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a b s t r a c t

This paper is a contribution to the study of finite, two-sided max-linear systems Ax = Bx
over the max-plus algebra. These systems are known to be equivalent to mean-payoff
games and the problem of deciding whether or not a non-trivial solution exists is in
NP ∩ co − NP . Yet, no polynomial solution method seems to be known to date.

We study two special types of these systemswith squarematricesA and B. The first type,
called minimally active, is defined by the requirement that for every non-trivial solution x,
the maximum on each side of every equation is attained exactly once. For the second type,
called essential systems, we require that every component of any non-trivial solution is
active on at least one side of at least one equation.Minimally active systems are shown to be
a special case of essential systems and it is shown that all essential systems can be reduced
to minimally active ones. Essential systems are equivalently defined as those square finite
systems for which all non-trivial solutions are finite.

We prove that in every solvable two-sided max-linear system of minimally active or
essential type, all positions in C := A ⊕ B active in any optimal permutation for the
assignment problem for C , are also active for some non-trivial solution (any non-trivial
solution in the minimally active case) of the two-sided system. This enables us to deduce
conditions on a solution x for which it is possible in some cases to find x in polynomial time.
It is also proved that any essential system can be transformed to a minimally active system
in polynomial time.
© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We start with two motivational examples. These are variants of a model called multi-processor interactive system.

Example 1. Products P1, . . . , Pm are prepared using n processors, every processor potentially contributing to the completion
of each product. It is assumed that every processor can work for all products simultaneously and that all these actions on
a processor start as soon as the processor starts to work. Let aij be the duration of the work of the jth processor needed to
complete the partial product for Pi (i = 1, . . . ,m; j = 1, . . . , n). Let us denote by xj the starting time of the jth processor
(j = 1, . . . , n). Then all partial products for Pi (i = 1, . . . ,m) will be ready at time

max(x1 + ai1, . . ., xn + ain).

Hence if b1, . . . , bm are given completion times of the products that have to be met exactly then the starting times have to
satisfy the system of equations:

max(x1 + ai1, . . ., xn + ain) = bi, i = 1, . . .,m.
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If we denote a ⊕ b = max(a, b) and a ⊗ b = a + b and the pair of operations (⊕, ⊗) is extended to matrices and vectors in
the same way as in linear algebra, then this can be written as a compact equation:

A ⊗ x = b. (1)

The matrix A =
(
aij
)
is called the production matrix.

Example 2. Now suppose that in addition to the assumptions of Example 1, k other machines prepare independently partial
products for products Q1, . . . ,Qm and the duration and starting times are bij and yj, respectively. Then a synchronisation
problem is to find starting times of all n+ kmachines so that each pair (Pi,Qi) (i = 1, . . . ,m) is completed at the same time.
This task is equivalent to solving the system of equations

max(x1 + ai1, . . ., xn + ain) = max(y1 + bi1, . . ., yk + bik), i = 1, . . .,m. (2)

Again, using max-algebra, we can write this system as a system of max-linear equations:⨁
j=1,...,n

aij ⊗ xj =

⨁
j=1,...,k

bij ⊗ yj, i = 1, . . . ,m. (3)

In the matrix–vector notation it has the form

A ⊗ x = B ⊗ y,

or, more generally (allowing matrix entries to be −∞),

A ⊗ x = B ⊗ x. (4)

Systems (4) have been studied since 1978 [5–7,10] and [8]. It has been proved that the solution set is finitely gener-
ated [10]. These systems have been shown to be equivalent to mean payoff games [2]. A number of solution methods
exist [3,13,15] and [19]. Although none of them are polynomial, this problem is known to be in NP ∩ co − NP and it is
therefore expected that eventually a polynomial solution method will be found.

Note that system (4) can be considered over R ∪ {−∞}. The aim of the present paper is to study special cases of (4) over
finite matrices (that is, matrices over R). (For other work on special cases of systems in max-plus algebra, see [11]). More
precisely:

(a) We prove that if (A, B) is a ‘‘minimally active system’’, then if there is a non-trivial solution, there is a finite solution
x for which the optimal permutations of the assignment problem for C := A ⊕ B identify active elements for x.

(b) We prove that some systems can be converted to minimally active systems. This is true in particular for ‘‘essential
systems’’ — an important special case. We prove that similar results hold for systems that can be converted in this
way.

(c) Parts (a) and (b) may or may not yield a solution to A ⊗ x = B ⊗ x. Generally however, parts (a) and (b) will provide
important information about a solution.

2. Prerequisites

In this section we give the definitions and some basic results which will be used in the formulations and proofs of the
results of this paper. For the proofs and more information about max-algebra, the reader is referred to [1,4,9] and [16].

We assume everywhere thatm, n ≥ 1 are natural numbers and defineM = {1, . . . ,m} and N = {1, . . . , n} . The symbol
R stands for R ∪ {−∞}. We use the convention max∅ = −∞.

If a, b ∈ R then we set

a ⊕ b = max(a, b)

and

a ⊗ b = a + b.

For clarity, we use the notation
⨁

when taking the maximum over a set (max-sum) and the notation
∑

when taking
the conventional linear sum. Throughout the paper we denote −∞ by ε (the neutral element with respect to ⊕) and for
convenience we also denote by the same symbol any vector, whose all components are −∞, or a matrix whose all entries
are −∞. A similar convention is used for 0 vectors or matrices. If a ∈ R, then the symbol a−1 stands for −a. The symbol ak
(k ≥ 1 integer) stands for the iterated product a⊗ a⊗ · · · in which the symbol a appears k times (that is ka in conventional
notation). Bymax-algebra (also called ‘‘tropical linear algebra’’) we understand the analogue of linear algebra developed for
the pair of operations (⊕, ⊗), extended tomatrices and vectors as in conventional linear algebra. That is, if A = (aij), B = (bij)
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and C = (cij) are matrices of compatible sizes with entries from R, we write C = A ⊕ B if cij = aij ⊕ bij for all i ∈ M, j ∈ N
and C = A ⊗ B if

cij =

⨁
k

aik ⊗ bkj = max
k

(aik + bkj)

for all i ∈ M and j ∈ N . If α ∈ R then α⊗A =
(
α ⊗ aij

)
. Although the use of the symbols⊗ and⊕ is common inmax-algebra,

we will apply the usual convention of not writing the symbol ⊗. Thus in what follows the symbol ⊗ will not be used and
unless explicitly stated otherwise, all multiplications indicated are in max-algebra.

It will also be necessary to define the ‘‘minimum’’ operation. If a, b ∈ R, then we set

a⊕′b = min(a, b).

Note it will not be necessary to define min∅.
A vector or matrix is called finite if all its entries are real numbers. A square matrix is called diagonal if all its diagonal

entries are real numbers and off-diagonal entries are ε. More precisely, if x = (x1, . . . , xn)T ∈ Rn then diag (x1, . . . , xn) or
just diag (x) is the n × n diagonal matrix⎛⎜⎜⎝

x1 ε ... ε

ε x2 ... ε
...

...
. . .

...

ε ε ... xn

⎞⎟⎟⎠ .

The matrix diag (0) is called the unit matrix and denoted I. Obviously, AI = IA = A whenever A and I are of compatible
sizes. A matrix obtained from a diagonal matrix [unit matrix] by permuting the rows and/or columns is called a generalised
permutation matrix [permutation matrix]. It is known that in max-algebra generalised permutation matrices are the only
invertible matrices [9,12]. Clearly,

(diag (x1, . . . , xn))−1
= diag

(
x−1
1 , . . . , x−1

n

)
.

We have the following Lemma ([9], Lemma 7.4.1) which will be used in examples throughout this paper.

Lemma 1 (Cancellation Rule). Let v, w, a, b ∈ R, a < b. Then for any real x, we have

v ⊕ ax = w ⊕ bx

if and only if

v = w ⊕ bx.

Let S ⊆ Rn. The set S is called amax − algebraic subspace if

αu ⊕ βv ∈ S

for every u, v ∈ S and α, β ∈ R. The adjective ‘‘max-algebraic’’ will usually be omitted.
Let D =

(
dij
)

∈ Rm×n and x ∈ Rn. Then the set of active entries in D, scaled by x (the set of row maxima of the matrix D,
where column j is scaled by xj), is denoted by

A (Dx) :=

{
(i, j) ∈ M × N : dijxj =

⨁
t∈N

ditxt

}
,

where the A stands for ‘‘active’’. Let i ∈ M and define

AV i (Dx) := {j ∈ N : (i, j) ∈ A (x,D)} ,

where the AV stands for ‘‘active variables’’. Finally, let j ∈ N and define

AE j (Dx) := {i ∈ M : (i, j) ∈ A (x,D)} ,

where the AE stands for ‘‘active equations’’.
Suppose that A =

(
aij
)

∈ Rm×n and B =
(
bij
)

∈ Rm×n are given. The problem of finding a non-trivial solution to the
two-sided max-linear system (A, B) is the task of finding x ∈ Rn

, x ̸= ϵ (a non-trivial solution) such that

Ax = Bx. (5)

In the rest of this paper we will assume that A and B are finite matrices. It is easy to see in this case that a non-trivial
solution exists if and only if a finite solution exists. As such, we restrict our attention to finding finite solutions to (5). We
define

V (A, B) =
{
x ∈ Rn

; Ax = Bx
}
. (6)
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Let i ∈ M, j ∈ N and x ∈ V (A, B). If aijxj =
⨁

t∈Naitxt (bijxj =
⨁

t∈Nbitxt ), then we say that (i, j) is x − active in A (B) and
write (i, j) ∈ A (Ax) ((i, j) ∈ A (Bx)). We see that A (Ax) (A (Bx)) is the set of positions which are x − active in A (B).

Let E =
(
eij
)

∈ Rn×n and denote by Pn the set of permutations on N . The max − algebraic permanent of E is

maper (E)
⨁
σ∈Pn

⨂
i∈N

ei,σ (i) = max
σ∈Pn

∑
i∈N

ei,σ (i).

The set of optimal solutions to the assignment problem (AP) is given by

ap (E) =

{
σ ∈ Pn :

⨂
i∈N

ei,σ (i) = maper (E)

}
.

We will assume everywhere in what follows that m = n and C := A ⊕ B. It is known [9] that ap (C) = ap (C ⊗ diag (v))
for all v ∈ Rn.

Note that

(∀x ∈ V (A, B)) (∀i)
⨁
t∈N

aitxt =

⨁
t∈N

bitxt =

⨁
t∈N

citxt .

Hence, A (Cx) = A (Ax) ∪ A (Bx) and for all i we have AV i (Cx) = AV i (Ax) ∪ AV i (Bx) .
For x ∈ V (A, B) and i ∈ N , there exists j1, j2 such that (i, j1) ∈ A (Ax) and (i, j2) ∈ A (Bx). Note that j1 and j2 are not

necessarily distinct.
Obviously, for all x ∈ V (A, B) and for all i, we have |AV i (Ax)|, |AV i (Bx)| ≥ 1.

Remark 1.

(∀x ∈ V (A, B)) |A (Ax)|, |A (Bx)| ≥ m = n

(m = n since we consider only square systems).

It is easily shown that if V (A, B) ̸= ∅, then there exists x ∈ V (A, B) such that for all j,AE j (Cx) ̸= ∅. As such, we define

Ṽ (A, B) :=
{
x ∈ V (A, B) : (∀j)AE j (Cx) ̸= ∅

}
. (7)

In the rest of this paper, we are interested only in finding solutions x ∈ Ṽ (A, B).

Definition 1. Let x ∈ Ṽ (A, B) and let σ ∈ ap (C), σ is called ‘‘x − optimal’’ if for all i ∈ N, (i, σ (i)) ∈ A (Cx).

Example 3.

A =

(
0 −2

−1 0

)
, B =

(
0 −1

−2 0

)
, C =

(
0 −1

−1 0

)
.

Then σ = (1) (2) ∈ ap (C) is x-optimal for xT = (0, 0) ∈ Ṽ (A, B) since (1, 1) , (2, 2) ∈ A (x, C).

Remark 2. The following is an important lemma, since it says that if there is an optimal permutation corresponding to
a solution, then all optimal permutations correspond to the same solution. It means that there is no need to identify any
optimal permutation as ‘‘preferable’’ in some way — we can be satisfied by finding all active entries of all solutions to the
assignment problem for thematrix C . Note that it is not necessary to explicitly find all optimal permutations, only all entries
in the matrix which correspond to optimal permutations — a subtle and technical distinction but the latter can be done in
polynomial time by, say, the Hungarian algorithm [18].

Lemma 2. If
(
∃x ∈ Ṽ (A, B)

)
(∃σ ∈ ap (C)) σ is x-optimal, then(

∀σ ′
∈ ap (C)

)
σ ′ is x-optimal.

Proof. Let σ ∈ ap (C) be x-optimal, so that (∀i) ci,σ (i)xσ(i) =
⨁

t∈Ncitxt . Now consider σ ′
∈ ap (C) , σ ′

̸= σ .
Define I :=

{
i ∈ N : σ ′ (i) = σ (i)

}
, I := N \ I .

Clearly, (∀i ∈ I)
(
i, σ ′ (i)

)
∈ A (Cx), since

(
i, σ ′ (i)

)
= (i, σ (i)). If for all i ∈ I, ci,σ ′(i)xσ ′(i) = ci,σ (i)xσ(i), then(

∀i ∈ I
) (

i, σ ′ (i)
)

∈ A (Cx). It follows in this case that σ ′ is x-optimal. So suppose there exists s ∈ I such that

cs,σ ′(s)xσ ′(s) ̸= cs,σ (s)xσ(s). (8)

Now note that σ , σ ′
∈ ap (C), which implies σ , σ ′

∈ ap (C ⊗ diag (x)). Therefore∑
i∈N

ci,σ ′(i)xσ ′(i) =

∑
i∈N

ci,σ (i)xσ(i), (9)
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which is equivalent to∑
i∈I

ci,σ ′(i)xσ ′(i) +

∑
i∈I

ci,σ ′(i)xσ ′(i) =

∑
i∈I

ci,σ (i)xσ(i) +

∑
i∈I

ci,σ (i)xσ(i). (10)

Hence∑
i∈I

ci,σ ′(i)xσ ′(i) =

∑
i∈I

ci,σ (i)xσ(i). (11)

It follows from (8) and (11) that
(
∃u ∈ I

)
cu,σ ′(u)xσ ′(u) > cu,σ (u)xσ(u), but this contradicts the assumption that (u, σ (u)) ∈

A (Cx). We conclude that σ ′ is x-optimal. □

3. Minimally active systems

Definition 2. The system (A, B) is called minimally active if(
∀x ∈ Ṽ (A, B)

)
(∀i ∈ N) |AV i (Ax)| = |AV i (Bx)| = 1. Equivalently, we can define minimally active systems as those for

which
(
∀x ∈ Ṽ (A, B)

)
|A (Ax)| = |A (Bx)| = n, (those attaining the lower bound in Remark 1).

Interestingly, we have the following property for minimally active systems.

Lemma 3. Let (A, B) be a minimally active system. Then Ṽ (A, B) = V (A, B).

Proof. We only need to show that for the minimally active system (A, B), we have V (A, B) ⊆ Ṽ (A, B).
Suppose for a contradiction that

(
∃x ∈ V (A, B) \ Ṽ (A, B)

)
. Let j ∈ N such that AE j (Cx) = ∅. We increase xj until xj

becomes active in some equation i (this will happen due to the finiteness of A and B), producing a new solution x′. But since
|AV i (Ax)| = |AV i (Bx)| = 1, it follows that, say, |AV i

(
Ax′
)
| ≥ 2, contradicting the assumption of minimal activity. □

It is known ([9], Lemma 7.1.1) that V is a subspace. Lemma 3 confirms that Ṽ is a subspace also when (A, B) is minimally
active. In fact, for the remainder of the paper,wewill haveV = Ṽ (unless stated otherwise). An interesting property following
from V = Ṽ is that all non-trivial solutions are finite.

We state now the main result of this paper.

Theorem1. Let (A, B) be aminimally active system. ThenV (A, B) ̸= ∅ if and only if (∃x ∈ V (A, B)) (∀σ ∈ ap (C)) σ is x-optimal.

The importance of this Theorem should not be underestimated. Such a result would allow us to deduce important
information about a solution, without any a priori knowledge of what such a solution might be. Further, this information is
obtained by finding all active entries in ap (C), something which is easily done (in polynomial time) with the help of, say,
the Hungarian algorithm [18].

Remark 3. The ‘if’ statement of Theorem 1 is trivial, we need the proof of the ‘only if’ part only. Also, due to Lemma 2, we
only need to show there exists x ∈ V (A, B) such that σ is x-optimal for some σ ∈ ap (C).

Before the proof, we provide examples to show the importance of such a result.

Remark 4. Note that we have not given any way to check that a system is minimally active in general. Example 4, however,
is easily shown to be minimally active (since it is of small dimension). To see this, first apply the Cancellation Rule , yielding
the system{8x2 = 5x1 ⊕ 5x3

7x1 = 4x2 ⊕ 5x3
5x1 = 5x2 ⊕ 3x3.

Equivalently,{x2 = (−3) x1 ⊕ (−3) x3
x1 = (−3) x2 ⊕ (−2) x3
x1 = x2 ⊕ (−2) x3.

Without loss of generality, x1 = 0. We see also that x1 ≥ x2 > (−3) x2. Therefore, x1 = (−2) x3 and so x3 = 2. It follows
that x2 = (−3) ⊕ (−1) = −1. We have then, after scaling, the unique solution is xT = (0, −1, 2). Note that for x as defined
above we have (∀i = 1, 2, 3) |AV i (Ax)| = |AV i (Bx)| = 1.

Example 5 is not minimally active but the application of Theorem 1 still yields a solution — we will see why in Section 4.
(Example 5 is actually an example of an ‘‘essential system’’).



Please cite this article in press as: D. Jones, On two-sided Max-Linear equations, Discrete Applied Mathematics (2018),
https://doi.org/10.1016/j.dam.2018.06.011.

6 D. Jones / Discrete Applied Mathematics ( ) –

Example 4.

A =

⎛⎜⎝ 3 8 2
7 1 4
0 5 3

⎞⎟⎠ , B =

⎛⎜⎝ 5 5 5
3 4 5
5 3 2

⎞⎟⎠ , C =

⎛⎜⎝ 5 8 5
7 4 5
5 5 3

⎞⎟⎠ .

We see that maper (C) = 18 and ap (C) = {(1, 2) (3) , (1, 2, 3)} (active entries of optimal permutations in C are circled
above, along with the corresponding entries in the matrices A and B). So if V (A, B) ̸= ∅, then there exists x ∈ V (A, B) such
that (1, 2) , (2, 1) , (3, 3) , (2, 3) , (3, 1) ∈ A (Cx), in which case we have{8x2 = 5x1 ⊕ 5x3

7x1 = 5x3
5x1 = 3x3

by Theorem 1. Set, without loss of generality, x1 = 0 and deduce x3 = 2 ⇒ x2 = −1, hence xT = (0, −1, 2). Indeed,
xT = (0, −1, 2) is a solution.

Example 5.

A =

(
−4 3 2
5 −1 3
7 3 4

)
, B =

(0 2 2
3 5 7
2 12 3

)
, C =

(0 3 2
5 5 7
7 12 4

)
.

We apply the Hungarian method for finding ap (C), as follows:

C =

(0 3 2
5 5 7
7 12 4

)
→

(
−3 0 −1
−2 −2 0
−5 0 −8

)

→

(
−1 0 −1
0 −2 0

−3 0 −8

)
→

⎛⎜⎝ 0 0 0
0 −3 0
−2 0 −7

⎞⎟⎠ .

We have highlighted the active entries of all optimal permutations. In the original matrices, these correspond to

A =

⎛⎜⎝ −4 3 2
5 −1 3
7 3 4

⎞⎟⎠ , B =

⎛⎜⎜⎝
0 2 2
3 5 7

2 12 3

⎞⎟⎟⎠ , C =

⎛⎜⎜⎝
0 3 2
5 5 7

7 12 4

⎞⎟⎟⎠ .

Now we apply Theorem 1. Note the implied use of the Cancellation Rule. Without loss of generality, x1 = 0. From the first
row, 0 = 2x3 and so x3 = −2. From the third row, 12x2 = 7 ⊕ 4x3 = 7 ⊕ 2 = 7, hence x2 = −5. Finally then, we have
xT = (0, −5, −2) , which we can confirm is a solution.

It is not at all obvious that we will always have enough information about x to find it exactly, as we did in Examples 4
and 5 (since finding ap (C) does not necessarily highlight all elements of A (Cx)). In fact, we have the following Corollary of
Theorem 1.

Corollary 1. Let (A, B) be a minimally active system. If there is a non-trivial solution, then

{(i, σ (i)) : σ ∈ ap (C) , i ∈ N} ⊆ A (Cx)

for some x ∈ V (A, B).

There are some interesting questions arising, some of which we pose in Section 5.3. For now though, we focus on the task
of proving Theorem 1.

Lemma 4. If for some x ∈ V (A, B), there exists a permutation σ ∈ Pn such that for all i ∈ N, (i, σ (i)) ∈ A (Cx), then σ ∈ ap (C).
Further, σ is x-optimal.

Proof. We prove this by showing σ ∈ ap (C ⊗ diag (x)), by contradiction.
Suppose not, then (∃i ∈ N) ci,σ (i)xσ(i) <

⨁
t∈Ncitxt , which contradicts

(i, σ (i)) ∈ A (Cx).
Further, σ is x-optimal by definition. □
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Our task is clear. As a consequence of Lemma 4, it suffices to show that if V (A, B) ̸= ∅, then there exists x ∈ V (A, B) such
that the elements ofA (Cx) admit a permutation σ , in which case σ ∈ ap (C) by Lemma 4. Theorem 1 then follows as a result
of Lemma 2. See also Remark 3.

The problem of finding a permutation is equivalent to the 1-factor problem in bipartite graphs, which in turn is equivalent
to the problem of finding a perfect matching in a corresponding bipartite graph.

For clarity of exposition, we will use different symbols for row/column indices.

Definition 3. Let A, B ∈ Rn×n such that V (A, B) ̸= ∅. Let x ∈ V (A, B) and define the bipartite graph Gx (A, B) (or simply Gx
when it is clear to which system of matrices we are referring) with vertex sets Sx and Tx as follows. Sx = {s1, . . . , sn} , Tx =

{t1, . . . , tn} , (∀si ∈ S)
(
∀tj ∈ T

)
sitj ∈ E (Gx) if and only if (i, j) ∈ A (Cx), (effectively, Sx = Tx = N). We also define a

3 − colouring of the edges of Gx as follows:

c
(
sitj
)

=

{c1, if (i, j) ∈ A (Ax) \ A (Bx)
c2, if (i, j) ∈ A (Bx) \ A (Ax)
c3, if (i, j) ∈ A (Ax) ∩ A (Bx) .

We call c the activity colouring. We denote by c (Gx) the graph Gx edge-coloured by c.

Definition 4.

• For s ∈ Sx, define N (s) := {t ∈ Tx : st ∈ E (Gx)}.
• For s ∈ Sx, for r ∈ {1, 2, 3}, define Ncr (s) := {t ∈ Tx : t ∈ N (s) and c (st) = cr}.
• For S ′

⊆ Sx, define N
(
S ′
)

:= ∪s∈S′N (s).
• Define similarly for T

Remark 5. Wemay refer to vertex sets S (T ) when there is no ambiguity for which vector xwe are considering.
Essentially,

Nc1 (s) = AVs (Ax) \ AVs (Bx)
Nc2 (s) = AVs (Bx) \ AVs (Ax)
Nc3 (s) = AVs (Ax) ∩ AVs (Bx) .

For x ∈ V (A, B), vertex si ∈ Sx corresponds to equation i in the system Ax = Bx and so we may talk about i ∈ Sx without
any confusion. Similarly, tj ∈ Tx corresponds to xj, so we may talk about j ∈ Tx, or even xj ∈ Tx.

From nowwe assume V (A, B) ̸= ∅. Our goal then, is to show there is an x ∈ V (A, B) such that Gx has a perfect matching.
Equivalently, we show there is an x ∈ V (A, B) such that the size of the minimum vertex cover in Gx is n, due to the following
lemma which follows from König–Egervary Theorem [17].

Lemma 5. Let Gx be a bipartite graph with vertex sets S, T such that |S| = |T | = n. For any x, a perfect matching in Gx exists if
and only if the size of a minimum vertex cover is n.

Weare ready now for the proof of themain result, Theorem1.We complete the proof via the following equivalent Lemma.

Lemma 6. If (A, B) is minimally active, then (∃x ∈ V (A, B)) such that the size of the minimum vertex cover in Gx is n.

A summary of the proof is as follows. In part I, we define the bipartite graph Gx for some x ∈ V (A, B) with vertex sets S
and T . We let W be a minimum vertex cover in Gx and define WS := S ∩ W ,WT := T ∩ W and WT := T \ WT . We make
the assumption |WT | > |WS |. In part II, we describe a pairing strategy between elements of WS and WT according to some
rules and eventually reach a contradiction when we run out of elements inWS , concluding that |WT | ≤ |WS |, which implies
|W | = n.

Proof. I
Let (A, B) be minimally active and x ∈ V (A, B). Consider the bipartite graph Gx and its activity colouring c (Gx). Let W

be a minimum vertex cover. Note that Sx is a vertex cover of Gx (since there are active variables for each equation) and so it
follows that |W | ≤ n. If |W | = n, then we are done, so suppose |W | ≤ n − 1.

Also note that
(
∀x′

∈ V (A, B)
)
(∀s ∈ Sx′) 1 ≤ |N (s)| ≤ 2, due to x′

∈ V (A, B) (≥ 1) and the minimal activity property
(≤ 2). Note |N (s)| = 2 corresponds to the case when |Nc1 (s)| = |Nc2 (s)| = 1 and |Nc3 (s)| = 0. Also, |N (s)| = 1 corresponds
to the case when |Nc1 (s)| = |Nc2 (s)| = 0 and |Nc3 (s)| = 1. That is, each s ∈ S is incident with exactly one edge (of colour
c3) or exactly two edges (of colours c1 and c2 respectively).

Define WS := W ∩ S and WS := S \ WS . Similarly, define WT := W ∩ T and WT := T \ WT . If we have |WT | ≤ |WS |, then
it follows that |W | ≥ n, a contradiction. So |WT | > |WS |.

Since (∀s ∈ Sx) |N (s)| ≥ 1 (x ∈ V (A, B)) and (∀t ∈ T ) |N (t)| ≥ 1 (definition of Ṽ (A, B) and V = Ṽ due to (A, B) being
minimally active), it follows that |WS |, |WT | ≥ 1. In fact, from the definition ofW , we have(

∀j ∈ WT
)
(∃s ∈ WS) (s, j) ∈ E (Gx) .
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Every s ∈ WS has a neighbour in WT (else N (s) ⊆ WT and by removing s from W we obtain a smaller vertex cover).
Also, for every t ∈ WT , t has no neighbours in WS (by definition of W ). It follows that N

(
WT
)

⊆ WS . (In fact, it follows that
N
(
WT
)

= WS , though we only need that N
(
WT
)

⊆ WS). Similarly, N
(
WS
)

⊆ WT .
II
Now,we describe a pairing strategy between elements ofWS andWT . If

(
∀s ∈ N

(
WT
))

|Nc1 (s)∩WT | = |Nc2 (s)∩WT | = 1
(recall then that

(
∀s ∈ N

(
WT
))

N (s) ∩ WT = ∅), then we can define the solution x′ by:

x′

k :=

{
αxk, if xk ∈ WT
xk, o.w.,

where

α :=

′⨁
i∈WS

⎧⎨⎩
′⨁

j∈WT

[(⨁
t∈N

citxt

)(
cijxj

)−1

]⎫⎬⎭ .

The vector x′ is a solution to equations corresponding toWS since(
∀j ∈ WT

) (
∀i ∈ WS

)
(i, j) ̸∈ A (Cx). The constant α is defined so that the variables ofWT are increased to exactly the first

point where (u, t) becomes x − active for some u ∈ WS and some t ∈ WT .
It follows that x′

∈ V (A, B) and we then have that
(
∃u ∈ WS

)
at least one of the following holds:

• |AVu
(
Ax′
)
| ≥ 2; or

• |AVu
(
Bx′
)
| ≥ 2.

In any case, we contradict the assumption that (A, B) is minimally active.
It follows then (for the original solution x) there exists s1 ∈ N

(
WT
)

= WS with exactly one neighbour inWT (say t1, with
c (s1t1) = cr1 , r1 ∈ {1, 2, 3}), and at most one neighbour in WT (no such neighbour in the case r1 = 3, exactly one such
neighbour otherwise).

Consider nowWT \ {t1}. Note that

∅ ̸= N
(
WT \ {t1}

)
⊆ WS \ {s1} .

As before, if(
∀s ∈ N

(
WT \ {t1}

))
|Nc1 (s)∩

(
WT \ {t1}

)
| = |Nc2 (s)∩

(
WT \ {t1}

)
| = 1, thenwe candefine a solution x′ which contradicts

the assumption of minimal activity of (A, B).
Again then, we conclude

(
∃s2 ∈ N

(
WT \ {t1}

)
⊆ WS \ {s1}

)
with exactly one neighbour inWT \{t1} (say t2 with c (s2t2) =

cr2 , r2 ∈ {1, 2, 3}), and at most one neighbour in T \
(
WT \ {t1}

)
.

We continue in this way, pairing off elements of WS and WT . Eventually, since |WT | > |WS |, we run out of vertices
in WS . We have defined t1, . . . , t|WS | and s1, . . . , s|WS |. Let T ′

:= WT \
{
t1, . . . , t|WS |

}
̸= ∅. It follows that N

(
T ′
)

⊆

WS \
{
s1, . . . , s|WS |

}
= ∅. This contradicts the assumption that (∀t ∈ T ) |N (t)| ≥ 1.

We conclude that it was our initial assumption, namely that |WT | > |WS |, which was wrong. It follows that for our
original x, the size of the minimum vertex cover in Gx is n. In fact, since x ∈ V (A, B) was arbitrary, the result holds true for
all x ∈ V (A, B). □

We have proved a stronger result than Theorem 1. To be exact, we showed that the conditions of Theorem 1 hold for all
solutions, not just one.

Theorem 2. Let (A, B) be a minimally active system. Then V (A, B) ̸= ∅ if and only if (∀x ∈ V (A, B)) (∀σ ∈ ap (C)) σ is
x-optimal.

We also have a stronger version of Corollary 1.

Corollary 2. Let (A, B) be a minimally active system. If there is a non-trivial solution, then

{(i, σ (i)) : σ ∈ ap (C) , i ∈ N} ⊆ A (x, C)

for all x ∈ V (A, B).

4. Essential systems

In this section we show that we can generalise the results of Section 3 to a wider class of systems, which we call
essential systems.

Definition 5. Let A, B ∈ Rn×n. We say that (A, B) is essential if V (A, B) = Ṽ (A, B) ̸= ∅.
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We use the term essential since it is easily shown that an equivalent definition is that all non-trivial solutions are finite
— all components of the solution vector x are essential. It should be noted that the class of systems for which all non-trivial
solutions are finite is a much wider class of systems than the class of minimally active ones. Also, minimally active systems
are a special case of essential systems, see Lemma 3. We stated at the beginning of the paper that we are only interested in
finite solutions. The remarks made here demonstrate that we are, in fact, interested all non-trivial solutions.

It can be shown that (A, B) in Example 6 is an essential system which is not minimally active. To see that (A, B) is not
minimally active, consider the unique solution xT = (1, 0, 2). To see that the system is essential, note that it is equivalent
to show for j = 1, 2, 3 that there is no non-trivial solution for the system

(
A′, B′

)
, where A′ and B′ are obtained from the

matrices A and B (respectively) by deleting column j.
For the remainder of this section, (A, B) is an essential system. As in Section 3, we will only use the notation V (A, B) (or

simply V where no confusion can arise) but it should be remembered that V = Ṽ .
We generalise the results of Section 3 by showing that essential systems are related to minimally active ones. The

following lemma is key to showing this is true.

Lemma 7. Let A, B ∈ Rn×n such that (A, B) is essential and not minimally active. Let z ∈ V (A, B) and r ∈ N such that, say,
|AVr (Az)| ≥ 2 (the case for |AVr (Bz)| ≥ 2 is similar). Let s ∈ AVr (Az). Then there exists δ∗ > 0 sufficiently small such that for
all 0 < δ ≤ δ∗ the matrices A(δ), B(δ) defined by

a(δ)

ij =

{
arsδ−1, if i = r, j = s
aij, o.w.

B(δ)
= B

satisfy the following:

1. z ∈ V
(
A(δ), B(δ)

)
,

2. AVr
(
A(δ)z

)
= AVr (Az) \ {s},

3. ∅ ̸= V
(
A(δ), B(δ)

)
⊆ V (A, B),

4.
(
∀x ∈ V

(
A(δ), B(δ)

))
(∀i ∈ N)AV i

(
A(δ)x

)
⊆ AV i (Ax) andAV i

(
B(δ)x

)
⊆ AV i (Bx),

5. For all x ∈ V
(
A(δ), B(δ)

)
, (r, s) ̸∈ A

(
A(δ)x

)
,

6.
(
A(δ), B(δ)

)
is essential.

Lemma 7 is basically saying that by reducing the size of an element in the matrix A, say, by a sufficiently small amount,
we obtain a system which is ‘‘closer’’ to a minimally active one while still sharing important properties with the essential
system with which we started.

Before we prove Lemma 7, we have some comments.

Remark 6. For x ∈ V (A, B) , i ∈ N and si ∈ Sx consider the activity colouring c (Gx) . Then for si, at least one of the following
holds:

• si is incident with an edge of colour c3;
• si is incident with an edge of colour c1 and an edge of colour c2.

Note that if si is incident with only one edge, then that edge is coloured c3 (the converse is not true in general).

Definition 6. If for all j1, j2 ∈ T , there is a path from j1 to j2 in Gx, then we say Gx is variable connected.

Remark 7. Since for all s ∈ S, |N (s)| ≥ 1, it follows that Gx is variable connected if and only if Gx is connected. From now,
we say only connected.

Clearly, if x = αx′ for some x, x′
∈ V (A, B) , α ∈ R, then Gx = Gx′ . In the next Lemma we show that the converse is also

true (that this cannot happen otherwise).

Lemma 8. Let A, B ∈ Rn×n. If G is a connected bipartite graph, then for all x, x′
∈ V (A, B) such that Gx = Gx′ = G, there exists

α ∈ R such that x′
= αx. That is, G corresponds to exactly one solution (up to scaling).

Proof. Let x ∈ V (A, B) such that Gx = G. Let t1, t2 ∈ T , t1 ̸= t2 and let P be a path from t1 to t2 in Gx. Using the definition of
E (Gx), we see that xt1x

−1
t2 is a fixed constant. That is

(∀x ∈ V (A, B)) (∀t1, t2) xt1x
−1
t2 = ∆t1,t2 (constant).

Since t1, t2 were arbitrary, the result follows.
Note that it does not matter which path we choose if many are available. If path P1 yields xt1x

−1
t2 = α1, and path P2 yields

xt1x
−1
t2 = α2, α1 ̸= α2, then x ̸∈ V (A, B), a contradiction. □

Definition 7. x ∈ V (A, B) is called a connected solution (or just connected) if Gx is connected.
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Definition 8. Let x ∈ V (A, B). Denote by com (x) the number of components of Gx.

The following Lemma is given without proof but it should be noted that the ideas of the proof are similar to those used
in the proof of Lemma 6.

Lemma 9. Let x ∈ V (A, B) , x not connected and consider a component of Gx with the set of nodes X. Define S ′
:= X ∩ S and

T ′
:= X ∩ T . Then for all s ∈ S ′ we have at least one of the following (by Remark 6):

• |Nc3 (s) ∩ T ′
| ≥ 1,

• |Nc1 (s) ∩ T ′
|, |Nc2 (s) ∩ T ′

| ≥ 1.

Define a new vector x′ using

α :=

′⨁
i̸∈S′

⎧⎨⎩
′⨁

j∈T ′

[(⨁
t∈N

citxt

)(
cijxj

)−1

]⎫⎬⎭ ,

and

x′

k :=

{
αxk, if xk ∈ T ′

xk, if xk ̸∈ T ′.

Then x′
∈ V (A, B) and com

(
x′
)

< com (x).

Let x ∈ V (A, B) , x not connected. By applying Lemma 9 repeatedly, we can transform x to a vector x such that x is
connected and x ∈ V (A, B).

Note x may not be unique (the connected solution x depends on which component we use in Lemma 9). We denote by
connect (x) the set of connected x ∈ V (A, B) that can be obtained from x in this way.

We are now ready for the proof of Lemma 7.

Proof of Lemma 7. We are essentially reducing exactly one element in the system (A, B). Immediately, we can see that for
all δ > 0, z ∈ V

(
A(δ), B(δ)

)
(property 1), which in turn means V

(
A(δ), B(δ)

)
̸= ∅ (first part of property 3). It is also clear for all

δ > 0 that AVr
(
A(δ)z

)
= AVr (Az) \ {s} (property 2).

• We show next that for all δ > 0 sufficiently small, V
(
A(δ), B(δ)

)
⊆ V (A, B) (second part of property 3). First note

that if ars = brs = crs, then this follows immediately. To see this, let δ > 0 and x ∈ V
(
A(δ), B(δ)

)
\ V (A, B). It

follows that arsxs >
⨁

t∈Nbrtxt ≥ brsxs = arsxs, a contradiction. So assume ars ̸= brs. Let us start with a fixed
δ0 > 0. If V

(
A(δ0), B(δ0)

)
⊆ V (A, B), then we are done, so suppose not. Let Γ (δ) be the set of connected solutions

in V
(
A(δ), B(δ)

)
\ V (A, B) for any δ > 0. Since the number of connected bipartite graphs with the set of nodes S and T

is finite and each corresponds to only one solution (up to multiples), it follows that Γ (δ0) is finite (up to multiples).
Now, let w ∈ Γ (δ0). We have (∀i) i ̸= r, aiw = biw, and so arw ̸= brw (where al denotes row l of A and bl denotes
row l of B). Also, since (∀j ̸= s) a(δ0)

rj = arj, it follows that arsws > brw and
⨁

t∈Nartwt = arsws. We then have{
a(δ0)
rs ws ≤ brw ⇔ arsδ−1

0 ws ≤ brw
arsws > brw.

Therefore,
(
∃δ′

0

)
0 < δ′

0 ≤ δ0 such that ars
(
δ′

0

)−1
ws = brw, thus for any δ1, 0 < δ1 < δ′

0, we have

a(δ1)
rs ws > brw

and so w ̸∈ V
(
A(δ1), B(δ1)

)
\ V (A, B). Note then that we also have for all multiples of w, namely αw, α ∈ R, that

αw ̸∈ V
(
A(δ1), B(δ1)

)
\ V (A, B). Let δ1 =

1
2δ

′

0 (for instance). Define δ (w) := δ1, and define δ
(
w′
)
in the same way for

all w′
∈ Γ (δ0). Since Γ (δ0) is finite (up to multiples) and for all w′

∈ Γ (δ0), for all α ∈ R we have δ
(
w′
)

= δ
(
αw′

)
,

we can define

δ∗
:= min

w∈Γ (δ0)
δ (w) > 0.

We see that Γ (δ∗) = ∅. We now show that δ∗ is sufficiently small so that V
(
A(δ∗), B(δ

∗)
)

⊆ V (A, B), as desired. Let

δ∗ be as defined and suppose for a contradiction that there exists w ∈ V
(
A(δ∗), B(δ

∗)
)

\ V (A, B). Consider the graph

Gw

(
A(δ∗), B(δ

∗)
)
. Vector w is not connected because Γ (δ∗) = ∅ and since w ̸∈ V (A, B), we have arsws > brw. Let

X1 be the set of nodes of the component of Gw that contains ws and define S ′
:= X1 ∩ S and T ′

= X1 ∩ T . Note that
N
(
T ′
)

= S ′. Since w is not connected it follows that at least one of the following hold for all i ∈ N
(
T ′
)

= S ′:
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– |Nc1 (i) ∩ T ′
|, |Nc2 (i) ∩ T ′

| ≥ 1,
– |Nc3 (i) ∩ T ′

| ≥ 1.

As such, we may increase wk for all wk ∈ T ′ (similarly as in the proof of Lemma 6) by γ1, say, until there is a
new edge between T ′ and S \ S ′. Call this new solution w′. We have arsw′

s = arswsγ1 > brwγ1 ≥ brw′ and so
w′

∈ V
(
A(δ∗), B(δ

∗)
)

\ V (A, B) also. Repeat the procedure with the component of Gw′ containing w′
s, until we obtain

a connected solution w ∈ V
(
A(δ∗), B(δ

∗)
)

\ V (A, B), contradicting Γ (δ∗) = ∅.
• Note that property 6 follows immediately from property 3.
• Next, we showproperty 4 holds. Let x ∈ V

(
A(δ∗), B(δ

∗)
)

⊆ V (A, B) and let i ∈ N, i ̸= r . ThenAV i

(
A(δ∗)x

)
= AV i (Ax)

andAV i

(
B(δ

∗)x
)

= AV i (Bx), since a
(δ∗)
i = ai and b(

δ∗)
i = bi. Also, since (∀t) artxt ≤ brx and b(

δ∗)
r = br , it follows that

AVr

(
A(δ∗)x

)
⊆ AVr (Ax) and AVr

(
B(δ

∗)x
)

= AVr (Bx).

• Finally, property 5. We show that for all x ∈ V
(
A(δ∗), B(δ

∗)
)
we have s ̸∈ AVr

(
A(δ∗)x

)
. Suppose for a contradiction(

∃x ∈ V
(
A(δ∗), B(δ

∗)
))

s ∈ AVr

(
A(δ∗)x

)
, that is

a(
δ∗)

rs xs = b(
δ∗)

r x ⇔ ars
(
δ∗
)−1xs = brx.

But then arsxs > brx and so x ̸∈ V (A, B), a contradiction since V
(
A(δ∗), B(δ

∗)
)

⊆ V (A, B) (property 3). (The (r, s) entry
has essentially become a ‘‘dead entry’’). □

Remark 8. Property 6 of Lemma 7 should serve to clarify that we are safe to refer only to V in the statement of Lemma 7
and that for both systems in the statement of Lemma 7, we still have V = Ṽ .

The following Theorem is the final step to convert an essential system to a minimally active one.

Theorem 3. Let A, B ∈ Rn×n, (A, B) essential and not minimally active. Then there is a sequence of systems (A, B) ,
(
A(1), B(1)

)
,

. . . ,
(
A(k), B(k)

)
, such that

∅ ̸= V
(
A(k), B(k))

⊆ V
(
A(k−1), B(k−1))

⊆ · · · ⊆ V
(
A(1), B(1))

⊆ V (A, B) ,

and
(
A(k), B(k)

)
is minimally active, for some k ∈ N.

Proof. We construct a sequence of systems by repeated use of Lemma 7. We call this process ‘‘reduction’’. It is not clear
immediately that reduction terminates in finite time but if it does terminate in a finite number of steps with system(
A(k), B(k)

)
, then, since reduction has terminated, we have(

∀x ∈ V
(
A(k), B(k))) (∀i ∈ N) |AV i

(
A(k)x

)
| = |AV i

(
B(k)x

)
| = 1

and so
(
A(k), B(k)

)
is minimally active by definition. Then, from repeated use of Lemma 7, property 3, we have

∅ ̸= V
(
A(k), B(k))

⊆ V
(
A(k−1), B(k−1))

⊆ · · · ⊆ V
(
A(1), B(1))

⊆ V (A, B) .

It remains to show that reduction does indeed terminate in a finite number of steps. In fact, we will show that reduction
terminates in no more than 2n2 iterations.

Suppose not for a contradiction and so we define systems(
A(1), B(1)

)
, . . . ,

(
A
(
2n2

)
, B

(
2n2

))
using Lemma 7. Define

(
A(0), B(0)

)
:= (A, B). Now, (∀r) 1 ≤ r ≤ 2n2, the transition from(

A(r−1), B(r−1)
)
to
(
A(r), B(r)

)
is based on the reduction of exactly one entry of A or B. That is, either aij or bij for some i, j. We

define (i (r) , j (r)) := (i, j).
Consider (i (s) , j (s)), some 1 ≤ s ≤ 2n2

− 1. By Lemma 7, property 5, we have(
∀x ∈ V

(
A(s), B(s)

))
(i (s) , j (s)) ̸∈ A

(
A(s)x

)
. Now, let s + 1 ≤ r ≤ 2n2 and x′

∈ V
(
A(r), B(r)

)
. We claim that (i (s) , j (s)) ̸∈

A
(
x′, A(r)

)
. To see this, note that (by repeated use of Lemma 7, property 4)

AV i(s)
(
A(r)x′

)
⊆ AV i(s)

(
A(r−1)x′

)
⊆ · · · ⊆ AV i(s)

(
A(s)) .

We have essentially shown that once we reduce an element in the matrix A (in the matrix B) in the reduction process,
then that element is now a ‘‘dead element’’ for all subsequent systems in the reduction process. Since there are n2 elements
in matrix A (in matrix B), there are a total of 2n2 elements in total which may be eliminated. (In fact, we can do better than
2n2 but this serves as a sufficient upper bound). This, with the fact that every system in the reduction process has non-empty
solution set (Lemma 7, property 3), leads us to conclude that reduction must terminate in no more than 2n2 iterations. □



Please cite this article in press as: D. Jones, On two-sided Max-Linear equations, Discrete Applied Mathematics (2018),
https://doi.org/10.1016/j.dam.2018.06.011.

12 D. Jones / Discrete Applied Mathematics ( ) –

Remark 9. While the process of reduction is tedious and relies on an a priori knowledge of V (A, B), we will see later (in
the proof of Theorem 4) that it is not necessary to perform this process in practice — only to know that it can be done
theoretically.

We give here an example of the process of reduction for a system of small dimension to help illustrate the process, it may
be skipped.

Example 6. Let A =

(
4 0 3
0 3 0
3 0 0

)
, B =

(
0 5 3
1 0 1
0 4 2

)
and consider the system Ax = Bx.

It is easily checked that the unique solution (after scaling and making the smallest component equal to zero) is xT =

(1, 0, 2) and so V (A, B) =
{
α(1, 0, 2)T : α ∈ R

}
. Note also that x is a connected solution.

Now, AV1 (Ax) = {1, 3} and so we reduce, say, component a13. Reducing a13 by 1 is sufficient since then A′
=(

4 0 2
0 3 0
3 0 0

)
, B′

=

(
0 5 3
1 0 1
0 4 2

)
and we have:

1. x ∈ V
(
A′, B′

)
⇒ V

(
A′, B′

)
̸= ∅,

2. AV1
(
A′x
)

= {1} = {1, 3} \ {3} = AV1 (Ax) \ {3},
3. It is easily checked that xT = (1, 0, 2) is the unique solution for the system A′x = B′x and so indeed we have

V
(
A′, B′

)
= {α (1, 0, 2) : α ∈ R} ⊆ V (A, B),

4. It is clear that (∀u ∈ N)AVu
(
A′x
)

⊆ AVu (Ax) and AVu
(
B′x
)

⊆ AVu (Bx),
5. The entry (1, 3) ̸∈ A

(
A′x
)
,

6.
(
A′, B′

)
is essential.

Now note that AV1
(
B′x
)

= {2, 3} and so we reduce, say, component b12. Reducing b12 by 1 is sufficient, since then

A′′
=

(
4 0 2
0 3 0
3 0 0

)
, B′′

=

(
0 4 3
1 0 1
0 4 2

)
and we have

1. x ∈ V
(
A′′, B′′

)
⇒ V

(
A′′, B′′

)
̸= ∅,

2. AV1
(
B′′x
)

= {3} = {2, 3} \ {2} = AV1
(
B′x
)
\ {2},

3. It is easily checked that xT = (1, 0, 2) is the unique solution for the system A′′x = B′′x and so indeed we have
V
(
A′′, B′′

)
= {α (1, 0, 2) : α ∈ R} ⊆ V

(
A′, B′

)
,

4. It is clear that (∀u ∈ N)AVu
(
A′′x
)

⊆ AVu
(
A′x
)
and AVu

(
B′′x
)

⊆ AVu
(
B′x
)
,

5. The entry (1, 2) ̸∈ A
(
B′′x
)
,

6.
(
A′′, B′′

)
is essential.

Now note that AV3
(
B′′x
)

= {2, 3} and so we reduce, say, component b33. Reducing b33 by 1 is sufficient, since then

A′′′
=

(
4 0 2
0 3 0
3 0 0

)
, B′′′

=

(
0 4 3
1 0 1
0 4 1

)
and we can show properties 1–6 hold. Crucially, we see that

(
A′′′, B′′′

)
is minimally

active.

Now that we have shown that every essential system can be reduced to a minimally active system, we are able to show
that Theorem 1 from Section 3 for minimally active systems, holds also for essential systems. Note that the stronger result,
namely Theorem 2 from Section 3, does not hold).

Theorem4. Let A, B ∈ Rn×n such that (A, B) is an essential system. ThenV (A, B) ̸= ∅ if and only if (∃x ∈ V (A, B)) (∀σ ∈ ap (C))

σ is x-optimal.

Proof. If (A, B) is minimally active then the result follows immediately from Theorem 1. So suppose (A, B) is not minimally
active. We have seen in Lemma 7 and Theorem 3 that there is a sequence of systems

(A, B) ,
(
A(1), B(1)

)
, . . . ,

(
A(k), B(k)

)
, such that

∅ ̸= V
(
A(k), B(k))

⊆ V
(
A(k−1), B(k−1))

⊆ · · · ⊆ V
(
A(1), B(1))

⊆ V (A, B) ,

and
(
A(k), B(k)

)
is minimally active for some k ∈ N. Define C (r) := A(r) ⊕ B(r) for 0 ≤ r ≤ k, where

(
A(0), B(0)

)
:= (A, B). By

Lemma 6, there exists x ∈ V
(
A(k), B(k)

)
such that

(
∀σ ∈ ap

(
C (k)

))
σ is x-optimal for the system

(
A(k), B(k)

)
. That is to say,

there is a perfect matching M in Gx
(
A(k), B(k)

)
. In moving from

(
A(k), B(k)

)
to
(
A(k−1), B(k−1)

)
we are not losing any edges of

Gx
(
A(k), B(k)

)
. That is to say

E
(
Gx
(
A(k), B(k)))

⊆ E
(
Gx
(
A(k−1), B(k−1))) .
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(To see this, recall by construction of
(
A(k), B(k)

)
thatwe reduced exactly one element in the system

(
A(k−1), B(k−1)

)
). It follows

thatM is a perfect matching in Gx
(
A(k−1), B(k−1)

)
also. Continuing, we see thatM is a perfect matching in Gx (A, B), as desired

and the result follows. □

A similar result to Corollary 1 holds for essential systems.

Corollary 3. Let (A, B) be an essential system. If there is a non-trivial solution, then

{(i, σ (i)) : σ ∈ ap (C) , i ∈ N} ⊆ A (Cx)

for some x ∈ V (A, B).

Note the stronger version, namely Corollary 2, does not necessarily hold for essential systems.

5. Next steps and open questions

The ideas in this paper allow us to take square finite systems (A, B) for which all non-trivial solutions are finite (so-called
‘‘essential systems’’) and find for each equation an active entry (in A, without loss of generality, see Example 7) for some
finite solution x. In general, this is not enough to find x. Further, it is not clear how one should even identify a system as
being essential, or even minimally active.

First, we present an example which illustrates that we may assume without loss of generality that maper (A) =

maper (C) = 0 and id ∈ ap (A) ∩ ap (C). This example leads to some preliminary ideas relating to the problem of finding a
solution to the two-sided system in the minimally active case. Next, we present a polynomially verifiable class of essential
systems. Finally, we pose some open questions.

Example 7. Consider the matrices

A =

( 0 −100 −100
−100 0 −100
−100 1 −100

)
, B =

( 0 −100 −100
−100 −100 1

2 −100 −100

)
.

It is easily shown that (A, B) is a minimally active system with unique solution (up to scaling) xT = (0, 1, 0). The solution
to the assignment problem for the matrix C = A ⊕ B is unique and the active entries of the optimal permutation are circled
below.

C =

⎛⎜⎝ 0 −100 −100
−100 0 1

2 1 −100

⎞⎟⎠ .

Applying the same permutation of rows to the matrices A, B and C corresponds to changing the order in which we read
equations in the system (A, B) and so does not change the problemwhilst applying the same permutation of columns to the
matrices corresponds to a re-labelling of the variables and, again, does not change the problem. Here, wemay permute rows
2 and 3, as follows:

A′
=

⎛⎜⎝ 0 −100 −100
−100 1 −100
−100 0 −100

⎞⎟⎠ , B′
=

⎛⎜⎝ 0 −100 −100
2 −100 −100

−100 −100 1

⎞⎟⎠ and

C ′
=

⎛⎜⎝ 0 −100 −100
2 1 −100

−100 0 1

⎞⎟⎠
and clearly now the identity permutation is optimal in C ′. The corresponding entries in the matrices A′ and B′ have been
circled too.

Next, swapping a row in the matrix A with the same row in the matrix B simply corresponds to swapping the left and
right-hand sides of that equation and does not change the problem. Here, we may swap row 3 of the matrices A and B,
yielding

A′′
=

⎛⎜⎝ 0 −100 −100
−100 1 −100
−100 −100 1

⎞⎟⎠ , B′′
=

⎛⎝ 0 −100 −100
2 −100 −100

−100 0 −100

⎞⎠ and
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C ′′
=

⎛⎜⎝ 0 −100 −100
2 1 −100

−100 0 1

⎞⎟⎠ ,

whereupon maper
(
A′′
)

= maper
(
C ′′
)

= 2 and id ∈ ap
(
A′′
)
. Finally, by scaling rows as appropriate, we can make the

permanent equal to zero. In this example, we may scale the second and third rows by −1 to give

A′′′
=

⎛⎜⎝ 0 −100 −100
−101 0 −101
−101 −101 0

⎞⎟⎠ , B′′′
=

⎛⎝ 0 −100 −100
1 −101 −101

−101 −1 −101

⎞⎠ and

C ′′′
=

⎛⎜⎝ 0 −100 −100
1 0 −101

−101 −1 0

⎞⎟⎠ .

Note that the processes used in this example work for all essential systems, not just minimally active ones.

5.1. Next steps for minimally active systems

Let (A, B) beminimally active. Without loss of generality, the diagonal elements of A are equal to zero and active for some
finite solution x (see Example 7). Further, there are no other active entries in A (the minimally active property). It is easy to
show that all cycles in B are non-positive and all zero cycles/loops in B are non-interesting.

We denote by K the set of indices which do not lie on a zero cycle in B. Then for k ∈ K , we have the substitution

xk =

⨁
t∈N,t ̸=k

cktxt .

In fact, we can do better than this, as follows.

Remark 10 (Claim). For k ∈ K , xk =
⨁

t∈N\K cktxt .

Proof. Proof omitted. □

With these substitutions, we can eliminate all variables in K , writing in terms of variables not in K and reduce to a
necessary system of size

(n − |K |) × (n − |K |) (the |K | equations corresponding to the substitutions can be removed and re-introduced later for
backtracking), which is essentially a system of dual inequalities (since for each new equation we can identify also an active
entry in B using the existence of zero cycles/loops). In fact, the set of solutions to the necessary system of dual inequalities is
of the form G⊗u, where G ∈ Rr×r and r is the number of zero cycles in B. By backtracking our substitutions, wemay convert
our original system to an r-dimensional two-sided system, with |K | equations — that is, a TSLS of dimension |K | × r . Whilst
this new system is smaller than the original, it is not necessarily square and it is not clear that it should be essential or even
minimally active.

5.2. A class of essential systems

The theory of ‘‘symmetrised semirings’’ provides a useful tool for identifying some essential systems in polynomial time.
See [4,9,14] for definitions relating to symmetrised semirings and ‘‘balancing’’. Important for us is the fact that we can
check in polynomial time whether or not a square matrix has a ‘‘max-balanced’’ determinant. The adjective ‘‘max’’ is usually
omitted.

We have the following necessary condition for solvability of a system ([9], Corollary 7.5.5).

Lemma 10. Let A, B ∈ Rn×n. A necessary condition that the system Ax = Bx has a non-trivial solution is that C := A ⊕ B has a
balanced determinant.

For all i ∈ M, j ∈ N denote by C [i,j] the square matrix obtained from C by deleting row i and column j.

Lemma 11. Let A, B ∈ Rn×n. If for all j ∈ N, there exists i ∈ M such that C [i,j] does not have balanced determinant, then (A, B) is
an essential system.
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Proof. For a contradiction, suppose (A, B) is not essential. Then there exists some x ∈ Rn and some j ∈ N such that
xj = ϵ, x ̸= ϵ and Ax = Bx. Let A′, B′

∈ Rn×(n−1) be the matrices obtained from A and B respectively by removing column j
and let x′

∈ Rn−1 be the vector obtained from x by removing component j. It follows that A′x′
= B′x′.

By hypothesis, there exists i ∈ M such that C [i,j] has non-balanced determinant. Let A′′, B′′
∈ R(n−1)×(n−1) be the square

matrices obtained from A′ and B′, respectively, by removing row i. It follows that A′′x′
= B′′x′. By Lemma 10, we have that

A′′
⊕ B′′ has balanced determinant but A′′

⊕ B′′
= C [i,j], a contradiction. □

The author is not aware of any polynomial method for checking whether or not a system is essential in general.

Remark 11. The ideas of this paper work also when instead of finite systems (A, B), we instead take A, B over R with the
condition thatmaper (C) is finite.

5.3. Open questions

Here are some open questions, motivated by the results of this paper.

1. Can we identify essential systems in polynomial time? And, if so, can we identify the inessential variable (and so
reduce the dimension of the problem)?

2. If we can identify a system as not essential, then can we identify an inessential variable and remove it?
3. Can we identify minimally active systems in polynomial time?
4. Is it possible for a minimally active system to have more than one solution (up to scaling)?
5. Can the ideas of this paper be adapted for the case of non-square systems?
6. What can we say about two-sided systems for which there is no finite permutation in C?
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