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Summary 32 

The observation that BRCA1- and BRCA2-deficient cells are sensitive to poly(ADP-ribose) 33 

polymerase (PARP) inhibitors spurred their development into cancer therapies that target 34 

homologous recombination (HR) deficiency1. The cytotoxicity of PARP inhibitors depends 35 

on PARP trapping, the formation of non-covalent protein-DNA adducts composed of 36 

inhibited PARP1 bound to DNA lesions of unclear origins1-4. To address the nature of such 37 

lesions and the cellular consequences of PARP trapping, we undertook three CRISPR 38 

screens to identify genes and pathways that mediate cellular resistance to olaparib, a 39 

clinically approved PARP inhibitor1. Here were present a high-confidence set of 73 genes 40 

whose mutation causes increased PARP inhibitor sensitivity. In addition to an expected 41 

enrichment for HR-related genes, we discovered that mutation in all three genes encoding 42 

RNase H2 sensitized cells to PARP inhibition. We establish that the underlying cause of the 43 

PARP inhibitor hypersensitivity of RNase H2-deficient cells is impaired ribonucleotide 44 

excision repair (RER)5. Embedded ribonucleotides, abundant in the genome of RER-45 

deficient cells, are substrates for topoisomerase 1 cleavage, resulting in PARP-trapping 46 

lesions that impede DNA replication and endanger genome integrity. We conclude that 47 

genomic ribonucleotides are a hitherto unappreciated source of PARP-trapping DNA 48 

lesions, and that the frequent deletion of RNASEH2B in metastatic prostate cancer and 49 

chronic lymphocytic leukemia could provide an opportunity to exploit these findings 50 

therapeutically.  51 

 52 

We carried out dropout CRISPR screens with olaparib in three cell lines of diverse origins, 53 

representing both neoplastic and non-transformed cell types (Fig 1a and ED Fig 1a,b). The cell 54 

lines selected were HeLa, derived from a human papilloma virus-induced cervical 55 

adenocarcinoma; RPE1-hTERT, a telomerase-immortalized retinal pigment epithelium cell line; 56 

and SUM149PT, originating from a triple-negative breast cancer with a hemizygous BRCA1 57 

mutation6. SUM149PT cells express a partially defective BRCA1 protein (BRCA1-Δ11q)7 and 58 

thus provided a sensitized background to search for enhancers of PARP inhibition cytotoxicity in 59 
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HR-compromised cells. The screens were performed in technical triplicates, and a normalized 60 

depletion score for each gene was computed using DrugZ8. To identify high-confidence hits, we 61 

used a stringent false discovery rate (FDR) threshold of 1%. To this initial list, we added genes 62 

that were found at an FDR threshold of <10% in at least two cell lines. This analysis identified 63 

64, 61 and 116 genes whose inactivation caused sensitization to olaparib in the HeLa, RPE1-64 

hTERT and SUM149PT cell lines, respectively, giving a total of 155 different genes 65 

(Supplementary Table 1).  66 

Out of this list, 13 genes scored positive in all three cell lines and a further 60 genes were 67 

common to two cell lines, which we combine to define a core set of 73 high-confidence PARP 68 

inhibitor (PARPi)-resistance genes (Fig 1b and Supplementary Table 1). Gene ontology analysis 69 

of the 73- and 155-gene sets (Fig 1c and ED Fig 1c, respectively) shows strong enrichment for 70 

HR-related biological processes, providing unbiased confirmation that the screens identified 71 

bona fide regulators of the response to PARP inhibition. Mapping the 73-gene set on the 72 

HumanMine protein-protein interaction data (Fig 1d) generated a highly connected network 73 

consisting of DNA damage response genes that include many HR regulators (such as BRCA1, 74 

BARD1, BRCA2 and PALB2), components of the Fanconi anemia pathway, as well as the kinases 75 

ATM and ATR. Outside or at the edge of the network, we noted the presence of genes encoding 76 

the MUS81-EME1 nuclease, splicing and general transcription factors (such as SF3B3/5 and 77 

CTDP1) and the three genes coding for the RNase H2 enzyme complex (RNASEH2A, 78 

RNASEH2B and RNASEH2C). RNASEH2A/B/C were hits in all three cell lines, with RNASEH2A 79 

and B being the two highest-scoring genes, as determined by the mean DrugZ value from the 80 

three cell lines (Supplementary Table 1). A similar analysis of the 155-gene set generated an 81 

even denser network, with additional genes lying at the periphery of an HR and Fanconi anemia 82 
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core (ED Fig 1d). 83 

 Next, we generated RNase H2-null HeLa, RPE1, SUM149PT and HCT116 clonal cell 84 

lines using genome editing (denoted as KO; ED Fig 2a-d) and confirmed that RNase H2 85 

deficiency caused hypersensitivity to both olaparib and a second clinical-stage PARPi, 86 

talazoparib, in all cell lines tested (Fig 2a,b and ED Fig 2e-g, with EC50 values reported in ED 87 

Fig. 2h). The RNASEH2A/B-KO cells also exhibited elevated levels of apoptosis after PARP 88 

inhibition (ED Fig 2i-l), a phenotype that was particularly prominent with talazoparib treatment 89 

(ED Fig 2i-l). Given the strength of the PARPi-induced phenotypes in RNase H2-deficient cells, 90 

and since RNase H2 had not been previously linked to the response to PARP inhibition, we 91 

sought to determine the mechanism of PARPi sensitization in RNase H2-deficient cells. 92 

Since HR deficiency causes PARPi sensitivity, we first considered that RNase H2 might 93 

promote HR. Consistent with this possibility, fission yeast cells that combine mutations in RNase 94 

H2 and RNase H1 are HR-defective9. However, in RNase H2-deficient cells, RAD51 readily 95 

formed ionizing radiation-induced foci, suggesting efficient recombinase filament assembly (Fig 96 

2c,d and ED Fig 3a,b). Furthermore, HR efficiency, as assessed by the direct repeat (DR)-GFP 97 

assay10, was at near wild-type levels in cells transduced with RNASEH2A and RNASEH2B 98 

sgRNAs (Fig 2e and ED Fig 3c,d). Thirdly, rather than reduced HR, RNASEH2A-KO cells 99 

displayed higher levels of sister chromatid exchanges, reminiscent of the ‘hyper-rec’ phenotype 100 

observed in RNase H2-deficient yeast11 (Fig 2f). This phenotype was likely due to elevated 101 

levels of replication-dependent DNA damage, as determined by γ-H2AX staining (Fig 2g and 102 

ED Fig 3e-h) and marked poly(ADP-ribosylation) of PARP1 (Fig 2h and ED Fig 3i,j), 103 

supporting previous observations of replication-associated genome instability in yeast and 104 

mammalian cells deficient in RNase H212-14.  105 
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 The increased levels of sister chromatid exchanges prompted us to test if RNase H2-106 

deficient cells required HR for survival. Indeed, we observed synthetic lethality when an sgRNA 107 

against RNASEH2B was delivered into engineered BRCA1-KO and BRCA2-KO cell lines in the 108 

RPE1-hTERT and DLD-1 backgrounds, respectively (Fig 2i and ED Fig 3k-o).  109 

 RNase H2 cleaves single ribonucleotides incorporated into DNA, as well as longer 110 

RNA:DNA hybrids15. To distinguish between these two functions, we carried out cellular 111 

complementation experiments with variants of RNase H2. The sensitivity of RNASEH2A-KO 112 

cells to olaparib was not rescued by either a catalytically-inactive RNase H2 enzyme 113 

(RNASEH2A D34A/D169A), or by a separation-of-function mutant (RNASEH2A 114 

P40D/Y210A16) that retains activity against RNA:DNA hybrids, but not DNA-embedded 115 

monoribonucleotides (Fig 2j and ED Fig 4). These data indicate that it is likely the removal of 116 

genome-embedded ribonucleotides by RER, and not RNA:DNA hybrid cleavage by RNase H2, 117 

which protects cells from PARPi-induced cytotoxicity. 118 

 To determine the genetic basis of the sensitivity of RNASEH2A-KO cells to PARPi, we 119 

carried out CRISPR screens to identify mutations that restored resistance to talazoparib in RNase 120 

H2-deficient HeLa and RPE1-hTERT cell lines (Fig 3a, ED Fig 5a and Supplementary Table 2). 121 

The screens identified a single common gene, PARP1. The genetic dependency on PARP1 for 122 

talazoparib- and olaparib-induced cytotoxicity was confirmed in double RNASEH2A-123 

KO/PARP1-KO cells (Fig 3b and ED Fig 5b-e), providing evidence that the lethality associated 124 

with PARP inhibition requires formation of trapped PARP1-DNA adducts4. Consistent with this 125 

finding, treatment with veliparib, a PARP inhibitor with poor trapping ability4 induced much less 126 

apoptosis than olaparib or talazoparib in RNASEH2A-KO cells (ED Fig 5f).  127 

 Analysis of DNA content by flow cytometry revealed that RNASEH2A-KO cells arrest in 128 
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S phase in a PARP1-dependent manner upon talazoparib treatment (Fig 3c and ED Fig 5g). 129 

RNASEH2A-KO cells also demonstrated elevated levels of talazoparib-induced γ-H2AX and 130 

these levels did not decline upon drug removal (Fig 3c and ED Fig 5h). These observations 131 

suggest that unresolved DNA lesions induced by PARP trapping are the likely cause of cell death 132 

in PARPi-treated RNASEH2A-KO cells.  133 

 Genome instability in RER-deficient yeast cells is dependent on an alternative, 134 

topoisomerase 1 (TOP1)-mediated ribonucleotide excision pathway18-20. In this process, TOP1 135 

enzymatic cleavage 3’ of the embedded ribonucleotide results in DNA lesions predicted to 136 

engage PARP1, including nicks with difficult-to-ligate 2’-3’ cyclic phosphate ends18,19,21 and 137 

covalent TOP1-DNA adducts (TOP1 cleavage complexes22) in conjunction with single-strand 138 

DNA gaps or DSBs23. Given that the mechanisms promoting genome instability in mammalian 139 

RNase H2-deficient cells remain poorly defined, we assessed whether TOP1 action on 140 

misincorporated ribonucleotides contributed to the DNA damage observed in human RER-141 

deficient cells. Short-term TOP1 depletion with short interfering RNAs (siRNAs) reduced the 142 

number of γ-H2AX foci in RNase H2-deficient cells to nearly wild-type levels (Fig. 3d-f and ED 143 

Fig 6a). Furthermore, TOP1-mediated ribonucleotide cleavage contributed to PARPi sensitivity, 144 

as depletion of TOP1 with independent siRNAs in RNASEH2A-KO cells reduced the levels of 145 

talazoparib-induced apoptosis (Fig 3g and ED Fig 6b-e). TOP1 depletion also reduced 146 

talazoparib-induced apoptosis in the RER-deficient RNASEH2A P40D/Y210A cells (ED Fig 6f-147 

h) and ameliorated the talazoparib-induced S-phase arrest (ED Fig 6i). Together, these results 148 

strongly suggest that the processing of genome-embedded ribonucleotides by TOP1 leads to 149 

DNA lesions that engage PARP1, creating a vulnerability to PARP trapping.  150 

 The RNASEH2B gene resides on chromosome 13q14 in proximity to two tumour 151 
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suppressor loci. One of them, the DLEU2-mir-15-16 microRNA cluster, is a target of 13q14 152 

deletions observed in over 50% of chronic lymphocytic leukemia (CLL) cases24. As a result, 153 

collateral homozygous deletion of RNASEH2B can occur in CLL and other hematopoietic 154 

malignancies25. Additionally, in prostate cancer, frequent deletions at 13q14 involving the RB1 155 

but not the BRCA2 locus26 might also result in RNASEH2B loss. Such 13q14 deletions are late 156 

events associated with endocrine therapy resistance, luminal-to-basal phenotype transition and 157 

rapid disease progression27,28. 158 

 We determined RNASEH2B copy number by multiplex ligation-dependent probe 159 

amplification (MLPA) in 100 CLL patients. RNASEH2B deletions were present in 43% of CLL 160 

samples, with biallelic loss detected in 14%. Co-deletion of the DLEU2 microRNA cluster was 161 

confirmed by CGH microarray (Fig 4a and ED Fig 7a,b), establishing that collateral RNASEH2B 162 

loss is frequent in CLL. Furthermore, analysis of whole-exome sequencing of metastatic 163 

castration-resistant prostate cancers29 demonstrated frequent collateral loss of RNASEH2B with 164 

RB1 gene deletion co-occurring in 34% of tumours (2% biallelic loss; ED Fig 7c).  165 

The frequent collateral deletion of RNASEH2B prompted us to test whether RNASEH2B 166 

loss in cancer cells could be an actionable vulnerability to PARP inhibition. To do so, we 167 

performed ex-vivo analysis on primary CLL cells derived from 21 of the 100 patient samples 168 

assayed above. Patient characteristics of selected samples were similar across groups (ED Table 169 

1).  RNase H2 status was confirmed by enzymatic assay of CLL lysates (Fig 4b) and short-term 170 

CLL cultures were established from peripheral blood leukocyte samples by stimulating their 171 

proliferation with IL21 and co-culture with CD40-ligand expressing MEFs (ED Fig 8a,b and 172 

Supplementary Fig. 2). RNASEH2B-deficient cells were found to be significantly more sensitive 173 

to PARPi and especially to talazoparib, with the degree of sensitivity correlating with number of 174 
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RNASEH2B alleles lost (Fig 4c and ED Fig 8c).  175 

We then asked whether RNase H2 deficiency also confers PARPi sensitivity to tumours 176 

in xenograft experiments, utilizing isogenic HCT116 cells with and without RNASEH2A deletion 177 

(ED Fig 2a,g,l). Cells were implanted in the flanks of CD1 nude mice and, following 178 

establishment of tumours, mice were treated with talazoparib given its higher trapping activity. 179 

While talazoparib treatment did not lead to tumor regression, we observed significantly higher 180 

sensitivity to talazoparib in tumours lacking RNase H2 (Fig 4d). Furthermore, a second 181 

xenograft experiment confirmed this sensitivity to be specific to RNase H2 loss as 182 

complementation with an RNASEH2A transgene abrogated PARPi sensitivity (ED Fig 8d). Taken 183 

together, we conclude that collateral loss of RNase H2 enhances the vulnerability of cancer cells 184 

to PARP-trapping drugs. 185 

 Finally, we note that genome-embedded ribonucleotides are by far the most abundant 186 

aberrant nucleotides in the genome of cycling cells13 and may thus represent a major source of 187 

the traps that mediate the cytotoxicity of PARPi alongside base excision repair (BER) 188 

intermediates. In support of this possibility, RNASEH2A-KO cells are more sensitive to PARPi 189 

than isogenic cell lines with homozygous mutations in the catalytic domain of DNA polymerase 190 

β (POLBΔ188-190), a key BER enzyme (ED Fig 9). We therefore propose a model whereby the 191 

RER pathway and TOP1 compete for the processing of genome-embedded ribonucleotides (Fig 192 

4e). Whereas RNase H2 cleavage initiates their problem-free removal, the action of TOP1 on 193 

ribonucleotides create PARP-trapping DNA lesions that impair successful completion of DNA 194 

replication and the resulting burden of genomic lesions ultimately causes cell death. We propose 195 

that the manipulation of genomic ribonucleotide processing could be harnessed for therapeutic 196 

purposes and this strategy may expand the use of PARP inhibitors to some HR-proficient tumors. 197 
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FIGURE LEGENDS 310 
 311 

Figure 1. CRISPR screens identify determinants of PARP inhibitor (PARPi) sensitivity. a, 312 

Schematic of screening pipeline. b, Venn diagram of all high-confidence hits (FDR ≤ 0.01 + 313 

FDR ≤ 0.1 in ≥ 2 cell lines) in individual cell lines. c, Gene ontology (GO) terms significantly (P 314 

< 0.05, binomial test with Bonferroni correction) enriched among hits common to ≥ 2 cell lines. 315 

d, esyN network analysis of interactions between hits common to ≥ 2 cell lines. Node size 316 

represents the mean DrugZ score across cell lines. 31/73 genes are mapped on the network. See 317 

also ED Fig 1.  318 

 319 

Figure 2. Defective ribonucleotide excision repair causes PARPi sensitivity, DNA damage 320 

and synthetic lethality with BRCA1 deficiency. a,b, Reduced survival of HeLa RNASEH2A-321 

KO cells after treatment with indicated PARPi. Mean ±SD, normalized to untreated cells. Solid 322 

lines, nonlinear least-squares fit to a three-parameter dose-response model. c-f, RNASEH2A-KO 323 

cells are HR-proficient. c,d, Normal RAD51 focus formation in RNASEH2A-KO HeLa cells after 324 

X-ray exposure. c, Representative micrographs of HeLa WT and RNASEH2A-KO cells stained 325 

with indicated antibodies (n = 3 biologically independent experiments). Scale bar, 10 μm. d, 326 

Quantification. Percentage of cells with >5 RAD51/γ-H2AX colocalizing foci at indicated time 327 

points. e, HR is not impaired in RNase H2-null cells. Quantification of gene conversion in DR-328 

GFP reporter cells11 transduced with Cas9 + sgRNASEH2A/B  or empty vector (EV) ± I-SceI  329 

transfection. Values normalized to transfection efficiency of control GFP vector. f, Increased 330 

sister chromatid exchanges (SCEs) in RNASEH2A-KO cells. Representative micrographs of 331 

SCEs in WT and RNASEH2A-KO metaphases. Below, numbers of SCEs / chromosome (mean 332 

±SD, n = 3 biologically independent experiments). Scale bars, 10 μm. g,h, Spontaneous 333 
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replication-associated damage and increased PARP1 activation in RNASEH2A-KO cells. g, 334 

Quantification of mean γ-H2AX immunofluorescent foci number / nucleus in EdU positive (+) 335 

and -negative (-) WT and RNASEH2A-KO cells. h, Representative poly(ADP-ribose) (PAR) 336 

immunoblot of PARP1 immunoprecipitates (IP) from whole cell extracts (WCE). Mean fold-337 

increase in PARylation between WT and RNASEH2A-KO indicated (n = 3 biologically 338 

independent experiments, normalized to immunoprecipitated PARP1 levels). Tubulin and IgG 339 

heavy chain, loading controls. i, Synthetic lethality in combined absence of RNase H2 and 340 

BRCA1. Quantification of colony formation of BRCA1-proficient (WT) and BRCA1-KO RPE1-341 

hTERT Cas9 TP53-KO cells transduced with sgLacZ or sgRNASEH2B constructs. Open circles, 342 

individual values normalized to sgLacZ; red lines, mean (n = 3 biologically independent 343 

experiments). g, PARPi sensitivity is associated with ribonuclease excision repair (RER) 344 

deficiency. Survival of olaparib-treated HeLa WT and RNASEH2A-KO cells transduced with 345 

indicated FLAG-tagged constructs. Mean ±SD, normalized to untreated cells (n = 3 biologically 346 

independent experiments). Solid lines, nonlinear least squares fit to a three-parameter dose 347 

response model. For d, e, and g: open circles, individual values; red lines, mean (n = 3 348 

biologically independent experiments; ≥100 (d, g) and ≥1000 (e) cells / sample / experiment 349 

analyzed). P values in d-g and i, unpaired two-tailed t-test. See also ED Fig 2-4. 350  351 

Figure 3. PARPi-induced PARP1 trapping occurs in RER-deficient cells as a result of 352 

TOP1-mediated processing of genomic ribonucleotides. a,b, PARP1 is required for PARPi-353 

induced toxicity in RNASEH2A-KO cells. CRISPR screens for talazoparib sensitivity suppressors 354 

in RNASEH2A-deficient HeLa Cas9 and RPE1 Cas9 TP53-KO cell lines. MAGeCK positive 355 

scores for each gene plotted. Colors indicate gene density in each hexagonal bin. b, Percentage 356 
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of cleaved caspase-3+ cells of indicated genotypes with or without talazoparib treatment 357 

measured by flow cytometry (FACS). Open circles, individual experiments; red lines, mean (n = 358 

3 biologically independent experiments). c. DNA damage persists on withdrawal of PARPi in 359 

RNASEH2A-KO cells. HeLa WT and RNASEH2A-KO cells were treated with talazoparib and 360 

released into fresh medium for the indicated times before being processed for γ-H2AX 361 

immunofluorescence and propidium iodide (PI) staining. Representative (n = 3 biologically 362 

independent experiments) γ-H2AX (pseudocolor plots) and cell cycle (histograms) IF/FACS 363 

profiles shown. d-f, Increased γ-H2AX foci formation in RNASEH2A-KO cells depends on TOP1 364 

(images representative of n = 5 biologically independent experiments). d, HeLa WT and 365 

RNASEH2A-KO cells were transfected with non-targeting (siCTRL) or TOP1-targeting (siTOP1) 366 

siRNAs. Immunoblot of WCEs, probed for TOP1. Actin, loading control. e, Representative 367 

micrographs of HeLa WT and RNASEH2A-KO cells transfected with siCTRL or siTOP1 368 

immunostained for γ-H2AX. Scale bars, 10 µm. f, Quantification of experiments shown in e. 369 

Mean number of foci / nucleus / experiment (open circles) with mean of n = 5 biologically 370 

independent experiments (red lines). ≥100 cells / sample / experiment analyzed. g, TOP1 371 

depletion alleviates PARPi-induced apoptosis in RNASEH2A-KO cells. Quantification of cleaved 372 

caspase-3+ WT and RNASEH2A-KO cells transfected with indicated siRNAs, with or without 373 

talazoparib treatment. Mean ± SD normalized to untreated cells (n = 3 biologically independent 374 

experiments). ≥10,000 cells / sample / experiment. P values in b, f, g, unpaired two-tailed t-test. 375 

See also ED Fig 5 and 6. 376 

 377 

Figure 4. Talazoparib selectively suppresses growth of RNase H2 deficient tumours. a-c, 378 

PARP inhibitors selectively kill RNASEH2B-deficient chronic lymphocytic leukemia (CLL) 379 
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primary cancer cells. a, RNASEH2B deletion frequency in a panel of 100 primary CLL samples, 380 

determined by multiplex ligation-dependent probe amplification (MLPA). b, Reduced RNase H2 381 

activity in lysates from CLL samples with monoallelic and biallelic RNASEH2B deletions. Top, 382 

substrate schematic. Individual data points, mean of technical duplicates for each sample. Red 383 

lines, mean of individual genotypes (n = 8 WT, 4 monoallelic and 9 biallelic deleted biologically 384 

independent primary CLL samples). Data normalized to mean of RNASEH2B-WT samples. c, 385 

Reduced survival of CLL cells with monoallelic and biallelic RNASEH2B loss following 386 

treatment with talazoparib. Individual points, mean ± s.e.m. (n = 8, 4 and 9 CLL samples as in 387 

b), each analysed in technical triplicates. P-values, unpaired two-tailed t-test (b) and two-way 388 

ANOVA (c). d, Selective inhibition of RNASEH2A-KO xenograft tumour growth. HCT116 389 

TP53-KO RNASEH2A-WT or -KO cells were injected subcutaneously into bilateral flanks of CD-390 

1 nude mice. Mice were randomized to either vehicle or talazoparib (0.333 mg/kg) treatment 391 

groups (n = 8 animals / group) and tumour volumes measured twice-weekly. Mean ± s.e.m. P-392 

value, two-way ANOVA. e, Model. Genome-embedded ribonucleotides (R) can be processed by 393 

TOP1 as an alternative to RNase H2-dependent RER. DNA lesions that engage PARP1 (black 394 

circles) are formed as a result, and PARP inhibitors induce PARP1 trapping on these TOP1-395 

dependent lesions, causing replication arrest, persistent DNA damage and cell death. See also 396 

ED Fig 7, 8, ED Table 1 and Supplementary Table 3. 397 

 398 

EXTENDED DATA FIGURE LEGENDS 399 

 400 

ED Figure 1 | Related to Figure 1. a, Cas9 immunoblot of whole cell extracts (WCEs) from 401 

parental HeLa, RPE1-hTERT and SUM149PT cells and clones stably transduced with a 402 
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lentiviral FLAG-Cas9-2A-Blast construct (representative of n ≥ 2 biologically independent 403 

experiments). Tubulin, loading control. b, Validation of CRISPR/Cas9 gene editing efficiency in 404 

Cas9-expressing HeLa, RPE1-hTERT and SUM149PT clones. Cell proliferation was monitored 405 

after transduction with a control sgRNA construct (sgLacZ) or sgRNAs targeting essential genes 406 

PSMD1, PSMB2 and EIF3D30. Solid circles, individual values. Bars, mean ±SD (normalized to 407 

sgLacZ, n = 3 technical replicates), c, Gene ontology (GO) terms significantly (P < 0.05, 408 

binomial test with Bonferroni correction) enriched among hits from olaparib screens common to 409 

at least two cell lines. Enrichment was analyzed using PANTHER. d, esyN network analysis of 410 

interactions between hits common to at least two cell lines. Node size corresponds to mean 411 

DrugZ score across cell lines. 77/155 genes are mapped on the network. 412 

 413 

ED Figure 2 | Related to Figure 2a,b. a, CRISPR-mediated inactivation of RNASEH2A or 414 

RNASEH2B in the cell lines used in this manuscript. WCEs of indicated cell lines and genotypes 415 

were processed for immunoblotting using antibodies against RNASEH2A, RNASEH2B or 416 

RNASEH2C. Vinculin, tubulin and GAPDH, loading controls. Representative immunoblots (of  417 

n ≥ 2 biologically independent experiments). b-d. Abolished RNase H2 enzymatic activity and 418 

increased levels of genome-embedded ribonucleotides in RNASEH2A-KO cells. b. 419 

Representative (n = 3 biologically independent experiments) analysis of total nucleic acids from 420 

WT and RNASEH2A-KO HeLa cells treated with recombinant RNase H2 and separated by 421 

alkaline agarose gel electrophoresis. Ribonucleotide-containing genomic DNA from 422 

RNASEH2A-KO HeLa cells is nicked and therefore has increased electrophoretic mobility13. c, 423 

Densitometric quantification of the alkaline gel shown in b. d, Cleavage of an RNase H2-specific 424 

double-stranded DNA oligonucleotide with a single incorporated ribonucleotide (DRD:DNA; 425 
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ribonucleotide position is shown in red) by WT and RNASEH2A-KO WCEs of the indicated cell 426 

types  was measured using a fluorescence quenching-based assay31. Individual values (open 427 

circles) with mean (red lines, n = 3 biologically independent experiments). e-l, RNase H2 428 

deficiency leads to PARPi sensitivity in multiple cell types. e-h, Clonogenic survival assays of 429 

the indicated cell lines treated with the indicated PARPi. Mean ±SD, normalized to untreated 430 

cells (n = 3 biologically independent experiments). Solid lines, nonlinear least squares fit of the 431 

data to a three-parameter dose response model. h. EC50 values for olaparib (left) and talazoparib 432 

(right) in the indicated cell lines as determined by nonlinear least squares fitting of data in e, f, g 433 

and Fig 2a,b. Bars, EC50 value ± 95% confidence interval. i-l, Increased apoptosis in HeLa 434 

RNASEH2A-KO, SUM149PT Cas9 RNASEH2B-KO and HCT116 RNASEH2A-KO cells 435 

following PARPi treatment. i, Representative (n = 3 biologically independent experiments) 436 

cleaved caspase-3 immunofluorescence / flow cytometry (IF/FACS) profiles of untreated and 437 

talazoparib-treated HeLa WT and RNASEH2A-KO cells. FSC = forward scatter. j-l, Percentages 438 

of cleaved caspase-3-positive (caspase-3+) cells of the indicated genotypes treated with the 439 

indicated PARPi. Individual values (coloured symbols) with mean (solid lines, n = 3 biologically 440 

independent experiments). Inset: Levels of cleaved caspase-3+ cells without PARPi treatment. 441 

Red lines, mean (n = 3 biologically independent experiments). P values, unpaired two-tailed t-442 

test. In a, d, g and l, HCT116 RNASEH2A-KO cells were transduced either with an empty vector 443 

(+EV) or a full-length RNASEH2A expression construct (+WT), where indicated.  444 

 445 

ED Figure 3 | Related to Figure 2. a-d, HR is not affected by inactivation of RNase H2. a, 446 

Representative micrographs (n = 3 biologically independent experiments) of RPE1-hTERT Cas9 447 

TP53-KO (WT) and RNASEH2A-KO cells exposed to 3 Gy of X-rays (IR) and processed for γ-448 
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H2AX and RAD51 immunofluorescence (IF) 4 h later. b. Quantification of the experiment in a 449 

at the indicated time points after IR, plotted as percentage of cells with >5 γ-H2AX and RAD51 450 

colocalizing foci. Individual values (open circles) with mean (red lines, n = 3 biologically 451 

independent experiments). P values, unpaired two-tailed t-test. c, Representative (n = 3 452 

biologically independent experiments) quantitative image-based cytometry (QIBC) plots of DR-453 

GFP experiments in Fig 2e. Each point shows the mean GFP and RNASEH2A IF intensities per 454 

nucleus of mock- or I-SceI-transfected HeLa DR-GFP cells transduced with indicated 455 

Cas9/sgRNA constructs (EV = empty vector). Dashed lines separate RNASEH2A+/- and GFP+/- 456 

cell populations. d, Quantification of RNASEH2A+ cells in DR-GFP experiments shown in c 457 

and Fig 2e as determined by QIBC. Individual values (open circles) with mean (red lines; n = 3 458 

biologically independent experiments). e-h, Replication-dependent endogenous DNA damage in 459 

RNase H2-deficient cells. e, Representative (n = 3 biologically independent experiments) 460 

micrographs for experiments quantified in Fig 2g. γ-H2AX immunofluorescence (IF) in EdU 461 

positive (EdU+) and negative (EdU-) WT and RNASEH2A-KO HeLa cells. Scale bars, 5 µm. f, 462 

Quantification of γ-H2AX foci per nucleus in experiments shown in e and Fig 2g. Dots, foci 463 

number in individual nuclei. Red lines, mean (n = 3 biologically independent experiments). g,h. 464 

HeLa WT and RNASEH2A-KO cells were treated with aphidicolin and EdU as indicated in the 465 

schematic (top), and immunostained with antibodies to γ-H2AX. Mean number of foci per EdU-466 

positive (EdU+) nucleus in each experiment (g, open circles) or the number of foci in individual 467 

EdU+ nuclei (h, dots). Red lines, mean (n = 3 biologically independent experiments, ≥100 cells / 468 

sample / experiment analyzed). P value, unpaired two-tailed t-test. i, j, Increased poly(ADP-469 

ribosylation) of PARP1 in G1 as well as in S/G2/M phases in RNASEH2A-KO cells. i, 470 

Representative (n = 2 biologically independent experiments) FACS plots of HeLa WT and 471 
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RNASEH2A KO cells expressing the FUCCI cell cycle reporters mKO2-Cdt1 and mAG-472 

Geminin32. j, PARP1 immunoprecipitates from WCEs of FUCCI-sorted G1 or S/G2/M HeLa 473 

WT and RNASEH2A-KO cells, probed with the indicated antibodies in immunoblotting 474 

(representative of n = 2 biologically independent experiments). Tubulin, loading control. 475 

Densitometric quantification of PAR signals normalized to immunoprecipitated PARP1 is shown 476 

as fold changes from WT to RNASEH2A-KO cells. k-o, Inactivation of RNase H2 in BRCA1- or 477 

BRCA2-deficient backgrounds results in synthetic lethality. k, BRCA1 and BRCA2 expression, 478 

respectively, in RPE1-hTERT TP53-KO WT and BRCA1-KO (top) or DLD-1 WT and BRCA2-479 

KO (bottom) cells. WCEs were processed for immunoblotting with the indicated antibodies. 480 

Tubulin and KAP1, loading controls. Representative of n ≥ 2 biologically independent 481 

experiments. l, RNase H2 levels in cells used in m, n, o (bottom) and Fig 2i. Cells were 482 

transduced with the indicated sgRNA- (top) or Cas9/sgRNA vectors (bottom; EV = empty 483 

vector) and processed for RNASEH2A IF. Each point represents mean RNASEH2A intensity per 484 

nucleus as measured by QIBC (n = 1 experiment). ≥2000 cells analyzed per sample. Percentages 485 

of RNASEH2A+ cells in individual samples are shown above each plot. m, Representative 486 

images (n = 3 biologically independent experiments) of clonogenic survival assays quantified in 487 

Fig 2i. n, o, Synthetic lethality after inactivation of RNASEH2A or RNASEH2B in BRCA2-488 

deficient cells. Clonogenic survival of DLD-1 WT and BRCA2-KO cells was assessed after 489 

transduction with indicated Cas9/sgRNA vectors. n, Representative images of n = 3 biologically 490 

independent experiments. o, Quantification of the experiment in n. Individual values (open 491 

circles) with mean (red lines; n = 3 biologically independent experiments). P values, unpaired 492 

two-tailed t-test. 493 

 494 
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ED Figure 4 | Related to Figure 2j. RNASEH2A P40D/Y210A is a separation-of-function 495 

mutant that cannot excise single DNA-embedded ribonucleotides, but cleaves RNA:DNA 496 

heteroduplexes (similar to the yeast rnh201-P45D-Y219A mutant16). a, Schematic depicting 497 

enzymatic activity against two different RNase H2 substrates (DRD:DNA, dsDNA with 498 

embedded ribonucleotide, or RNA:DNA hybrids) in cell lines used in b-d and Fig 2j. WT and 499 

RNASEH2A-KO cells were transduced with either an empty vector (EV) or the indicated 500 

RNASEH2A constructs. b, Complementation of HeLa RNASEH2A-KO cells with FLAG-tagged 501 

RNASEH2A variants restores RNase H2 complex protein levels. WCEs from HeLa WT and 502 

RNASEH2A-KO cells stably expressing indicated lentiviral constructs were processed for 503 

immunoblotting with the indicated antibodies. Vinculin, loading control. Asterisk indicates a 504 

non-specific band. Representative of n = 3 biologically independent experiments. c,d, 505 

Complementation of HeLa RNASEH2A-KO cells with WT RNASEH2A, but not with the 506 

D34A/D169A (catalytic-dead) or P40D/Y210A (separation-of-function) mutants, rescues 507 

increased levels of genome-embedded ribonucleotides. c, Total nucleic acids from the cell lines 508 

shown in a, b were treated with recombinant RNase H2 and separated by alkaline agarose gel 509 

electrophoresis (representative of n = 4 experiments). d, Densitometric quantification of alkaline 510 

gel shown in c. e, Purified human RNase H2 complexes consisting of RNASEH2B, RNASEH2C 511 

and either RNASEH2A WT, P40D/Y210A or D34A/D169A subunits separated by SDS-PAGE 512 

and stained with Coomassie Blue (n = 1). f-k, RNase H2 activity assays with fluorescein-labeled 513 

RNA:DNA substrate (f) or double-stranded DNA with a single incorporated ribonucleotide 514 

(DRD:DNA) (g) and increasing amounts of recombinant WT, P40D/Y210A or D34A/D169A 515 

RNase H2. Products were separated by polyacrylamide gel electrophoresis and detected by 516 

fluorescence imaging. Representative of n = 3 biologically independent experiments. h,k, 517 
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Quantification of f, g.  Product signal plotted relative to substrate signal per lane. Mean ±SD (n = 518 

3 biologically independent experiments). 519 

 520 

ED Figure 5 | Related to Fig 3a-c. PARP1 trapping is the underlying cause of PARPi 521 

sensitivity in RNase H2-deficient cells. a, Schematic representation of CRISPR screens for 522 

suppressors of talazoparib sensitivity in RNase H2-deficient cells. Cas9-expressing cells were 523 

transduced with the TKOv1 library, talazoparib was added on day 6 (t6; HeLa: 20 nM, RPE1-524 

hTERT: 50 nM) and cells were cultured in its presence until day 18 (t18). Cells were subcultured 525 

once at day 12 (RPE1) or 13 (HeLa). sgRNA representations in the initial (t6) and final (t18) 526 

populations were quantified by next-generation sequencing. Gene knockouts that were enriched 527 

at t18 over t6 were identified by MAGeCK33. b, CRISPR-mediated inactivation of RNASEH2A 528 

and/or PARP1 in cell lines used in c-e and Fig 3b. WCEs were processed for immunoblotting 529 

with the indicated antibodies. KAP1, loading control.  Representative of n = 2 biologically 530 

independent experiments. c-e, Loss of PARP1 restores PARPi-resistance in RNASEH2A-KO 531 

cells. c, Percentage of cleaved caspase-3+ HeLa cells of indicated genotypes with or without 532 

olaparib treatment measured by flow cytometry (FACS). Individual values (open circles) with 533 

mean (red lines, n = 3 biologically independent experiments; P-value, unpaired two-tailed t-test). 534 

d,e. Clonogenic survival assays with HeLa (d) and RPE1-hTERT (e) cells of the indicated 535 

genotypes treated with olaparib (left) or talazoparib (right). Mean ±SD (n = 3 biologically 536 

independent experiments). Solid lines, nonlinear least squares fit to a three-parameter dose 537 

response model. f. Trapping activity of PARPi correlates with the ability to induce apoptosis in 538 

RNASEH2A-KO cells. Quantification of cleaved caspase-3-positive HeLa WT and RNASEH2B-539 

KO cells without treatment or treated with the indicated PARPi. Individual values with mean 540 
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(black lines, n = 3 biologically independent experiments). Note that PARP-trapping activity 541 

decreases as follows: talazoparib > olaparib > veliparib 4,17. g, PARPi-induced S-phase arrest in 542 

RNASEH2A-KO cells is alleviated in the absence of PARP1. Top, schematic of talazoparib and 543 

EdU treatment. Bottom, representative (n = 3 biologically independent experiments) EdU 544 

(pseudocolor plots) and DNA content (histograms) FACS profiles of untreated and talazoparib-545 

treated HeLa WT, PARP1-KO, RNASEH2A-KO and PARP1-KO/RNASEH2A-KO cells. DNA 546 

content was determined by propidium iodide (PI) staining. h Quantification of mean γ-H2AX 547 

intensities in experiments shown in Fig 3c. Individual values (open circles) with mean (red lines, 548 

n = 3 biologically independent experiments, ≥10,000 cells / sample / experiment analyzed). 549 

 550 

ED Figure 6 | Related to Figure 3d-g. TOP1-mediated cleavage at genome-embedded 551 

ribonucleotides leads to PARPi sensitivity in RER-deficient cells. a, Reduced endogenous 552 

DNA damage in TOP1-depleted RNASEH2A-KO cells. Quantification of γ-H2AX foci per 553 

nucleus in experiments shown in Fig 3e,f. Dots, focus number in individual nuclei. Red lines, 554 

mean (n = 5 biologically independent experiments). b-i, TOP1 depletion alleviates PARPi-555 

induced apoptosis and S-phase arrest in HeLa RNASEH2A-KO cells (b-e) and in RNASEH2A 556 

P40D/Y210A separation-of-function mutant cells (f-h). b, Representative (n = 3 biologically 557 

independent experiments) cleaved caspase-3 FACS plots for experiments quantified in Fig 3g. 558 

FSC, forward scatter. c, HeLa WT and RNASEH2A-KO cells were transfected with non-targeting 559 

(siCTRL-SP) or TOP1-targeting (siTOP1-SP) SMARTpool siRNAs. WCEs analyzed by 560 

immunoblotting with antibodies to TOP1 and actin (loading control). Representative of n = 3 561 

biologically independent experiments. d, Representative (n = 3 biologically independent 562 

experiments) FACS plots of cleaved caspase-3 in siCTRL-SP or siTOP1-SP-transfected WT and 563 
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RNASEH2A-KO HeLa cells after talazoparib treatment. FSC, forward scatter. e, Quantification 564 

of the experiment shown in d. f, HeLa RNASEH2A-KO cells stably expressing the indicated 565 

FLAG-tagged constructs were transfected with non-targeting (siCTRL) or TOP1-targeting 566 

(siTOP1) siRNAs. WCEs were analyzed by immunoblotting with antibodies to TOP1, FLAG 567 

and actin (loading control). Representative of n = 3 biologically independent experiments. g, 568 

Representative (n = 3 biologically independent experiments) FACS plots of cleaved caspase-3 in 569 

siCTRL- or siTOP1-transfected HeLa RNASEH2A-KO cells expressing RNASEH2A-WT or 570 

P40D/Y210A mutant. h, Quantification of the experiment shown in g. Data in e,h, mean ±SD 571 

normalized to untreated cells (n = 3 biologically independent experiments, ≥10,000 cells / 572 

sample / experiment analyzed; P values, unpaired two-tailed t-test). i, Representative (n = 3 573 

biologically independent experiments) cell cycle profiles, prior and post talazoparib treatment, of 574 

HeLa WT and RNASEH2A-KO cells transfected with the indicated siRNAs. DNA content was 575 

assessed by PI staining and FACS. 576 

 577 

ED Table 1 | Related to Figure 4a-c. Clinical and molecular characteristics of primary CLL 578 

samples used in Fig. 4b,c, ED Fig. 7a,b and ED Fig. 8a,b. See table for details. 579 

 580 

ED Figure 7 | Related to Figure 4a-c. Collateral loss of RNASEH2B in CLL and metastatic 581 

castration-resistant prostate cancer (CRPC). a, b, Multiplex ligation-dependent probe 582 

amplification (MLPA) analysis (a) and comparative genomic hybridization (CGH) array profiles 583 

for chromosome 13q (b) of representative CLL samples carrying two wild-type (WT) 584 

RNASEH2B alleles (top), a monoallelic RNASEH2B deletion (middle) or biallelic deletion 585 

(bottom). a, For MLPA analysis, genomic DNA from reference and experimental samples was 586 
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analyzed using probes targeting control loci and individual RNASEH2B exons (Exon 1-11). 587 

MLPA ratio calculated per probe and normalised to control probes and reference samples. Error 588 

bars indicate SD of the mean from 8 control probes for each sample. Dashed lines indicate the 589 

threshold set for diploid copy number. b, For each CGH array profile the y-axes of the top and 590 

bottom plots indicate copy number probe intensity (log R ratio) and the x axes mark the position 591 

on chromosome 13 represented by the ideogram (middle). An enlargement of the frequently 592 

deleted 13q14.2-14.3 region, including the miRNA-15A/16-1 gene cluster and the RNASEH2B 593 

gene, is shown in the bottom plot. n = 1 experiment. c, RNASEH2B is frequently co-deleted with 594 

RB1 in CRPC. Copy number alterations (CNA) in the RB1-RNASEH2B region in CRPC (n = 226 595 

cases) are shown. Horizontal lines represent the CNA profile for individual CRPC samples (dark 596 

blue, homozygous loss; light blue, heterozygous loss; grey, no change; pink, copy number gain 597 

(CNA 3-4); red, copy number amplification (CNA > 4); white, insufficient data to determine 598 

CNA). Samples are clustered based on RNASEH2B gene status. CNA frequencies for 599 

RNASEH2B and the RB1-RNASEH2B region without a copy number breakpoint are shown on 600 

the right. 601 

 602 

ED Figure 8 | Related to Figure 4. a,b, Proliferating cells, and not quiescent cells, are the major 603 

population of viable cells in ex-vivo cultured primary CLL patient samples irrespective of 604 

treatment group. Quantification of absolute (a) and relative (b) quiescent and proliferating cell 605 

numbers as determined by FACS analysis of the primary CLL samples used in Fig 4b,c. 606 

(RNASEH2B WT, n = 8 individual samples; monoallelic deletion, n = 4 individual samples; 607 

biallelic deletion, n = 9 individual samples). Mean ± SD (n = 3 technical replicate). FACS gating 608 

strategy for stimulated peripheral blood lymphocytes (PBLs) from CLL patients is shown in 609 
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Supplementary Fig 2. c, RNase H2-deficient primary CLL cells have reduced survival when 610 

cultured with olaparib. Mean of individual samples ± s.e.m. (n = 3 biologically independent CLL 611 

samples / group, each analyzed in technical triplicates). P-value, two-way ANOVA. d, 612 

Talazoparib selectively inhibits the growth of RNASEH2A-KO xenograft tumours. RNASEH2A-613 

KO cells complemented either with empty vector (EV) or RNASEH2A-WT were injected 614 

subcutaneously into bilateral flanks of CD-1 nude mice. Mice were randomized to either vehicle 615 

or talazoparib (0.333 mg/kg) treatment groups (n = 8 animals / group) and tumour volumes were 616 

measured twice-weekly. Data plotted as mean ± s.e.m. P-values. two-way ANOVA under the 617 

null hypothesis that talazoparib does not supress the tumour growth. 618 

 619 

ED Figure 9. RNase H2-deficient cells are more sensitive to PARPi than DNA polymerase β 620 

mutants. a, Schematic representation of the POLBΔ188-190 CRISPR mutation. The Mg2+-621 

coordinating aspartate residues (D190, D192 and D256, red triangles) are highlighted in the 622 

domain structure of the human Polβ protein. The sgRNA target site and antibody epitope are 623 

indicated by black lines. b, WCEs from parental RPE1-hTERT Cas9 TP53-KO cells and two 624 

POLBΔ188-190 clones were processed for immunoblotting with antibodies to Polβ and tubulin 625 

(loading control). Representative of n = 2 biologically independent experiments. c, The 626 

POLBΔ188-190 mutation impairs base excision repair. RPE1-hTERT Cas9 TP53-KO WT or 627 

POLBΔ188-190 cells were exposed to different concentrations of methyl-methanesulfonate 628 

(MMS) for 24 h, followed by growth in drug-free media for an additional 48 h. Cell viability was 629 

determined by the Cell Titer Glo assay. d, Sensitivity of RPE1-hTERT Cas9 TP53-KO  WT, 630 

RNASEH2A-KO and POLBΔ188-190 cells to indicated talazoparib concentrations in clonogenic 631 

survival assays. Data in c and d represent mean ±SD, normalized to untreated cells (n = 3 632 
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biologically independent experiments). Solid lines denote a nonlinear least-squares fit to a three-633 

parameter dose response model. 634 

 635 

METHODS 636 

Cell culture  637 

HeLa, RPE1-hTERT and 293T cells were purchased from ATCC and grown in Dulbecco’s 638 

Modified Eagle Medium (DMEM; Gibco/Thermo Fisher) supplemented with 10% fetal bovine 639 

serum (FBS; Wisent), 200 mM GlutaMAX, 1x non-essential amino acids (both Gibco/Thermo 640 

Fisher), 100U/ml penicillin and 100μg/ml streptomycin (Pen/Strep; Wisent). HCT116 TP53-KO 641 

cells34, a kind gift from B. Vogelstein (Johns Hopkins University School of Medicine), were 642 

maintained in modified McCoy’s 5A medium (Gibco/Thermo Fisher) supplemented with 10% 643 

FBS and Pen/Strep. SUM149PT cells were purchased from Asterand BioScience and grown in a 644 

DMEM:F12 medium mixture (Gibco/Thermo Fisher) supplemented with 5% FBS, Pen/Strep, 1 645 

μg/ml hydrocortisone and 5 μg/ml insulin (both Sigma). DLD-1 WT and BRCA2-KO cells were 646 

purchased from Horizon and maintained in RPMI media (Gibco/Thermo Fisher) supplemented 647 

with 10% FBS and Pen/Strep. All cell lines were grown at 37˚C and 5% CO2. HeLa, RPE1-648 

hTERT (with the exception of BRCA1-KO and POLBΔ188-190 clones) and HCT116 cells were 649 

grown at atmospheric O2. RPE1-hTERT BRCA1-KO and POLB Δ188-190 clones, as well as 650 

DLD-1 and SUM149PT cell lines were maintained at 3% O2. 651 

 652 

Lentiviral and retroviral transduction 653 

To produce lentivirus, 4.5 x 106 293T cells in a 10-cm dish were transfected with packaging 654 

plasmids (5 μg pVSVg, 3 μg pMDLg/pRRE and 2.5 μg pRSV-Rev) along with 10 μg of transfer 655 
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plasmid using calcium phosphate. Medium was refreshed 12-16 h later. Virus-containing 656 

supernatant was collected ~36-40 h post transfection, cleared through a 0.4 μm filter, 657 

supplemented with 4 μg/ml polybrene (Sigma) and used for infection of target cells. The TKOv1 658 

library virus was prepared as previously described30. The following antibiotics were used for 659 

selection of transductants: puromycin (HeLa, SUM149PT: 2 μg/ml; RPE1-hTERT 15-20 μg/ml; 660 

each for 48-72 h unless indicated otherwise) and blasticidin (5 μg/ml, 4-5 d for all cell lines). 661 

Cells stably expressing FLAG-Cas9-2A-Blast were maintained in the presence of 2 μg/ml 662 

blasticidin. 663 

To complement the HCT116 TP53-KO RNASEH2A-KO cell line, cells were infected with 664 

retroviral supernatant produced in amphotropic Phoenix packaging cells35 using either 665 

pMSCVpuro empty vector (EV) or pMSCVpuro-RNASEH2A-WT in the presence of 4 μg/ml 666 

polybrene (Sigma) and 48 h later selected for stable integration using 2 μg/ml puromycin. 667 

 668 

RNASEH2A expression plasmids 669 

A FLAG-tagged human RNASEH2A cDNA (NM_006397.2; encoding amino acids 2-299) and 670 

the D34A/D169A mutant31 were cloned into the pCW57.1 vector (a gift from David Root; 671 

Addgene #41393) using the Gateway system (Life Technologies/Thermo Fisher) according to 672 

the manufacturer’s protocol. The P40D/Y210A mutations were generated by site-directed 673 

mutagenesis using the following primers (5’-3’): P40D – 674 

GGCCCAGCACGTCGCCCCTGCCCG (Forward - F), 675 

CGGGCAGGGGCGACGTGCTGGGCC (Reverse - R); Y210A – 676 

GTCTTGGGATCATTGGGGGCGCCTGAGCCATAATCAGT (F), 677 

ACTGATTATGGCTCAGGCGCCCCCAATGATCCCAAGA (R). Expression constructs were 678 
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introduced into HeLa RNASEH2A-KO cells by lentiviral transduction and expression was 679 

induced by the addition of 1 μg/ml doxycycline (Clontech) 24 h prior to starting experiments. 680 

The pMSCVpuro-RNASEH2A-WT plasmid was generated by cloning the coding sequence of 681 

human RNASEH2A into pMSCVpuro-Dest, a Gateway-compatible version of pMSCVpuro 682 

(Clontech), and introduced into HCT116 TP53-KO RNASEH2A-KO cells by retroviral 683 

transduction. 684 

 685 

sgRNA target sequences 686 

sgRNAs targeting the following sequences (5’ to 3’) were used to generate CRISPR knockouts. 687 

RNASEH2A: TGCCCGCCTCATCGACGCCC and CCCGTGCTGGGTGCGCCCCT (for Hela 688 

RNASEH2A-KO), GACCCTATTGGAGAGCGAGC (for HeLa Cas9, RPE1-hTERT, HeLa DR-689 

GFP); RNASEH2B: TCCACCACAACTTGATCAAG; PARP1: 690 

TAACGATGTCCACCAGGCCA; BRCA1: AAGGGTAGCTGTTAGAAGGC; POLB: 691 

GAGAACATCCATGTCACCAC; LacZ: CCCGAATCTCTATCGTGCGG; PSMD1-1: 692 

TGTGCGCTACGGAGCTGCAA; PSMD1-2: ACCAGAGCCACAATAAGCCA 693 

PSMB2-1: ATGTTCTTGTCGCCTCCGAC; PSMB2-2: AATATTGTCCAGATGAAGGA; 694 

EIF3D-1: TGTAGGTTGCCTCCATGGCC; EIF3D-2: AGACGACCCTGTCATCCGCA; TP53: 695 

CAGAATGCAAGAAGCCCAGA. 696 

Vectors expressing the Cas9n D10A nickase together with guide RNAs designed against 697 

exon 1 and intron 1 of human RNASEH2A were generated by cloning annealed DNA 698 

oligonucleotides into pSpCas9n(BB)-2A-GFP and pSpCas9n(BB)-2A-Puro vectors (Addgene 699 

plasmid #48140 and #48141, respectively; gifts from Feng Zhang) as previously described36. All 700 

other sgRNA-expressing constructs were generated by cloning annealed DNA oligonucleotides 701 
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into lentiGuide-Puro or lentiCRISPR v2 vectors (Addgene #52963 and 52961, gifts from Feng 702 

Zhang) as previously described37. 703 

 704 

RNA interference 705 

TOP1 was targeted with 40 nM of either a custom siRNA (siTOP1, target site sequence 706 

AAGGACTCCATCAGATACTAT, Sigma) previously described38 or an ON-TARGETplus 707 

SMARTpool siRNA (siTOP1-SP, L-005278-00, Dharmacon/BD Technologies), previously used 708 

to knock down TOP139-41. A custom siRNA targeting Luciferase (siCTRL, 709 

CTTACGCTGAGTACTTCGA, Sigma) or an ON-TARGETplus non-targeting pool (siCTRL-710 

SP, D-001810-10-05, Dharmacon/BD Technologies) were used as controls42. siRNA oligos were 711 

transfected in Opti-MEM reduced serum medium using Oligofectamine (Life 712 

Technologies/Thermo Fisher). To improve knockdown efficiency for the ON-TARGETplus 713 

siRNA, a second round of transfection was conducted after 24 h. Following siRNA transfection, 714 

cells were seeded either for cell cycle analysis (24 h post last transfection) or for 715 

immunofluorescence analysis (48 h post transfection) as described below. Knockdown was 716 

optimised to minimize cell death, while maintaining efficient TOP1 depletion (apoptosis levels ≤ 717 

14% of control transfected cells). 718 

 719 

DNA damaging drugs 720 

PARP inhibitors olaparib, talazoparib and veliparib were purchased from Selleck Chemicals. 721 

Talazoparib for the xenograft experiments was a kind gift of T. Heffernan and N. Feng (The 722 

University of Texas MD Anderson Cancer Center). Methyl methanesulfonate (MMS) and 723 
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aphidicolin were obtained from Sigma. Concentrations and durations of treatment are indicated 724 

in the sections below and in the respective figures. 725 

 726 

Generation of Cas9-expressing cells 727 

Cells were transduced with the Lenti-FLAG-Cas9-2A-Blast vector30 and transductants were 728 

selected with blasticidin. Cells were then seeded at low densities (500-1,000 cells, depending on 729 

cell line) on 15-cm dishes and single colonies were isolated using glass cylinders. Cas9 730 

expression was confirmed by immunoblotting and gene editing efficiency was tested as follows: 731 

 Cells were transduced at a low (~0.3) multiplicity of infection (MOI) with either a control 732 

LacZ sgRNA construct or sgRNA constructs targeting essential genes PSMD1, PSMB2 and 733 

EIF3D30 followed by puromycin selection. 2.5 x 104 cells were subsequently seeded in 6-well 734 

plates, medium was exchanged 3 days later and the experiment was terminated at day 6. Cells 735 

were trypsinized, resuspended in media and the live cell count was determined by trypan blue 736 

exclusion on a ViCELL instrument (Beckman Coulter). Cell numbers were plotted relative to 737 

sgLacZ-transduced samples. 738 

 739 

Generation of CRISPR knockout cell lines 740 

To establish HeLa and HCT116 TP53-KO RNASEH2A-KO cell lines, 0.5 x 106  cells were 741 

seeded in 6-well plates and transfected with two vectors encoding both Cas9n and sgRNAs 742 

targeting RNASEH2A (derivatives of pSpCas9n(BB)-2A-GFP and pSpCas9n(BB)-2A-Puro) 743 

using Lipofectamine 2000 (Life Technologies/Thermo Fisher). 48 h after transfection, single 744 

GFP-positive cells were sorted into 96-well plates on a BD FACSJazz instrument (BD 745 

Biosciences) and grown until colonies formed. RNASEH2A-KO clones were selected on the basis 746 
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of the size of PCR amplicons from the targeted region to detect clones that underwent editing, 747 

which was subsequently confirmed by Sanger sequencing. Oligonucleotides (5’ to 3’) used for 748 

PCR amplification and sequencing of targeted RNASEH2A loci were as follows: 749 

ACCCGCTCCTGCAGTATTAG and TCCCTTGGTGCAGTGCAATC. The absence of 750 

functional RNASEH2A was confirmed by immunoblotting, an RNase H2 activity assay and 751 

alkaline gel electrophoresis as described below. Functionally wild-type RNASEH2A clones were 752 

identified in parallel and used as controls.  753 

To generate the remaining CRISPR-edited HeLa and RPE1-hTERT cell lines, cells were 754 

electroporated with 5 μg of vectors encoding either the sgRNA (lentiGuide-Puro, for cells stably 755 

expressing Cas9) or encoding both the sgRNA and Cas9 (lentiCRISPR v2) using an Amaxa 756 

Nucleofector II instrument (Lonza). 0.7 x 106 RPE1-hTERT cells in a buffer containing 100 mM 757 

Na2HPO4 (pH 7.75), 10 mM KCl and 11 mM MgCl2 were electroporated using program T-23. 758 

For HeLa cells, the Amaxa Cell Line Nucleofector Kit R (Lonza) was used with program I-13 759 

according to the manufacturer’s instructions. Cells were re-plated into antibiotic-free McCoy’s 760 

5A media supplemented with 10% FBS and allowed to recover for 24 h. Puromycin was 761 

subsequently added to growth media to enrich for transfectants and removed 24 h later. Cells 762 

were then cultured for additional 3-5 days to provide time for gene editing and eventually seeded 763 

at low densities (400-1,000 cells, depending on cell line) on 15-cm dishes. Single colonies were 764 

isolated using glass cylinders two to three weeks later. SUM149PT Cas9 RNASEH2B-KO cells 765 

were generated by transient transfection of parental SUM149PT Cas9 cells with a lentiGuide-766 

puro-sgRNASEH2B construct using Lipofectamine 2000 (Thermo Fisher) as per the 767 

manufacturers protocol (2 μg plasmid DNA and 2 μl of Lipofectamine 2000 was used for 1x 105 768 
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cells in a 6-well plate). Transfected cells were selected with puromycin for 24 h, grown for 769 

additional 4 days and single clones were isolated as above. 770 

Targeted clones were identified by immunofluorescence and/or immunoblotting and 771 

successful gene editing was confirmed by PCR and TIDE analysis (https://tide-772 

calculator.nki.nl)43. The following PCR primers (5’ to 3’) were used for amplification of targeted 773 

loci in RNASEH2A: AGATCTGGAGGCGCTGAAAGTGG (F), 774 

AGTGGCTGTATCATGTGACAGGG (R); RNASEH2B: TAGATGGTGTGCTGTGTGG (F), 775 

TGCTCAGCTTGTCATTGACC (R); BRCA1: TCTCAAAGTATTTCATTTTCTTGGTGCC 776 

(F), TGAGCAAGGATCATAAAATGTTGG (R); PARP1: AAGCAAACAGGACTGCCAGC 777 

(F), TACGCCACTGCACTCCAGC (R); POLB: TTACTGTTGTCATCACAGATTCTGC (F), 778 

AGCAACTCATGGAAGAATAATAGG (R); TP53: GCATTGAAGTCTCATGGAAGC (F); 779 

TCACTGCCATGGAGGAGC (R). 780 

 781 

Generation of HeLa FUCCI WT and RNASEH2A KO cells 782 

To establish HeLa WT and RNASEH2A-KO cells expressing the FUCCI cell cycle reporters 783 

mKO2-Cdt1 and mAG-Geminin.32 HeLa WT and RNASEH2A-KO cells were transduced at a low 784 

MOI with pLenti6-mKO2-Cdt1 and pLenti6-mAG-Geminin vectors and transductants were 785 

selected with 2 μg/ml blasticidin. Subsequently, cells positive for both mKO2-Cdt1 and mAG-786 

Geminin fluorescence were collected by sorting on a BD Biosciences FACS Aria II instrument, 787 

expanded and used for further experiments. Expression of mKO2-Cdt1 and mAG-Geminin was 788 

confirmed by immunofluorescence and FACS analysis.  789 

 790 

CRISPR/Cas9 screening 791 
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CRISPR screens were performed as described30. Cas9-expressing cells were transduced with the 792 

lentiviral TKOv1 library at a low MOI (~0.2-0.3) and puromycin-containing media was added 793 

the next day to select for transductants. Selection was continued until 72 h post transduction, 794 

which was considered the initial time point, t0. At this point the transduced cells were split into 795 

technical triplicates. During negative-selection screens (for PARPi sensitizers), cells were 796 

subcultured at day 3 (t3) and at day 6 (t6) each of the three replicates was divided into two 797 

populations. One was left untreated and an to the other an LD20 dose of olaparib (HeLa: 2 μM, 798 

RPE1-hTERT: 0.5 μM, SUM149PT: 0.2 μM) was added. Cells were grown with or without 799 

olaparib until t15 and subcultured every three days. Sample cell pellets were frozen at each time 800 

point for genomic DNA (gDNA) isolation. A library coverage of ≥200 cells/sgRNA was 801 

maintained at every step. Positive-selection screens (for suppressors of sensitivity) were carried 802 

out in a similar way, but the untreated control was left out, an LD80 dose of talazoparib was used 803 

(20 and 50 nM for HeLa and RPE1-hTERT, respectively), cells were subcultured only once after 804 

drug addition (t12 – t13) and screens were terminated at t18. Library coverage was ≥100 cells / 805 

sgRNA. 806 

 gDNA from cell pellets was isolated using the QIAamp Blood Maxi Kit (Qiagen) and 807 

genome-integrated sgRNA sequences were amplified by PCR using the KAPA HiFi HotStart 808 

ReadyMix (Kapa Biosystems). i5 and i7 multiplexing barcodes were added in a second round of 809 

PCR and final gel-purified products were sequenced on Illumina HiSeq2500 or NextSeq500 810 

systems to determine sgRNA representation in each sample. DrugZ (see Related Manuscript 811 

File) was used to identify gene knockouts, which were depleted from olaparib-treated t15 812 

populations but not depleted from untreated cells. Gene knockouts enriched at t18 as compared 813 

to t6 in positive-selection screens were identified using MAGeCK33. 814 
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 815 

Gene ontology and interaction network analyses 816 

PANTHER (http://pantherdb.org)44 was used to identify gene ontology (GO) biological 817 

processes enriched in datasets of screen hits as compared to genome-wide representation. Hits 818 

[false discovery rate (FDR) ≤ 0.01 in at least one cell line + FDR ≤ 0.1 in at least 2 cell lines] 819 

from individual cell lines or hits common to at least two cell lines were analyzed with the 820 

“statistical overrepresentation test” (GO ontology database released 2017-02-28; annotation data 821 

set ‘GO biological process complete’) with Bonferonni correction for multiple testing.  Mapping 822 

of the hits on the HumanMine protein interaction network was done through the esyN interface 823 

(http://www.esyn.org/). The network was then exported and visualized in Cytoscape version 824 

3.4.0 (http://www.cytoscape.org/) and the node sizes adjusted to be proportional to the averaged 825 

DrugZ score over the three cell lines. 826 

 827 

Clonogenic survival assays 828 

To determine PARPi sensitivity cells were seeded on 10-cm dishes (500-3,000 cells/plate, 829 

depending on cell line and genotype) into drug-free media or media containing a range of PARPi 830 

concentrations. Cells were either treated either for 2 days with talazoparib followed by additional 831 

9-12 days of growth in drug-free media (HeLa, SUM149PT), treated for 7 days with talazoparib 832 

followed by 5-6 days in drug-free media (RPE1-hTERT, HCT116), or treated continuously for 833 

12-13 days with olaparib. The cultures were incubated at 3% O2, with the exception of the 834 

experiment in Fig 3g, which was carried out at atmospheric O2. Medium (with or without 835 

PARPi) was refreshed every 4-7 days in all cases. At the end of the experiment medium was 836 

removed, cells were rinsed with PBS and stained with 0.4% (w/v) crystal violet in 20% (v/v) 837 
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methanol for 30 mins. The stain was aspirated and plates were rinsed 2x in ddH2O and air-dried. 838 

Colonies were manually counted and data were plotted as surviving fractions relative to 839 

untreated cells. To calculate EC50 values the data were fit to a three-parameter dose response 840 

model [‘log(inhibitor) vs. normalized response’] using the non-linear regression function in 841 

Graphpad PRISM v6.0. 842 

 To analyze the synthetic lethality of combined BRCA1 and RNASEH2B knockouts, 843 

RPE1-hTERT Cas9 TP53-KO WT and BRCA1-KO cells were transduced at a high (>1.0) MOI 844 

with lentiGuide sgRNA constructs targeting either RNASEH2B or LacZ (control) and seeded for 845 

clonal growth 48 h later. WT and BRCA1-KO colonies were grown at 3% O2 for 12 and 20 days 846 

(due to slower growth of BRCA1-deficient cells), respectively. Synthetic lethality between 847 

RNase H2 and BRCA2 was assessed by transducing DLD-1 WT and BRCA2-KO cells with 848 

either an empty lentiCRISPR v2 vector or lentiCRISPR v2 constructs carrying sgRNASEH2A or 849 

sgRNASEH2B. Cells were selected with puromycin and seeded for clonogenic assays 7 days post 850 

infection. Clones were grown at 3% O2 for 11 (WT) or 14 days (BRCA2-KO). 851 

 852 

Immunofluorescence microscopy 853 

To analyze γ-H2AX focus formation, cells were grown on coverslips for 24 h, incubated in 854 

media containing 10 µM EdU for 20 min to label cells undergoing DNA replication, then pre-855 

extracted for 5 min on ice with ice-cold buffer (25 mM HEPES, pH 7.4, 50 mM NaCl, 1 mM 856 

EDTA, 3 mM MgCl2, 300 mM sucrose and 0.5% Triton X-100) and fixed with 4% 857 

paraformaldehyde (PFA) for 15 min at room temperature (RT). After fixation, cells were washed 858 

with PBS and blocked in 3% fetal cals serum (FCS) in PBS for 30 min at RT. EdU 859 

immunolabeling was performed using the Click-iT EdU Imaging Kit (Invitrogen, C10337). 860 
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Afterwards cells were incubated with a primary mouse antibody against γ-H2AX (Millipore 05-861 

636; 1:800) for 1.5 h at RT and then stained with anti-mouse secondary antibodies conjugated to 862 

Alexa Fluor-568 (Life Technologies) for 1 h at RT. Coverslips were mounted using Vectashield 863 

antifade mounting medium with 4,6-diamidino-2-phenylindole (DAPI; Vector Laboratories). For 864 

quantification of γ-H2AX foci images were visualized on a Zeiss Axioplan 2 microscope with a 865 

40× Plan-neofluar objective, captured using Micro-Manager (http://open-imaging.com/) and 866 

analyzed using an ImageJ-based script as previously described45. Nuclei were defined on the 867 

basis of DAPI staining, and γ-H2AX foci were detected using the "Find maxima" function of 868 

ImageJ within each nuclear region. Exposure time, binning, microscope settings, light source 869 

intensity and the noise level in the “Find maxima” function were kept constant for all the 870 

samples within each individual experiment. More than 100 cells were analyzed per condition in 871 

each experiment. 872 

 For combined γ-H2AX / RAD51 immunofluorescence, 0.25x 106 cells were seeded on 873 

coverslips and ~24 h later were subjected to 3 Gy X-irradiation. 2, 4 or 6 h post irradiation cells 874 

were incubated with nuclear extraction buffer (20 mM HEPES pH 7.4, 20 mM NaCl, 5 mM 875 

MgCl2, 0.5% NP-40, 1 mM DTT and protease inhibitors) for 10 min on ice, rinsed with ice-cold 876 

PBS and subsequently fixed with 4% PFA for 10 min at RT. Cells were blocked in IF blocking 877 

buffer (10% goat serum, 0.5% NP-40, 0.5% saponin in PBS) for 30 min and incubated with 878 

primary antibodies diluted in blocking buffer (Santa-Cruz Biotechnologies rabbit anti-RAD51 / 879 

Millipore mouse anti-γ-H2AX; 1:150 and 1:2,000, respectively) for 2 h at RT. Cells were then 880 

washed with PBS (3x 5 min) and stained with fluorescent secondary antibodies (Alexa Fluor 881 

488-conjugated goat anti-rabbit IgG and Alexa Fluor 555-conjugated goat anti-mouse IgG, Life 882 

Technologies/Thermo Fisher; 1:1,000 in blocking buffer) and 0.5 μg/ml DAPI for 1 h at RT. 883 
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Cells were washed as above, mounted in ProLong Gold mounting media (Life 884 

Technologies/Thermo Fisher) and imaged used a Zeiss LSM780 laser-scanning microscope. 885 

Cells with more than 5 colocalizing γ-H2AX and RAD51 foci were quantified by manual 886 

counting. At least 100 cells per condition were analyzed in each experiment. 887 

 888 

Immunofluorescence/flow cytometry (IF/FACS) 889 

For detection of apoptotic cells by cleaved caspase-3 IF/FACS, 0.5 x 106 cells were plated on 6-890 

cm dishes and either left untreated or treated with PARPi for 48 h (PARPi doses are indicated in 891 

respective figures). For analysis of apoptotic cells following TOP1 depletion, 0.25 x 106 cells 892 

were plated on 6-cm dishes, transfected with siCTRL or siTOP1 the next day and 24 h post-893 

transfection were either left untreated or treated with PARPi for 48 h. Medium was removed and 894 

stored in a conical tube, cells were harvested by trypsinization, resuspended in the original 895 

conditioned media and centrifuged at 1,500RPM for 5 min at 4˚C. Pellets were washed in PBS 896 

and fixed in 1 ml 4% PFA for 10 min at RT. Cells were pelleted as above, resuspended in 100 μl 897 

PBS and chilled on ice. 900 μl of -20˚C methanol was then added drop-wise while gently 898 

vortexing. Fixed cells were stored at -20˚C overnight or longer. 899 

 Before staining, cells were spun down as above, washed in PBS and blocked in IF 900 

blocking buffer (see ‘Immunofluorescence’ above). Cells were then centrifuged and resuspended 901 

in 200 μl of diluted rabbit anti-cleaved caspase-3 antibody (Cell Signaling #9661; 1:800 in IF 902 

blocking buffer). After 2 h incubation the antibody was diluted with 2 ml PBS, cells were spun 903 

down, and incubated for 1 h in 200 μl Alexa Fluor 488-conjugated goat anti-rabbit secondary 904 

antibody (Molecular Probes/Thermo Fisher, 1:1,000 in IF blocking buffer). The antibody was 905 

diluted with 2 ml PBS, cells were centrifuged, resuspended in 1 ml PBS and cleaved caspase-3 906 
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signal was analyzed on a BD FACSCalibur or BD LSRFortessa X-20 instruments. Data were 907 

analyzed using FlowJo software (Tree Star). See Supplementary Figure 2 for examples of gating 908 

strategies. 909 

For analysis of recovery from talazoparib-induced replication blockage, cells were treated 910 

with 1 μM talazoparib for 24 h, washed extensively with PBS and grown in drug-free media for 911 

additional 10, 24 or 34 h. Cells were then harvested, fixed, stained as described above using an 912 

anti-γH2AX primary antibody (JBW301, Millipore #05-636, 1:1,000 in blocking buffer) and 913 

finally DNA was labeled with propidium iodide (see below). 914 

 915 

Cell cycle analysis by FACS 916 

0.5 x 106 cells were seeded on 6-cm dishes into media with or without PARPi (doses and 917 

durations are indicated in respective figures). Cells were then harvested by trypsinization, 918 

resuspended in media and centrifuged (1,000 RPM, 5 min, 4˚C). Pellets were resuspended in 919 

PBS, centrifuged again and resuspended in 1 ml propidium iodide (PI) staining buffer (20 μg/ml 920 

PI, 0.02% Triton X-100, 0.2 mg/ml RNase A in PBS). Cells were stained for 15 min at 37˚C and 921 

analyzed on a BD FACSCalibur or BD LSR Fortessa X-20 instruments. 922 

For combined PI/EdU staining, cells were treated and harvested as above and fixed in 923 

70% ethanol (added dropwise while gently vortexing) overnight at -20˚C. Cells were then 924 

centrifuged as above, washed in PBS and incubated with 10μM Alexa Fluor 488 azide 925 

(Molecular Probes/Thermo Fisher) in a buffer containing 100 mM Tris-HCl pH 8.5, 1 mM 926 

CuSO4 and 100 mM ascorbic acid for 30 min before centrifugation, washing in PBS and PI 927 

staining. See Supplementary Figure 2 for examples of gating strategies. 928 

 929 
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Sister chromatid exchange assay 930 

0.5 x 106 HeLa cells were seeded in 10-cm dishes and BrdU (final concentration 10 μM) was 931 

added the next day. BrdU containing-medium was refreshed 24 h later and cells were grown for 932 

another 22 h (46 h BrdU incubation in total). 100 ng/ml KaryoMAX colcemid (Gibco/Thermo 933 

Fisher) was added for the final 2 h and cells were harvested as follows: 934 

 Growth medium was removed and stored in a conical tube. Cells were gently washed 935 

with 1 ml of trypsin (the trypsin wash was combined with the original media), trypsinized, 936 

resuspended in the original conditioned media (+trypsin wash) and centrifuged (1000 RPM, 5 937 

min, 4˚C). Cells were then washed with PBS, spun down, resuspended in pre-warmed 75 mM 938 

KCl and incubated for 30 min at 37˚C. Cells were centrifuged again, the supernatant was 939 

removed and cells were fixed by drop-wise addition of 1 ml fixative (ice-cold methanol : acetic 940 

acid, 3:1) while gently vortexing. An additional 10 ml of fixative was then added and cells were 941 

fixed at 4˚C for at least 16 h. Once fixed, metaphases were dropped on glass slides, rinsed with 942 

fixative and air-dried overnight (protected from light). 943 

 To visualize sister chromatid exchanges (SCE) slides were rehydrated in PBS for 5 min 944 

and stained with 2 μg/ml Hoechst 33342 (Molecular Probes/Thermo Fisher) in 2xSSC (final 300 945 

mM NaCl, 30 mM sodium citrate, pH 7.0) for 15 min. Stained slides were placed in a plastic 946 

tray, covered with a thin layer of 2xSSC and irradiated with 254 nM UV light (~5400 J/m2). 947 

Slides were subsequently dehydrated in a 70%, 95% and 100% ethanol series (5 min each), air-948 

dried and mounted in DAPI-containing ProLong Gold mounting medium (Molecular 949 

Probes/Thermo Fisher). Images were captured on a Zeiss LSM780 laser-scanning microscope. 950 

 951 

DR-GFP assay and quantitative image-based cytometry (QIBC) 952 
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HeLa DR-GFP cells (a gift from R. Greenberg) were transduced with either a lentiCRISPR v2 953 

empty vector or sgRNA-expressing constructs targeting RNASEH2A or RNASEH2B. 7 days after 954 

transductions 4-5 x 103 cells were plated per well of 96-well imaging plates (Corning 3603) and 955 

next day either mock transfected or transfected with either 100 ng of a plasmid expressing I-SceI 956 

or a GFP-expressing plasmid (to assess transfection-efficiency) using Lipofectamine 2000. 957 

Medium was exchanged 6-8 h later and at 48 h post-transfection cells were fixed in 4% 958 

paraformaldehyde. Immunofluorescence for RNASEH2A was performed as described above and 959 

plates were imaged on an InCell Analyzer 6000 automated microscope (GE Life Sciences) with a 960 

20x objective. Image analysis was performed using Columbus (PerkinElmer). Nuclei were 961 

segmented and a sum of DAPI intensity, mean RNASEH2A intensity and mean GFP intensity 962 

was quantified for each nucleus. Cells showing a DNA content between 1N and 2N were 963 

selected based on DAPI intensity, RNASEH2A-positive and -negative populations were 964 

separated and percentages of GFP-positive cells were calculated. Only RNASEH2A+ cells were 965 

analyzed in vector-infected samples, whereas only RNASEH2A- cells were considered in 966 

sgRNA-transduced samples. Percentages of GFP+ cells in each sample were normalized to the 967 

transfection efficiency of a control GFP plasmid. 968 

 969 

Immunoblotting 970 

Cell pellets were resuspended in hot 2x sample buffer (166.7 mM Tris-HCl pH 6.8, 2% SDS, 20 971 

mM DTT, 10% glycerol, 0.01% bromophenol blue) at a concentration of 5 x 106 cells/ml and 972 

denatured at 95˚C for 5 min. An equivalent of 0.25-1 x 105 cells was separated by SDS-PAGE 973 

and transferred to a nitrocellulose or PVDF (for RNASEH2B) membrane. Membranes were 974 

blocked with 5% milk / TBST (TBS + 0.1% Tween-20) for at least 1 h at RT and incubated with 975 
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primary antibodies diluted in 5% milk/TBST overnight at 4˚C. Membranes were then washed 3 976 

times with TBST, incubated with horseradish peroxidase-conjugated secondary antibodies for 1 977 

h at RT, washed again and protein bands were detected using the SuperSignal West Pico 978 

enhanced chemiluminescence reagent (Thermo Fisher). 979 

To assess the efficiency of TOP1 depletion, whole cell extracts were obtained by lysis 980 

and sonication of cells in UTB buffer (8 M urea, 50 mM Tris-HCl, pH 7.5, 150 mM β-981 

mercaptoethanol, protease inhibitor cocktail (Roche)). Whole cell extracts for RNase H activity 982 

assays and for determining protein levels of the RNase H2 subunits were prepared by lysing cells 983 

in 50 mM Tris-HCl pH 8.0, 280 mM NaCl, 0.5% NP-40, 0.2 mM EDTA, 0.2 mM EGTA, 10% 984 

glycerol (vol/vol), 1 mM DTT and 1 mM PMSF for 10 min on ice, and subsequent addition of an 985 

equal volume of 20 mM HEPES pH 7.9, 10 mM KCl, 1 mM EDTA, 10% glycerol (vol/vol), 1 986 

mM DTT and 1 mM PMSF for an additional 10 min.  Whole cell extracts were cleared by 987 

centrifugation (17,000 g for 10 min at 4°C) and protein concentration was determined by 988 

Bradford assay (Protein Assay Kit, BioRad). Protein samples (35 µg total protein) were run on 989 

NuPAGE 4–12% Bis-Tris Protein Gels (Thermo Fisher Scientific) and transferred to 990 

nitrocellulose or PVDF membranes. Membranes were blocked in 5% milk / TBST (TBS + 0.2% 991 

Tween-20) and immunoblotting was performed as described above. 992 

 993 

Immunoprecipitation 994 

Cells were collected by trypsinization, washed once with PBS supplemented with 1 µM ADP-995 

HPD (PARG inhibitor; Enzo) and 4 x 106 cells were snap-frozen in liquid nitrogen and then 996 

lysed in 1 ml of lysis buffer [50 mM HEPES pH 8.0, 100 mM KCl, 2 mM EDTA, 0.5% NP-40, 997 

10% glycerol, 1 mM DTT, complete protease inhibitor cocktail (Roche), 1 µM ADP-HPD]. 998 
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Lysates were incubated with gentle rotation at 4˚C for 15 min and then centrifuged at 15,000x g 999 

for 10 min. 50 µl of total cell lysates were used as “input” and 950 µl were incubated with 5 µl of 1000 

mouse anti-PARP1 antibody [Enzo (F1-23) ALX-804-211-R050] for 5 h at 4 °C. Protein G-1001 

agarose beads (60 μl slurry; Pierce) were added for an additional hour. Beads were collected by 1002 

centrifugation, washed four times with lysis buffer and eluted by boiling in 60 μl 2x sample 1003 

buffer. Samples were run on an 8% SDS-PAGE gel and immunoblotting was performed as 1004 

described above (see ‘Immunobloting’). 1005 

To analyze PARP1 poly(ADP-ribosylation) in a specific phase of the cell cycle, HeLa 1006 

FUCCI WT or RNASEH2A-KO were trypsinized, washed once with PBS, collected in tubes with 1007 

PBS supplemented with 3% FCS and 1 µM ADP-HPD, and sorted based on mKO2-Cdt1 (G1 1008 

phase) and mAG-Geminin (S/G2/M phases) fluorescence on a BD Biosciences FACS Aria II 1009 

instrument. See Supplementary Figure 2 for examples of gating strategies. 4 x 106 FACS-sorted 1010 

cells were snap-frozen and lysed as described above. Equivalent amounts of proteins (~0.5-1 mg) 1011 

were incubated with 25 µl of PARP1-Trap_A pre-equilibrated bead slurry (ChromoTek) for 2.5 1012 

h at 4 °C, washed four times with lysis buffer and eluted by boiling in 2x sample loading buffer 1013 

(31.25 mM Tris pH 6.8, 25% glycerol, 1% SDS, 0.01% bromophenol blue, β-mercaptoethanol) 1014 

prior to immunoblotting. Samples were run on a NuPAGE 4–12% Bis-Tris Protein Gel (Thermo 1015 

Fisher Scientific) and immunoblotting was performed as described above. 1016 

 1017 

Antibodies 1018 

The following antibodies were used for immunofluorescence (IF) and immunoblotting (IB) at 1019 

indicated dilutions: sheep anti-pan-RNase H2 (raised against human recombinant RNase H213, 1020 

IB 1:1,000, IP 5 µl / 1 ml lysate); rabbit anti-RNASEH2C (Proteintech 16518-1-AP; IB 1:1,000); 1021 
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rabbit anti-RNASEH2A (Origene TA306706, IB 1:1,000); mouse anti-RNASEH2A (Abcam 1022 

ab92876; IF 1:500); mouse anti-RNASEH2A G-10 (Santa Cruz Biotechnologies sc-515475; WB 1023 

1:1000); mouse anti-γH2AX JBW301 (Millipore 05-636, IF 1:800 – 1:2,000); rabbit anti-RAD51 1024 

H-92 (Santa Cruz Biotechnologies sc-8349, IF 1:150); rabbit anti-BRCA146 (IB 1:1,000); mouse 1025 

anti-Cas9 (Diagenode C15200203, IB 1:1,000); rabbit anti-PARP1 H-250 (Santa Cruz 1026 

Biotechnologies sc-7150, IB 1:1,000); mouse anti-PAR 10H (Enzo ALX-804-220-R100, IB 1027 

1:1,000); rabbit anti-Topoisomerase I (Abcam ab109374; IB 1:5,000);  rabbit anti-DYKDDDDK 1028 

(Cell Signaling Technologies 2368, IB 1:1,000); rabbit anti-actin (Sigma A2066, IB 1:5,000); 1029 

mouse anti-α−tubulin DM1A (Millipore CP06, IB 1:5,000); mouse anti-α−tubulin B512 (Sigma 1030 

T6074, IB 1:5,000); rabbit anti-GAPDH (Sigma G9545, IB 1:20,000); mouse anti-vinculin 1031 

(Sigma V9264, IB 1:1,000); rabbit anti-DNA polymerase beta (Abcam ab26343, IB 1:1,000); 1032 

rabbit anti-cleaved caspase-3 (Cell Signaling Technologies 9661S, IF 1:800). 1033 

 1034 

Cell Titer Glo assay 1035 

200 cells per condition were plated on 96-well assay plates in technical triplicates either in drug-1036 

free media or in a range of MMS concentrations. MMS was washed out 24 h later and cells were 1037 

grown in drug-free media for another 48 h. Cell viability was analyzed using the Cell Titer Glo 1038 

assay kit (Promega) according to the manufacturer’s instructions. Luminescence was read on an 1039 

Envision 2104 plate reader (Perkin Elmer). 1040 

 1041 

Detection of ribonucleotides in genomic DNA 1042 

Total nucleic acids were isolated from 106 cells by lysis in ice-cold buffer (20 mM Tris-HCl pH 1043 

7.5, 75 mM NaCl, 50 mM EDTA) and subsequent incubation with 200 µg/ml proteinase K 1044 
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(Roche) for 10 min on ice followed by addition of sarkosyl (Sigma) to a final concentration of 1045 

1%. Nucleic acids were sequentially extracted with TE-equilibrated phenol, 1046 

phenol:chloroform:isoamyl alcohol (25:24:1), and chloroform, and then precipitated with 1047 

isopropanol. Nucleic acids were collected by centrifugation, washed with 75% ethanol, air-dried 1048 

and dissolved in nuclease-free water.  1049 

For alkaline gel electrophoresis, 500 ng of total nucleic acids were incubated with 1 pmol 1050 

of purified recombinant human RNase H231 and 0.25 μg of DNase-free RNase (Roche) for 30 1051 

min at 37°C in 100 µl reaction buffer (60 mM KCl, 50 mM Tris-HCl pH 8.0, 10 mM MgCl2, 1052 

0.01% BSA, 0.01% Triton X-100). Nucleic acids were ethanol-precipitated, dissolved in 1053 

nuclease-free water and separated on a 0.7% agarose gel in 50 mM NaOH, 1 mM EDTA. After 1054 

electrophoresis, the gel was neutralised in 0.7 M Tris-HCl pH 8.0, 1.5 M NaCl and stained with 1055 

SYBR Gold (Invitrogen). Imaging was performed on a FLA-5100 imaging system (Fujifilm), 1056 

and densitometry plots generated using an AIDA Image Analyzer (Raytest).  1057 

 1058 

RNase H2 activity assay  1059 

Recombinant RNase H2 was expressed in Rosetta-2 Escherichia coli cells using a polycistronic 1060 

construct based on pGEX6P1 (pMAR22) and purified as previously described31. Site-directed 1061 

mutagenesis to introduce the D34A/D169A or P40D/Y210A mutations was performed using the 1062 

Quikchange method (Agilent). To measure enzyme activity, a range of RNase H2 concentrations 1063 

(0.06 – 2 nM) was incubated with 2 μM substrate in 5 μl reactions (in a buffer containing 60 mM 1064 

KCl, 50 mM Tris-HCl pH 8.0, 10 mM MgCl2, 0.01% BSA and 0.01% Triton X-100) at 37°C for 1065 

30 min or 1 h. Substrate was formed by annealing a 3’-fluorescein-labelled oligonucleotide 1066 

(GATCTGAGCCTGGGaGCT, DRD:DNA, or gaucugagccugggagcu, RNA:DNA; uppercase 1067 
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DNA, lowercase RNA) to a complementary 5’ DABCYL-labelled DNA oligonucleotide 1068 

(Eurogentec). Reactions were stopped by adding an equal volume of 96% formamide, 20 mM 1069 

EDTA, and heating at 95°C. Products were resolved by denaturing PAGE (20%, 1x TBE), 1070 

visualized on a FLA-5100 imaging system (Fujifilm) and quantified using ImageQuant TL (GE 1071 

Healthcare). 1072 

To assess RNase H2 activity in whole cell extracts a FRET-based fluorescent substrate 1073 

release assay was performed as previously described31. RNase H2 specific activity was 1074 

determined against a DRD:DNA substrate (described above). Activity against a double-stranded 1075 

DNA substrate of the same sequence was measured and used to correct for non-RNase H2 1076 

activity against the DRD:DNA substrate. Reactions were performed in 100 µl of buffer with 250 1077 

nM substrate in 96-well flat-bottomed plates at 25°C. Whole cell lysates were prepared as 1078 

described above, and the final protein concentration used per reaction was 100 ng/µl. 1079 

Fluorescence was read for 100 ms using a VICTOR2 1420 multilabel counter (Perkin Elmer), 1080 

with a 480-nm excitation filter and a 535-nm emission filter.  1081 

 1082 

Ex-vivo CLL studies 1083 

Peripheral blood mononuclear cells were isolated from blood samples collected from patients 1084 

with a new or existing diagnosis of CLL, irrespective of the stage of disease or time/type of 1085 

treatment from two Birmingham hospitals (Heartlands and Queen Elizabeth). This study was 1086 

approved by the South Birmingham Ethics Committee (REC number 10/H1206/58), performed 1087 

according to institutional guidelines and written consent was obtained from all participants. 1088 

Primary chronic lymphocytic leukemia (CLL) cells (5 x104) and CD40L-expressing mouse 1089 

embryonic fibroblasts (5 x103) were seeded in each well of a 96-well plate (Corning) in 100 μl of 1090 
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RPMI media supplemented with 10% FBS (Sigma-Aldrich, UK) and 25 ng/ml IL-21 1091 

(eBioscience)47. After 24 h, 200 μl more media was gently added and cells were incubated for 1092 

another 48 h. The media was then aspirated, replaced with 200 μl of media containing 1093 

talazoparib and cells were incubated for a further 72 h. The cytotoxic effect of PARPi was 1094 

determined by propidium iodide exclusion as measured by flow cytometry with an Accuri C6 1095 

flow cytometer (Applied Biosystems). Only cells, which entered the cell cycle upon stimulation 1096 

(as determined by forward- and side-scatter FACS profiles), were considered for analysis. Data 1097 

was expressed as a surviving fraction relative to untreated cells, for gating strategies see 1098 

Supplementary Fig 2. 1099 

 1100 

Multiplex Ligation-dependent Probe Amplification (MLPA) assay 1101 

Genomic DNA was isolated from primary CLL cells using the Flexigene kit (Qiagen). To 1102 

identify deletions in RNASEH2B gene the MLPA assay was performed on approximately 100 ng 1103 

of genomic DNA (gDNA) per sample using the P388-A2 SALSA MLPA kit (MRC-Holland) 1104 

according to the manufacturer’s protocol. 2 µl of amplified products were separated by capillary 1105 

electrophoresis on an ABI PRISM 3130xl Genetic Analyzer (Applied Biosystems) with a 1106 

GeneScan 600 LIZ Size Standard (Thermo Fisher). Data were analyzed using GeneMaker 1107 

software v2.4.0 (SoftGenetics). Data were normalized using gDNA from 4 control reference 1108 

samples. Copy number changes represented as a MLPA ratio were detected by comparing 1109 

normalized peak intensities between the reference and the CLL samples. The MPLA ratio 1110 

thresholds (X) were set as follows: 0.75 ≥ X ≤ 1.25, diploid sample; 0.4 ≥ X < 0.75, monoallelic 1111 

deletion; X < 0.4, biallelic deletion. Samples showing either a standard deviation (SD) of control 1112 
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probes above 0.15, or samples with large Q fragment peaks and with more than 4 control 1113 

probes having MLPA ratios out of diploid range were excluded from the analysis. 1114 

 1115 

Comparative Genomic Hybridization (CGH) array 1116 

Genotyping of CLL samples was accomplished using HumanCoreExome BeadChip arrays 1117 

(Illumina Inc., San Diego, USA) by UCL Genomics (UCL Great Ormond Street Institute of 1118 

Child Health, London) in accordance with the Infinium HTS Assay protocol (15045736_A, 1119 

Illumina Inc, San Diego, USA). Genotypes were called by GenomeStudio software Genotyping 1120 

Module v.3.1 (Illumina). A call rate of 98% was accepted as the primary quality control for each 1121 

sample. Log R Ratio and B Allele Frequency values generated by the GenomeStudio software 1122 

were used to assess allelic losses in chromosome 13q. 1123 

 1124 

Analysis of copy number alterations (CNA) in the RB1-RNASEH2B region in castration-1125 

resistant prostate cancer (CRPC) 1126 

CRPC (n=226) whole exome sequencing data generated by the International Stand Up To 1127 

Cancer/Prostate Cancer Foundation Prostate Cancer Dream Team were downloaded and re-1128 

analysed29,48. Paired-end sequencing reads were aligned to the human reference genome 1129 

(GRCh37/hg19) using BWA (0.5.9), with default settings and re-aligned using stampy (1.0.2). 1130 

ASCAT (version 2.3) was used to estimate CNA, tumour purity and ploidy. 1131 

 1132 

Xenograft experiments 1133 

Female athymic CD-1 nude mice (5–7 weeks old, Charles River Laboratories) were used for in 1134 

vivo xenograft studies and quarantined for at least 1 week before experiments. Exponentially 1135 
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growing HCT116 TP53-KO RNASEH2A-WT or RNASEH2A-KO cells were injected 1136 

subcutaneously into the bilateral flanks of each animal (2x106 cells per flank). Tumours were 1137 

measured by caliper every 3 – 4 days and tumour volume was determined by the formula (length 1138 

× width2)/2. When the tumour volumes reached approximately 100 mm3 (10 days after injection), 1139 

mice were randomized into treatment and control groups (8 animals per group, 32 animals in 1140 

total; sample size was determined based on previous relevant studies). Talazoparib [BMN673, 1141 

0.333 mg/kg, pharmacological grade, a kind gift of T. Heffernan and N. Feng (The University of 1142 

Texas MD Anderson Cancer Center)] or vehicle [10% N,N-Dimethylacetamide (ACROS 1143 

Organics), 5% Solutol HS 15 (Sigma-Aldrich) in PBS (Gibco)] was administered once daily by 1144 

oral gavage (0.1 ml per 10 g of body weight) for the indicated length of time, or until the tumour 1145 

reached the maximum size (15 mm in any direction) or ulcerated, or a body conditioning score of 1146 

2 was reached, as determined by UK Home Office regulations. The data reported is the average 1147 

tumor volume per mouse. Individual flanks that showed no evidence of tumour growth before 1148 

initiation of treatment were excluded from subsequent measurements and analysis.  1149 

A subsequent experiment was performed by injecting exponentially growing HCT116 1150 

TP53-KO RNASEH2A-KO cells complemented either with an empty vector (EV) or a vector 1151 

encoding RNASEH2A-WT (2x106 cells per flank). To increase the potential treatment window, 1152 

mice were randomized into treatment and control groups (8 animals per group, 32 animals in 1153 

total), and treatment started 3 days after injection when palpable tumours were formed. The 1154 

treatment was administered as described above. Animals that showed no evidence of tumour 1155 

growth on both flanks within the first 11 days of treatment were excluded from analysis. 1156 

The technician performing tumour measurements was blinded to the experimental 1157 

design/identity of cells injected. All animal studies were carried out under Project Licence PPL 1158 
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70/8897 approved by the UK Home Office and by the University of Edinburgh Animal Welfare 1159 

and Ethical Review Body. 1160 

 1161 

Statistical analysis  1162 

Data were analyzed using a two-tailed Student’s t-test and a two-way ANOVA under the 1163 

assumption of normal distribution for biological parameters. No corrections for multiple testing 1164 

were made. Test used are indicated in respective figure legends. The number of samples (n) in 1165 

figure legends represents independent biological replicates, unless stated otherwise. No statistical 1166 

methods were used to determine the sample size prior to starting experiments. Cell biology 1167 

experiments were not randomized and the investigators were not blinded with regards to sample 1168 

allocation and evaluation of the experimental outcome. For xenograft experiments blinding and 1169 

randomisation were performed. 1170 

 1171 

Data availability statement 1172 

The results of the PARP inhibitor CRISPR screens and source data for mouse xenograft 1173 

experiments are included in the on-line version of the manuscript as Supplementary Tables 1, 2 1174 

and 3. Unprocessed images of all immunoblots are presented in Supplementary Fig 1. 1175 

Supplementary Fig 2 contains examples of gating strategies for FACS experiments. All other 1176 

datasets generated during the study are available from the corresponding authors upon reasonable 1177 

request. 1178 
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Extended Data Table 1: Clinical and molecular characteristics of primary CLL samples. 

 

CLL samples grouped by RNASEH2B status. F, female; M, male; PRL, partial response with lymphocytosis; SD, stable disease; PR, partial response; CR, 
complete response; “-“, not applicable; N/A, not available; WT, 1 Based on MLPA and CGH array, WT, wild-type; del, deleted; 2 WT, intact ATM status 
confirmed by next-generation sequencing (NGS) and/or functional assays; 3 TP53 status determined by sequencing, WT, no mutations in coding sequencing; 
otherwise mutation(s) shown, * monoallelic TP53 alteration, # biallelic TP53 alteration. 4 Maturational status of CLL assessed by detection of hypermutation 
in Immunoglobulin Heavy chain variable region (IgVH); UM, unmutated >98% sequence homology with germline sequence; M, mutated <98% sequence 
homology with germline sequence.  
 

Clinical characteristics Molecular characteristics 

Sample Age Sex 
Binet 
 stage 

Time from 
diagnosis 
(Months) 

Treatment 
Time on 

treatment 
(Days) 

Response to 
treatment 

Cytogenetics 
(FISH)  

RNASEH2B 
status1 

ATM  
status2 

TP53  
status3 

IgVH 
status4 

CLL1 67 F A 35 Pre-treatment 0 - Trisomy 12 WT WT  WT M 

CLL2 74 F A 24 Pre-treatment 0 - Normal WT WT c.658_663del, 
c.849_850insC# UM 

CLL3 67 M A 176 Ibrutinib 0 PRL Normal WT WT WT UM 

CLL4 68 M A 49 Pre-treatment 0 - Normal WT WT WT M 

CLL5 76 M A 49 Pre-treatment 0 - N/A WT WT WT UM 

CLL6 65 F A 153 Pre-treatment 0 - N/A WT WT WT M 

CLL7 63 F A 199 Fludarabine+Cyclophosphamide+
Rituximab 37 CR Trisomy 12 WT WT WT UM 

CLL8 39 M B 80 Pre-treatment 0 - Normal WT WT WT M 

CLL9 80 F A 33 Chlorambucil 83 PR del(13q) Monoallelic del WT WT M 

CLL10 57 F A 136 Pre-treatment 0 - del(13q) Monoallelic del WT WT M 

CLL11 79 F A 70 Bendamustine + rituximab 251 CR N/A Monoallelic del WT WT M 

CLL12 48 M B 159 Ibrutinib 486 PR N/A Monoallelic del WT WT UM 

CLL13 62 F A 203 Pre-treatment 0 - N/A Biallelic del WT WT M 

CLL14 63 M A 27 Pre-treatment 0 - del(13q) Biallelic del WT WT UM 

CLL15 42 F A 414 Bendamustine + rituximab  
+/- ibrutinib 120 SD del(13q) Biallelic del WT c.561A>G * M 

CLL16 84 F A 19 Pre-treatment 0 - N/A Biallelic del WT WT M 

CLL17 72 F A 153 Chlorambucil 63 PR Trisomy 12, 
del(13q) Biallelic del WT c.743G>A* M 

CLL18 79 F A 36 Pre-treatment 0 - del(13q) Biallelic del WT WT M 

CLL19 48 F B 8 Pre-treatment 0 - del(17p), del(13q) Biallelic del WT c.753_754insCC# M 

CLL20 70 F B 10 Pre-treatment 0 - del(13q) Biallelic del WT WT UM 

CLL21 67 M B 56 Pre-treatment 0 - del(13q) Biallelic del WT WT UM 
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