination with antimycin A also suggest this (Fig. 6B). Protein synthesis is also
required to manufacture new cellular machinery and prepare for hyphal emergence. A.
niger also shows an increase in the production of transcripts involved in translation and
respiration upon germination of conidia (28). Again, common themes in germination
involving major category classes appear conserved throughout multiple families of
filamentous fungi.

After the initial transcriptional shift, a higher proportion of transcripts are then
downregulated by 2 h (Fig. 5). As the downregulated transcripts are mainly those that
were upregulated at 1 h, this “downregulation” may be an artifact, as transcripts potentially
essential for the initiation of germination are turned over or degraded following their use.
Similarly, A. niger shows a vast downregulation of transcripts between 1 and 2 h postini-
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tiation, although whether the majority of downregulated transcripts at this time point in A.
niger are found in those upregulated at 1 h has not been explored (26).

Notably, metabolism of sulfur, organophosphate, and thiamine diphosphate is
downregulated for initial and mid-isotropic growth. Again, sulfur utilization in A. niger
appears to be underrepresented when transcripts from conidia having germinated for
2 h are compared to those found in ungerminated conidia (28).

Hyphal growth. Hyphal samples were enriched for transcripts with predicted functions
in kinase and oxidoreductase activities, as well as stress response and pyrimidine and
phosphorous metabolism. Oxidoreductase is commonly used by the hyphal forms of
wood-decaying filamentous fungi, such as Phlebia radiata and Trichaptum abietinum,
thought to be useful for lignin decay (68). R. delemar is known to grow on plants with
complex carbon sources (69), and the increased production of oxidoreductase may allow
for the degradation of a variety of carbon sources, thus, enabling R. delemar to colonize a
variety of environments.

ROS levels appear to peak in the swollen bodies of hyphal R. delemar, while levels of
transcripts with predicted functions in stress response also increase. Stress response genes
have been shown to be important for the hyphal growth of the filamentous fungal plant
pathogens Fusarium graminearum and Ustilaginoidea virens (70, 71). Furthermore, harsh
environmental conditions can induce the production of ROS internally. For example,
changes in osmolarity induce hydrogen peroxide bursts within the hyphae of F.
graminearum (72). This remains to be studied in Mucor species. One of the central oxidative
stress response transcription factors, Yap1, is found in a range of fungi, including Candida
albicans, Aspergillus fumigatus, and Neurospora crassa, and is essential for responding to
ROS stress. When knocked out in Epichloë festucae, hyphae are susceptible to ROS (73).
Unexpectedly a YAP1 homologue could not be found in the genome of R. delemar.
Together, our data highlight a role for ROS stress response in R. delemar germination and
hyphal growth and suggest differences with other better-studied filamentous fungi.

During hyphal growth, functions enriched also included regulation of the cytoskel-
eton and phosphorous metabolism. The cytoskeleton is known to be important for
hyphal extension, allowing the transport of vesicles to the hyphal tip to attain and
maintain polarity (74, 75). Although phosphorous metabolism in the hyphae of fila-
mentous fungi is not as well studied, it has been shown that phosphorus levels in the
soil can effect germination and hyphal extension length in mycorrhizal fungi (76).

As hypothesized, transcripts with predicted roles in respiration also appear to peak
around hyphal growth in R. delemar. This appears to be a conserved trait across
filamentous fungi, as a higher respiratory rate is commonly seen in the hyphal form of
Trichoderma lignorum (77), and increased levels of respiratory transcripts are present in
hyphae of N. crassa (21).

The results of this study increase our understanding of the molecular mechanisms
controlling germination in R. delemar. We have shown that ungerminated spores are
transcriptionally unique, while the initiation of germination entails a huge transcrip-
tional shift. ROS resistance and respiration are required for germination to occur, while
actin, chitin, and cytoskeletal components appear to play key roles initiating isotropic
swelling and hyphal growth. R. delemar shares many transcriptional traits with A. niger
at germination initiation; however, transcriptional features unique to R. delemar indi-
cate that the duplicated nature of the genome may allow for alternative regulation of
this process. This study has provided a significant overview of the transcriptome of
germinating spores and expanded current knowledge in the Mucorales field.

MATERIALS AND METHODS
Culture. R. delemar was cultured with Sabouraud dextrose agar or broth (10 g/liter mycological

peptone, 20 g/liter dextrose), sourced from Sigma-Aldrich, at room temperature. Spores were harvested
with phosphate-buffered saline (PBS), centrifuged for 3 min at 3,000 rpm, and washed. Appropriate
concentrations of spores were used for further experiments.

Live-cell imaging, staining, and inhibition. Images of 1 � 105 spores/ml in SAB were taken every 10
min to determine germination characteristics. Images were taken at 20� objective on a Zeiss Axio Observer.
Calcofluor white (CFW), fluorescein isothiocyanate (FITC) (Sigma-Aldrich), and the ROS stain carboxy-H2DCFDA
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(6-carboxy-2=,7=-dichlorodihydrofluorescein diacetate [C400]; Invitrogen) were incubated with live spores,
according to the manufacturer’s instructions, prior to imaging. To assess inhibition, spores were incubated
with 1 to 5 mM hydrogen peroxide or 1.5 to 10 nM antimycin A (Sigma-Aldrich) prior to imaging. Bright-field
and fluorescent images were then analyzed using ImageJ V1.

RNA extraction and sequencing. Total RNA was extracted from R. delemar spores that germinated
in SAB for 0, 1, 2, 3, 4, 5, 6, 12, 16, and 24 h. To extract total RNA, the washed samples were immediately
immersed in TRIzol and lysed via bead beating at 6,500 rpm for 60 s. Samples were then either
immediately frozen at �20°C and stored for RNA extraction or placed on ice for RNA extraction. After
lysis, 0.2 ml of chloroform was added for every 1 ml of TRIzol used in the sample preparation. Samples
were incubated for 3 min and then spun at 12,000 � g at 4°C for 15 min. To the aqueous phase, an equal
volume of 100% ethanol (EtOH) was added, before the samples were loaded onto RNeasy RNA extraction
columns (Qiagen). The manufacturer’s instructions were followed from this point onwards. RNA quality
was checked by Agilent, with all RNA integrity number (RIN) scores above 8 (78). One microgram of total
RNA was used for cDNA library preparation. Library preparation was done in accordance with the
NEBNext pipeline, with library quality checked by Agilent. Samples were sequenced using the Illumina
HiSeq platform; 100-bp paired-end sequencing was employed (2 � 100 bp).

Data analysis. FastQC (version 0.11.5) was employed to ensure the quality of all samples, a Phred
value of over 36 was found for every sample. Hisat2 (version 2.0.5) was used to align reads to the indexed
genome of Rhizopus delemar found on JGI (PRJNA13066) (35, 79). HTSeq (version 0.8.0) was used to
quantify the output (80). Trinity and edgeR (version 3.16.5) were then used to analyze differential
expression (81, 82). Pathway Tools (version 21.0) was used to obtain information on specific pathways
(83). The genome of R. delemar was reannotated by incorporating the RNA-Seq data via BRAKER (version
2.1.0), this was fed into the Broad Institute annotation pipeline, which removed sequences that
overlapped with repetitive elements, numbered, and named genes as previously described (84). Com-
pleteness of annotation was analyzed with BUSCO (version 3) (37, 38).

Data availability. Raw data and a compiled count matrix can be obtained under the following
accession numbers: SRP146252 (SRA) and GSE114842 (GEO).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00403-18.
FIG S1, TIF file, 0.1 MB.
FIG S2, TIF file, 0.4 MB.
FIG S3, TIF file, 16 MB.
TABLE S1, TXT file, 0.03 MB.
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