THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview

Stephen PH Alexander1, Eamonn Kelly2, Neil V Marrion2, John A Peters3, Elena Faccenda4, Simon D Harding4, Adam J Pawson4, Joanna L Sharman4, Christopher Southan4, O Peter Buneman5, John A Cidlowski6, Arthur Christopoulos7, Anthony P Davenport8, Doriano Fabbro9, Michael Spedding10, Jörg Striessnig11, Jamie A Davies4 and CGTP Collaborators

1 School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
2 School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
3 Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
4 Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
5 Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, Edinburgh, EH8 9LE, United Kingdom
6 National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
7 Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
8 Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK
9 PIQUR Therapeutics, Basel 4057, Switzerland
10 Spedding Research Solutions SARL, Le Vésinet 78110, France
11 Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria

Abstract

The Concise Guide to PHARMACOLOGY 2017/18 is the third in this series of biennial publications. This version provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full.

In addition to this overview, in which are identified ‘Other protein targets’ which fall outside of the subsequent categorisation, there are eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guidelines to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

Table of contents

S1 Overview
S6 Other Protein Targets
S6 Adiponectin receptors
S7 Blood coagulation components
S8 Non-enzymatic BRD containing proteins
S8 Carrier proteins
S9 CD molecules
S10 Methyllysine reader proteins
S11 Fatty acid-binding proteins
S13 Notch receptors
S13 Regulators of G protein Signaling (RGS) proteins
S14 Sigma receptors
S15 Tubulins
S17 G protein-coupled receptors
S19 Orphan and other 7TM receptors
S19 Class A Orphans
S28 Class C Orphans
S28 Taste 1 receptors
S29 Taste 2 receptors
S30 Other 7TM proteins
S31 5-Hydroxytryptamine receptors
S34 Acetylcholine receptors (muscarinic)
S36 Adenosine receptors
S37 Adhesion Class GPCRs
S39 Adrenoceptors
S43 Angiotensin receptors
S44 Apelin receptor
S45 Bile acid receptor
S46 Bombesin receptors
S47 Bradykinin receptors
S48 Calcitonin receptors
S50 Calcium-sensing receptor

Searchable database: http://www.guidetopharmacology.org/index.jsp
S111 Tachykinin receptors
S113 Thyrotropin-releasing hormone receptors
S113 Trace amine receptor
S114 Urotensin receptor
S115 Vasopressin and oxytocin receptors
S117 VIP and PACAP receptors

S130 Ligand-gated ion channels
S131 5-HT3 receptors
S133 Acid-sensing (proton-gated) ion channels (ASICs)
S135 Epithelial sodium channels (ENaC)
S137 GABA A receptors
S142 Glycine receptors
S145 Ionotropic glutamate receptors
S150 IP 3 receptor
S151 Nicotinic acetylcholine receptors
S154 P2X receptors
S156 ZAC

S160 Voltage-gated ion channels
S161 CatSper and Two-Pore channels
S163 Cyclic nucleotide-regulated channels
S164 Potassium channels
S165 Calcium- and sodium-activated potassium channels
S166 Inwardly rectifying potassium channels
S169 Two P domain potassium channels
S171 Voltage-gated potassium channels
S175 Ryanodine receptor
S176 Transient Receptor Potential channels
S186 Voltage-gated calcium channels
S189 Voltage-gated proton channel
S190 Voltage-gated sodium channels

S195 Other ion channels
S196 Aquaporins
S197 Chloride channels
S197 CIC family
S199 CFTR
S200 Calcium activated chloride channel
S201 Maxi chloride channel
S202 Volume regulated chloride channels
S204 Connexins and Pannexins
S206 Sodium leak channel, non-selective

S208 Nuclear hormone receptors
S209 1A. Thyroid hormone receptors
S210 1B. Retinoid acid receptors
S210 1C. Peroxisome proliferator-activated receptors
S211 1D. Rev-Erb receptors
S212 1F. Retinoic acid-related orphan receptors
S213 1H. Liver X receptor-like receptors
S214 1I. Vitamin D receptor-like receptors
S214 2A. Hepatocyte nuclear factor-4 receptors
S215 2B. Retinoid X receptors
S216 2C. Testicular receptors
S216 2E. Tailless-like receptors
S217 2F. COUP-TF-like receptors
S218 3B. Estrogen-related receptors
S218 4A. Nerve growth factor Iβ-like receptors
S219 5A. Fushi tarazu F1-like receptors
S220 6A. Germ cell nuclear factor receptors
S220 6B. DAX-like receptors
S221 Steroid hormone receptors
S221 3A. Estrogen receptors
S222 3C. 3-Ketosteroid receptors

S225 Catalytic receptors
S226 Cytokine receptor family
S227 IL-2 receptor family
S229 IL-3 receptor family
S230 IL-6 receptor family
S231 IL-12 receptor family
S232 Prolactin receptor family
S233 Interferon receptor family
S234 IL-10 receptor family
S235 Immunoglobulin-like family of IL-1 receptors
S236 IL-17 receptor family
S237 GDNF receptor family
S237 Integrins
S241 Natriuretic peptide receptor family
S242 Pattern recognition receptors
S243 Toll-like receptor family
S244 NOD-like receptor family
S246 Receptor tyrosine kinases (RTKs)
S247 Type I RTKs: ErbB (epidermal growth factor) receptor family
S248 Type II RTKs: Insulin receptor family
S249 Type III RTKs: PDGFR, CSFR, Kit, FLT3 receptor family
S250 Type IV RTKs: VEGF (vascular endothelial growth factor) receptor family
S251 Type V RTKs: FGF (fibroblast growth factor) receptor family
S252 Type VI RTKs: PTK7/CCK4
S252 Type VII RTKs: Neurotrophin receptor/Trk family
S253 Type VIII RTKs: ROR family

Searchable database: http://www.guidetopharmacology.org/index.jsp
ABCC subfamily

ABCD subfamily of peroxisomal ABC transporters

ABC subfamily

F-type and V-type ATPases

F-type ATPase

V-type ATPase

P-type ATPases

Na\(^{+}\)/K\(^{+}\)-ATPases

Ca\(^{2+}\)-ATPases

H\(^{+}\)/K\(^{+}\)-ATPases

Cu\(^{2+}\)-ATPases

Phospholipid-transporting ATPases

Major facilitator superfamily (MFS) of transporters

SLC superfamily of solute carriers

SLC1 family of amino acid transporters

Glutamate transporter subfamily

Alanine-serine/cysteine transporter subfamily

SLC2 family of hexose and sugar alcohol

Class I transporters

Class II transporters

Proton-coupled inositol transporter

SLC3 and SLC7 families of heteromeric amino acid transporters (HATs)

SLC3 family

SLC7 family

SLC2 family of bicarbonate transporters

SLC4 family of bicarbonate transporters

SLC6 amino acid transporters

SLC7 family

SLC8 family of sodium/calcium exchangers

SLC9 family of sodium/hydrogen exchangers

SLC10 family of sodium-bile acid co-transporters

SLC11 family of proton-coupled metal ion transporters

SLC12 family of cation-coupled chloride transporters

SLC13 family of sodium-dependent sulphate/carboxylate transporters

SLC14 family of facilitative urea transporters

SLC15 family of peptide transporters

SLC16 family of monocarboxylate transporters

SLC17 family of sodium-potassium-2 chloride co-transporters

SLC18 family of vesicular amine transporters

SLC19 family of vitamin transporters

SLC20 family of sodium-dependent phosphate transporters

SLC21 family of sodium-dependent phosphate transporters

SLC22 family of organic cation and anion transporters

SLC23 family of sodium/potassium/calcium exchangers

SLC24 family of sodium-potassium-exchanger

SLC25 family of mitochondrial transporters

SLC26 family of anion exchangers

SLC27 family of fatty acid transporters

SLC28 family of sodium-calcium exchangers

SLC29 family of sodium-calcium exchangers

SLC30 family of zinc transporters

SLC31 family of copper transporters

SLC32 vesicular inhibitory amino acid transporter

SLC33 acetylCoA transporter

SLC34 family of sodium-phosphate co-transporters

SLC35 family of nucleotide sugar transporters

SLC36 family of sodium-dependent amino acid transporters

SLC37 family of phosphosugar/phosphate exchangers

SLC38 family of sodium-dependent neutral amino acid transporters

SLC39 family of sodium-calcium exchangers

SLC40 iron transporter

SLC41 family of divalent cation transporters

SLC42 family of Rhesus glycoprotein ammonium transporters

SLC43 family of large neutral amino acid transporters

SLC44 choline transporter-like family

SLC45 family of putative sugar transporters

SLC46 family of folate transporters

SLC47 family of multidrug and toxin extrusion transporters

SLC48 heme transporter

SLC49 family of FLVCR-related heme transporters

SLC50 sugar transporter

SLC51 family of steroid-derived molecule transporters

SLC52 family of riboflavin transporters

SLCO family of organic anion transporting polypeptides

Patch family
Introduction

In order to allow clarity and consistency in pharmacology, there is a need for a comprehensive organisation and presentation of the targets of drugs. This is the philosophy of the IUPHAR/BPS Guide to PHARMACOLOGY presented on the online free access database (http://www.guidetopharmacology.org/). This database is supported by the British Pharmacological Society (BPS), the International Union of Basic and Clinical Pharmacology (IUPHAR), the University of Edinburgh and previously the Wellcome Trust. Data included in the Guide to PHARMACOLOGY are derived in large part from interactions with the subcommittees of the Nomenclature Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR). A major influence on the development of the database was Tony Harmar (1951-2014), who worked with a passion to establish the curators as a team of highly informed and informative individuals, with a focus on high-quality data input, ensuring a suitably validated dataset. The Editors of the Concise Guide have compiled the individual records, in concert with the team of Curators, drawing on the expert knowledge of these latter subcommittees. The tables allow an indication of the status of the nomenclature for the group of targets listed, usually previously published in Pharmacological Reviews. In the absence of an established subcommittee, advice from several prominent, independent experts has generally been obtained to produce an authoritative consensus on nomenclature, which attempts to fit in within the general guidelines from NC-IUPHAR. This current edition, the Concise Guide to PHARMACOLOGY 2017/18, is the latest snapshot of the database in print form, following on from the Concise Guide to PHARMACOLOGY 2015/16. It contains data drawn from the online database as a rapid overview of the major pharmacological targets. Thus, there are many fewer targets presented in the Concise Guide compared to the online database. The priority for inclusion in the Concise Guide is the presence of quantitative pharmacological data. This means that often orphan family members are not presented in the Concise Guide, although structural information is available on the online database. The organisation of the data is tabular (where appropriate) with a standardised format, where possible on a single page, intended to aid understanding of, and comparison within, a particular target group. The Concise Guide is intended as an initial resource, with links to additional reviews and resources for greater depth and information. Pharmacological and structural data focus primarily on human gene products, wherever possible, with links to HGNC gene nomenclature and UniProt IDs. In a few cases, where data from human proteins are limited, data from other species are indicated. Pharmacological tools listed are prioritised on the basis of selectivity and availability. That is, agents (agonists, antagonists, inhibitors, activators, etc.) are included where they are both available (by donation or from commercial sources, now or in the near future) AND the most selective. The Concise Guide is divided into nine sections, which comprise pharmacological targets of similar structure/function. These are G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, nuclear hormone receptors, enzymes, transporters and other protein targets. We hope that the Concise Guide will provide for researchers, teachers and students a state-of-the-art source of accurate, curated information on the background to their work that they will use in the Introduction to their Research Papers or Reviews, or in supporting their teaching and studies. We recommend that any citations to information in the Concise Guide are presented in the following format:

In this overview are listed protein targets of pharmacological interest, which are not G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors, transporters or enzymes.

Acknowledgements

We are extremely grateful to the British Pharmacological Society and the International Union of Basic and Clinical Pharmacology, for financial support of the website and for advice from the NC-IUPHAR subcommittees. We thank the University of Edinburgh, who host the www.guidetopharmacology.org website. Previously, the International Union of Basic and Clinical Pharmacology and the Wellcome Trust (099156/Z/12/Z) also supported the initiation and expansion of the database. We are also tremendously grateful to the long list of collaborators from NC-IUPHAR subcommittees and beyond, who have assisted in the construction of the Concise Guide to PHARMACOLOGY 2017/18 and the online database www.GuideToPHARMACOLOGY.org. Further, we wish to thank Toni Wigglesworth for her assistance in the co-ordination of correspondence with these collaborators.

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

© 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Other Protein Targets

Family structure

S6 Adiponectin receptors

S7 B-cell lymphoma 2 (Bcl-2) protein family

S7 Bromodomain-containing proteins

S7 Non-enzymatic BRD containing proteins

S8 Carrier proteins

S9 CD molecules

S9 Chromatin-interacting transcriptional repressors

S10 Methyllysine reader proteins

S10 Circadian clock proteins

S10 Claudins

S10 EF-hand domain containing

S11 Fatty acid-binding proteins

S11 G-alpha family G(q) subfamily

S12 Notch receptors

S12 Other pattern recognition receptors

S13 RGS proteins

S14 Repulsive guidance molecules

S14 Reticulons and associated proteins

S14 Ribosomal factors

S14 Sigma receptors

S15 Tubulins

S15 Tumour-associated proteins

S15 WD repeat-containing proteins

Overview: Adiponectin receptors (provisional nomenclature, ENSFM00500000270960) respond to the 30 kDa complement-related protein hormone adiponectin (also known as ADIPOQ; adipocyte, C1q and collagen domain-containing protein; ACRP30, adipose most abundant gene transcript 1; apM-1; gelatin-binding protein: Q15848) originally cloned from adipocytes [49]. Although sequence data suggest 7TM domains, immunological evidence indicates that, contrary to typical 7TM topology, the carboxyl terminus is extracellular, while the amino terminus is intracellular [90]. Signalling through these receptors appears to avoid G proteins; modelling based on the crystal structures of the adiponectin receptors suggested ceramidase activity, which would make these the first in a new family of catalytic receptors [93].

Nomenclature	Adipo1 receptor	Adipo2 receptor
HGNC, UniProt	ADIPOR1, Q96A54	ADIPOR2, Q86V24
Rank order of potency
globular adiponectin (ADIPOQ, Q15848) > adiponectin (ADIPOQ, Q15848)
globular adiponectin (ADIPOQ, Q15848) = adiponectin (ADIPOQ, Q15848)

Comments: T-Cadherin (CDH13, P55290) has also been suggested to be a receptor for (hexameric) adiponectin [33].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Further reading on Adiponectin receptors

Blood coagulation components

Other protein targets → Blood coagulation components

Overview: Coagulation as a process is interpreted as a mechanism for reducing excessive blood loss through the generation of a gel-like clot local to the site of injury. The process involves the activation, adhesion (see Integrins), degranulation and aggregation of platelets, as well as proteins circulating in the plasma. The coagulation cascade involves multiple proteins being converted to more active forms from less active precursors, typically through proteolysis (see Proteases). Listed here are the components of the coagulation cascade targeted by agents in current clinical usage.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>coagulation factor V</th>
<th>coagulation factor VIII</th>
<th>serpin family C member 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>F5, P12259</td>
<td>F8, P00451</td>
<td>SERPINC1, P01008</td>
</tr>
<tr>
<td>Selective activators</td>
<td>–</td>
<td>–</td>
<td>heparin (pKd 7.8) [26], fondaparinux (pKd 7.5) [62], dalteparin [32], danaparoid [16, 56], enoxaparin [19], tinzaparin [20]</td>
</tr>
<tr>
<td>Selective inhibitors</td>
<td>drotrecogin alfa [36, 37]</td>
<td>drotrecogin alfa [36, 37]</td>
<td>–</td>
</tr>
</tbody>
</table>

Further reading on Blood coagulation components

Searchable database: http://www.guidetopharmacology.org/index.jsp
Non-enzymatic BRD containing proteins

Other protein targets → Bromodomain-containing proteins → Non-enzymatic BRD containing proteins

Overview: Bromodomains bind proteins with acetylated lysine residues, such as histones, to regulate gene transcription. Listed herein are examples of bromodomain-containing proteins for which sufficient pharmacology exists.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>HGNC, UniProt</th>
<th>Selective inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>bromodomain adjacent to zinc finger domain 2A</td>
<td>BAZ2A, Q9UIF9</td>
<td>GSK2801 (pK₈ 6.6) [73]</td>
</tr>
<tr>
<td>bromodomain adjacent to zinc finger domain 2B</td>
<td>BAZ2B, Q9UIF8</td>
<td>GSK2801 (pK₈ 6.9) [73]</td>
</tr>
<tr>
<td>CREB binding protein</td>
<td>CREBBP, Q92793</td>
<td>I-CBP112 (pK₈ 6.8) [72]</td>
</tr>
<tr>
<td>polybromo 1</td>
<td>PBRM1, Q86U86</td>
<td>PFI-3 (pK₈ 7.3) [79]</td>
</tr>
<tr>
<td>SMII/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4</td>
<td>SMARCA4, P51532</td>
<td>PFI-3 (pK₈ 7.1) [79]</td>
</tr>
</tbody>
</table>

Further reading on Non-enzymatic BRD containing proteins

Carrier proteins

Other protein targets → Carrier proteins

Overview: Transthyretin (TTR) is a homo-tetrameric protein which transports thyroxine in the plasma and cerebrospinal fluid and retinol (vitamin A) in the plasma. Many disease causing mutations in the protein have been reported, many of which cause complex dissociation and protein mis-assembly and deposition of toxic aggregates amyloid fibril formation [63]. These amyloidogenic mutants are linked to the development of pathological amyloidoses, including familial amyloid polyneuropathy (FAP) [4, 14], familial amyloid cardiomyopathy (FAC) [34], amyloidotic vitreous opacities, carpal tunnel syndrome [54] and others. In old age, non-mutated TTR can also form pathological amyloid fibrils [88]. Pharmacological intervention to reduce or prevent TTR dissociation is being pursued as a therapeutic strategy. To date one small molecule kinetic stabilising molecule (tafamidis) has been approved for FAP, and is being evaluated in clinical trials for other TTR amyloidoses.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>TTR, P02766</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>TTR</td>
</tr>
<tr>
<td>Common abbreviation</td>
<td>TTR</td>
</tr>
</tbody>
</table>
Further reading on Carrier proteins

CD molecules

Other protein targets → CD molecules

Overview: Cluster of differentiation refers to an attempt to catalogue systematically a series of over 300 cell-surface proteins associated with immunotyping. Many members of the group have identified functions as enzymes (for example, see CD73 ecto-5'-nucleotidase) or receptors (for example, see CD41 integrin, alpha 2b subunit). Many CDs are targeted for therapeutic gain using antibodies for the treatment of proliferative disorders. A full listing of all the Clusters of Differentiation is not possible in the Guide to PHARMACOLOGY; listed herein are selected members of the family targeted for therapeutic gain.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>CD2</th>
<th>CD3e</th>
<th>CD20 (membrane-spanning 4-domains, subfamily A, member 1)</th>
<th>CD33</th>
<th>CD52</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>CD2, P06729</td>
<td>CD3e, P07766</td>
<td>MS4A1, P11836</td>
<td>CD33, P20138</td>
<td>CD52, P31358</td>
</tr>
<tr>
<td>Common abbreviation</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Selective inhibitors</td>
<td>alefacept (Inhibition) [17, 53]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Antibodies</td>
<td>catumaxomab (Binding) [43], muromonab-CD3 (Binding) [25], otelixizumab (Binding) [9]</td>
<td>ofatumumab (Binding) (pKₐ 9.9) [47], rituximab (Binding) (pKₐ 8.5) [75], ibritumomab tiuxetan (Binding), obinutuzumab (Binding) [3, 66], tositumomab (Binding)</td>
<td>lintuzumab (Binding) (pKₐ ∼10) [10], gemtuzumab ozogamicin (Binding) [7]</td>
<td>alemtuzumab (Binding) [24, 79]</td>
<td></td>
</tr>
</tbody>
</table>

Searchable database: http://www.guidetopharmacology.org/index.jsp

Nomenclature	CD80	CD86	cytotoxic T-lymphocyte-associated protein 4 (CD152)	programmed cell death 1 (CD279)	CD300a
HGNC, UniProt | CD80, P33681 | CD86, P42081 | CTLA4, P16410 | PDCD1, Q15116 | CD300A, Q9UGN4
Common abbreviation | – | – | CTLA-4 | PD-1 | –
Antibodies | – | – | ipilimumab \((pK_d > 9) [28]\), tremelimumab \((pK_d \sim 8.9) [30]\) | pembrolizumab \((pK_d \sim 10) [11]\), nivolumab \((pK_d 9.1) [28, 38, 40]\) | –

Comment: The endogenous ligands for human PD-1 are programmed cell death 1 ligand 1 \((PD-L1 \text{ aka} CD274, Q9NZQ7)\) and programmed cell death 1 ligand 2 \((PD-L2; PDCD1LG2)\). These ligands are cell surface peptides, normally involved in immune system regulation. Expression of PD-1 by cancer cells induces immune tolerance and evasion of immune system attack. Anti-PD-1 monoclonal antibodies are used to induce immune checkpoint blockade as a therapeutic intervention in cancer, effectively re-establishing immune vigilance. **Pembrolizumab** was the first anti-PD-1 antibody to be approved by the US FDA.

Further reading on CD molecules

Methyllysine reader proteins

Other protein targets → Chromatin-interacting transcriptional repressors → **Methyllysine reader proteins**

Overview: Methyllysine reader proteins bind to methylated proteins, such as histones, allowing regulation of gene expression.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>(l(3)mbt)-like 3 (Drosophila)</th>
<th>L3MBTL3, Q96J7</th>
<th>UNC1215 [35]</th>
</tr>
</thead>
</table>

Further reading on Methyllysine reader proteins

Searchable database: http://www.guidetopharmacology.org/index.jsp
Fatty acid-binding proteins

Other protein targets → Fatty acid-binding proteins

Overview: Fatty acid-binding proteins are low molecular weight (100-130 aa) chaperones for long chain fatty acids, fatty acyl CoA esters, eicosanoids, retinols, retinoic acids and related metabolites and are usually regarded as being responsible for allowing the otherwise hydrophobic ligands to be mobile in aqueous media. These binding proteins may perform functions extracellularly (e.g. in plasma) or transport these agents to the nucleus to interact with nuclear receptors (principally PPARs and retinoic acid receptors [70]) or for interaction with metabolic enzymes. Although sequence homology is limited, crystallographic studies suggest conserved 3D structures across the group of binding proteins.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>fatty acid binding protein 1</th>
<th>fatty acid binding protein 2</th>
<th>fatty acid binding protein 3</th>
<th>fatty acid binding protein 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>FABP1, P07148</td>
<td>FABP2, P12104</td>
<td>FABP3, P05413</td>
<td>FABP4, P15090</td>
</tr>
<tr>
<td>Rank order of potency</td>
<td>stearic acid, oleic acid > palmitic acid, linoleic acid > arachidonic acid, α-linolenic acid [67]</td>
<td>stearic acid > palmitic acid, oleic acid > linoleic acid > arachidonic acid, α-linolenic acid [67]</td>
<td>stearic acid, oleic acid, palmitic acid > linoleic acid, α-linolenic acid, arachidonic acid [67]</td>
<td>oleic acid, palmitic acid, stearic acid, linoleic acid > α-linolenic acid, arachidonic acid [67]</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>fenofibrate (pKᵢ 7.6) [12] – Rat, fenofibric acid (pKᵢ 6.5) [12] – Rat, HTS01037 (pKᵢ 5.1) [30] – Mouse</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Selective inhibitors</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>HM50316 (pKᵢ > 9) [46]</td>
</tr>
<tr>
<td>Comments</td>
<td>A broader substrate specificity than other FABPs, binding two fatty acids per protein [82].</td>
<td>Crystal structure of the rat FABP2 [69].</td>
<td>Crystal structure of the human FABP3 [91].</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>fatty acid binding protein 5</th>
<th>fatty acid binding protein 6</th>
<th>fatty acid binding protein 7</th>
<th>peripheral myelin protein 2</th>
<th>fatty acid binding protein 9</th>
<th>fatty acid binding protein 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>FABP5, Q01469</td>
<td>FABP6, P51161</td>
<td>FABP7, O15540</td>
<td>PMP2, P02689</td>
<td>FABP9, Q07Z58</td>
<td>FABP12, A6NFH5</td>
</tr>
<tr>
<td>Comments</td>
<td>Crystal structure of the human FABP5 [31].</td>
<td>Able to transport bile acids [95].</td>
<td>Crystal structure of the human FABP7 [5].</td>
<td>In silico modelling suggests that PMP2/FABP8 can bind both fatty acids and cholesterol [50].</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Searchable database: http://www.guidetopharmacology.org/index.jsp
Nomenclature

<table>
<thead>
<tr>
<th>Retinol binding protein 1</th>
<th>Retinol binding protein 2</th>
<th>Retinol binding protein 3</th>
<th>Retinol binding protein 4</th>
<th>Retinol binding protein 5</th>
<th>Retinol binding protein 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>RBP1, P09455</td>
<td>RBP2, P50120</td>
<td>RBP3, P10745</td>
<td>RBP4, P02753</td>
<td>RBP5, P82980</td>
</tr>
<tr>
<td>Rank order of potency</td>
<td>–</td>
<td>stearic acid > palmitic acid, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid [68]</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>–</td>
<td>–</td>
<td>A1120 (pIC$_{50}$ 7.8) [86]</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Retinaldehyde binding protein 1

<table>
<thead>
<tr>
<th>Cellular retinoic acid binding protein 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
</tr>
<tr>
<td>RLBPI, P12271</td>
</tr>
<tr>
<td>Rank order of potency</td>
</tr>
<tr>
<td>11-cis-retinal, 11-cis-retinol > 9-cis-retinal, 13-cis-retinal, 13-cis-retinol, all-trans-retinal, retinol [15]</td>
</tr>
</tbody>
</table>

Cellular retinoic acid binding protein 2

<table>
<thead>
<tr>
<th>Rank order of potency</th>
</tr>
</thead>
<tbody>
<tr>
<td>tretrinoïn > allretinoïn stearic acid > palmitic acid, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid [68]</td>
</tr>
</tbody>
</table>

Comments: Although not tested at all FABPs, BMS309403 exhibits high affinity for FABP4 (pIC$_{50}$ 8.8) compared to FABP3 or FABP5 (pIC$_{50}$ <6.6) [21, 81]. HTS01037 is reported to interfere with FABP4 action [30]. Ibuprofen displays some selectivity for FABP4 (pIC$_{50}$ 5.5) relative to FABP3 (pIC$_{50}$ 3.5) and FABP5 (pIC$_{50}$ 3.8) [48]. Fenofibrin acid displays some selectivity for FABP5 (pIC$_{50}$ 5.5) relative to FABP3 (pIC$_{50}$ 4.5) and FABP4 (pIC$_{50}$ 4.6) [48]. Multiple pseudogenes for the FABPs have been identified in the human genome.

Further reading on Fatty acid-binding proteins

Searchable database: http://www.guidetopharmacology.org/index.jsp
Notch receptors

Other protein targets → Notch receptors

Overview: The canonical Notch signalling pathway has four type I transmembrane Notch receptors (Notch1-4) and five ligands (DLL1, 2 and 3, and Jagged 1-2). Each member of this highly conserved receptor family plays a unique role in cell-fate determination during embryogenesis, differentiation, tissue patterning, proliferation and cell death [2]. As the Notch ligands are also membrane bound, cells have to be in close proximity for receptor-ligand interactions to occur. Cleavage of the intracellular domain (ICD) of activated Notch receptors by γ-secretase is required for downstream signalling and Notch-induced transcriptional modulation [18, 57, 71, 89]. This is why γ-secretase inhibitors can be used to downregulate Notch signalling and explains their anti-cancer action. One such small molecule is RO4929097 [47], although development of this compound has been terminated following an unsuccessful Phase II single agent clinical trial in metastatic colorectal cancer [78].

Aberrant Notch signalling is implicated in a number of human cancers [41, 59, 74, 85]. Pharmaceutical inhibitors of Notch signalling such as demcizumab and tarextumab are being actively investigated as novel anti-cancer agents [64].

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>notch 1</th>
<th>notch 2</th>
<th>notch 3</th>
<th>notch 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>NOTCH1, P46531</td>
<td>NOTCH2, Q04721</td>
<td>NOTCH3, Q9UM47</td>
<td>NOTCH4, Q99466</td>
</tr>
<tr>
<td>Comments</td>
<td>Various types of activating and inactivating NOTCH1 mutations have been reported to be associated with human diseases, for example: aortic valve disease [23, 52], Adams-Oliver syndrome 5 [76], T-cell acute lymphoblastic leukemia (T-ALL) [87], chronic lymphocytic leukemia (CLL) [65] and head and neck squamous cell carcinoma [1, 77]. Notch 4 is a potential therapeutic molecular target for triple-negative breast cancer [42, 55].</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further reading on Notch receptors

Regulators of G protein Signaling (RGS) proteins

Other protein targets → Regulators of G protein Signaling (RGS) proteins

Overview: Regulators of G protein signalling (RGS) proteins increase the deactivation rates of G protein signalling pathways through enhancing the GTPase activity of the G protein alpha subunit. Interactions through protein:protein interactions of many RGS proteins have been identified for targets other than heteromeric G proteins. The 20 RGS proteins are commonly divided into four families (R4, R7, R12 and RZ) based on sequence and domain homology. Described here is RGS4 for which a number of pharmacological inhibitors have been described.
Sigma receptors

Other protein targets → Sigma receptors

Overview: Although termed 'receptors', the evidence for coupling through conventional signalling pathways is lacking. Initially described as a subtype of opioid receptors, there is only a modest pharmacological overlap and no structural convergence with the G protein-coupled receptors; the crystal structure of the sigma1 receptor [94] suggests a trimeric structure of a single short transmembrane domain traversing the endoplasmic reticulum membrane, with the bulk of the protein facing the cytosol. A wide range of compounds, ranging from psychoactive agents to antihistamines, have been observed to bind to these sites.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>sigma non-opioid intracellular receptor 1</th>
<th>σ 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>SIGMAR1, Q99720</td>
<td>–</td>
</tr>
<tr>
<td>Selective agonists</td>
<td>PRE-084 [80], (+)-SKF 10.047</td>
<td>–</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>NE-100 (pIC_{50} 8.4) [60], BD-1047 (pIC_{50} 7.4) [51]</td>
<td>–</td>
</tr>
<tr>
<td>Labelled ligands</td>
<td>[{3H}pentazocine (Agonist)]</td>
<td>[{3H}-di-o-tolylguanidine (Agonist)]</td>
</tr>
</tbody>
</table>

Comments: (-)-pentazocine also shows activity at opioid receptors. The sigma2 receptor has recently been reported to be TMEM97 Q5BJF2 [92], a 4TM protein partner of NPC1, the Niemann-Pick C1 protein, a 13TM cholesterol-binding protein.

Further reading on Sigma receptors

van Waarde A et al. (2015) Potential applications for sigma receptor ligands in cancer diagnosis and therapy. *Biochim Biophys Acta* 1848: 2703-14

Searchable database: http://www.guidetopharmacology.org/index.jsp

Tubulins
Other protein targets → Tubulins

Overview: Tubulins are a family of intracellular proteins most commonly associated with microtubules, part of the cytoskeleton. They are exploited for therapeutic gain in cancer chemotherapy as targets for agents derived from a variety of natural products: taxanes, colchicine and vinca alkaloids. These are thought to act primarily through β-tubulin, thereby interfering with the normal processes of tubulin polymer formation and disassembly.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>tubulin alpha 1a</th>
<th>tubulin alpha 4a</th>
<th>tubulin beta class I</th>
<th>tubulin beta 3 class III</th>
<th>tubulin beta 4B class IVb</th>
<th>tubulin beta 8 class VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>TUBA1A, Q71U36</td>
<td>TUBA4A, P68366</td>
<td>TUBB, P07437</td>
<td>TUBB3, Q13509</td>
<td>TUBB4B, P68371</td>
<td>TUBB8, Q3ZCM7</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>–</td>
<td>–</td>
<td>vinblastine (pIC_{50} 9), vincristine, eribulin (pIC_{50} 8.2) [58], paclitaxel (pEC_{50} 8.1) [61], colchicine (pIC_{50} 8) [13], cabazitaxel, docetaxel, ixabepilone</td>
<td>combretastatin A4 (pIC_{50} 8.2) [22]</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Further reading on Tubulins

References

1. Agrawal N et al. (2011) [21798897]
2. Al-Hussaini H et al. (2011) [20971825]
3. Alduaj W et al. (2011) [21378274]
4. ANDRADE C. (1952) [12978172]
5. Balendiran GK et al. (2000) [10854433]
6. Berardi F et al. (1996) [8568804]
8. Blazer LL et al. (2011) [21329361]
10. Caron PC et al. (1993) [8436176]
12. Chuang S et al. (2008) [18533710]
13. Cifuentes M et al. (2006) [16504507]
15. Crabb JW et al. (1998) [9541407]
16. Cziraky MJ et al. (1993) [8137606]
17. da Silva AJ et al. (2002) [11979099]
18. De Strooper B et al. (1999) [10206645]
19. Eriksson BI et al. (1995) [7667822]
20. Friedel HA et al. (1994) [7528134]
21. Furuhashi M et al. (2007) [17554340]
22. Ganglea A et al. (2013) [23895532]
23. Garg V et al. (2005) [16025100]
24. Ginaldi L et al. (1998) [8593473]
26. Gotti R et al. (2013) [23598032]
28. Hall RD et al. (2013) [23302904]
30. Hertzel AV et al. (2009) [19754198]
31. Hohoff C et al. (1999) [10493790]
32. Holmer E et al. (1986) [3744129]
33. Hug C et al. (2004) [15210937]
34. Jacobson DR et al. (1997) [9017939]
35. James Li et al. (2013) [23292653]
36. Kanji S et al. (2001) [11714212]
37. Kapur S et al. (2001) [11463021]
38. Kline J et al. (2010) [21154117]
40. Latek R et al. (2009) [19300198]
41. Lefort K et al. (2007) [17344417]
42. Lehmann BD et al. (2015) [25993190]
43. Linke R et al. (2010) [20190561]
44. Linsley PS et al. (1991) [1714933]
46. Liu X. et al. (2011) [21481589]
47. Luistro L et al. (1998) [19773430]
48. Machhub B et al. (1988) [24248795]
49. Maeda K et al. (1996) [8619847]
50. Majava V et al. (2010) [20421974]
51. Matsumoto RR et al. (1995) [8566098]
52. McBride KL et al. (2008) [18593716]
54. Murakami K et al. (1999) [10403814]
55. Nagamatsu L et al. (2014) [24403446]
56. Nakase J et al. (2009) [19398784]
57. Nam Y et al. (2006) [16530044]
58. Narayan S et al. (2011) [21324687]
59. Ntziahristos P et al. (2014) [24651013]
60. Okuyama S et al. (1993) [7901723]
61. Ouyang X et al. (2006) [16377187]
62. Paolucci F et al. (2002) [12383040]
63. Penchala SC et al. (2013) [23716704]
64. Prezzavento O et al. (2007) [17328523]
65. Reslan L et al. (2013) [23537278]
66. Richieri GV et al. (1994) [7929039]
67. Richieri GV et al. (2000) [10852718]
68. Sacchettini JC et al. (1989) [2671390]
69. Schroeter F et al. (2008) [17882463]
70. Schroeter EH et al. (1998) [9620803]
74. Sjolund J et al. (2008) [18079963]
75. Stein R et al. (2004) [15102696]
76. Stittrich AB et al. (2014) [25132448]
77. Stransky N et al. (2011) [21798893]
78. Strosberg JR et al. (2012) [22445247]
80. Su TP et al. (1991) [1658302]
81. Sulsy R et al. (2007) [17502136]
82. Thompson J et al. (1997) [9054409]
83. Turner EM et al. (2012) [22368673]
84. Vicente Rabaneda EF et al. (2013) [23899231]
85. Vilimas T et al. (2007) [17173050]
86. Wang Y et al. (2014) [24835984]
87. Weng AP et al. (2004) [15472075]
88. Westermark P et al. (1981) [7016817]
89. Wilson JJ et al. (2006) [16503045]
90. Yamachida T et al. (2003) [12802337]
91. Young AC et al. (1994) [7922029]
92. Alon A et al. (2017) [28559337]
93. Tanabe H et al. (2015) [25855295]
94. Schmid HR et al. (2016) [27042935]
95. Zwicker BL et al. (2013) [23603607]