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Abstract 1 

HONO is an important precursor of OH radical and plays a key role in atmospheric chemistry, but its 2 

source and formation mechanism remain uncertain, especially during complex atmospheric pollution 3 

processes. In this study, HONO mixing ratios were measured by a custom-made instrument during a 4 

severe pollution event from 16 to 23 December 2016, at an urban area of Beijing. The measurement 5 

was divided into three periods: I (haze), II (severe haze) and III (clean), according to the levels of 6 

PM2.5. This pollution episode was characterized by high levels of NO (75 ± 39 and 94 ± 40 ppbV 7 

during periods I and II, respectively) and HONO (up to 10.7 ppbV). During the nighttime, the 8 

average heterogeneous conversion frequency during the two haze periods were estimated to be 9 

0.0058 and 0.0146 h-1, and it was not the important way to form HONO. Vehicle emissions 10 

contributed 52% (± 16)% and 40% (± 18)% to ambient HONO at nighttime during periods I and II. 11 

The contribution of homogeneous reaction of NO with OH should be reconsidered under high-NOx 12 

conditions and could be noticeable to HONO sources during this pollution event. Furthermore, 13 

HONO was positively correlated with PM2.5 during periods I and II, suggesting a potential chemical 14 

link between HONO and haze particles. 15 

Key words: Nitrous acid measurement, Haze, Vehicle emissions, Homogeneous reaction, Daytime 16 

HONO budget 17 

1. Introduction 18 

Hydroxyl (OH) radical is a major oxidant in the troposphere and plays an important role in the ability 19 

of the atmosphere to “cleanse itself” (Heard and Pilling, 2003). In addition, OH radical affects many 20 

chemical and photochemical processes and contributes to the formation of O3 and PANs (peroxyacyl 21 

nitrates) (Heard and Pilling, 2003; Hofzumahaus et al., 2009). As an important precursor of OH 22 
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radical, HONO is a significant species in the tropospheric photochemistry (Alicke et al., 2002; 23 

Kleffmann et al., 2005; Lammel and Cape, 1996). Recent studies proposed that HONO photolysis 24 

(R1) produced 34% ~ 56% of OH radical in the whole daytime (Alicke et al., 2002; Hendrick et al., 25 

2014; Kleffmann, 2007; Michoud et al., 2012) and produced about 80% of OH radical in the early 26 

morning (Acker et al., 2006). Moreover, in pollution episodes, OH radical is almost generated by 27 

HONO photolysis (Aumont et al., 2003; Platt and Perner, 1980). 28 

HONO + hv ሺ300 nm<λ<405 nmሻ→ OH + NO                                         R1 29 

In recent years, HONO has been extensively discussed owing to its ability of initiating and 30 

accelerating daytime photochemistry. HONO sources were generally grouped into direct emissions, 31 

homogeneous reactions, heterogeneous reactions, surface-absorbed nitric acid and/or particulate 32 

nitrate photolysis and soil nitrite emissions (Spataro and Ianniello, 2014, and references therein). 33 

Although vehicle emissions contribute to ambient HONO, the relative contribution is controversial, 34 

as there are different types of vehicles and various vehicle emission standards (Trinh et al., 2017). 35 

The reaction of NO with OH (R2) is widely accepted as a key homogeneous pathway to form HONO, 36 

especially when NO and OH are high during the daytime in polluted areas (e.g. Li et al., 2012). Due 37 

to the low level of OH radical, this homogeneous reaction was reported to be insignificant during the 38 

nighttime (Wong et al., 2011). However, recent studies found that nocturnal OH radical were 39 

relatively high in China, for example, OH radical was mostly above 3 × 105 cm−3 in Wangdu in 40 

summer 2014. Therefore, homogeneous formation could play an important role in HONO formation 41 

(Tan et al., 2017; Tong et al., 2015). Laboratory studies suggested that heterogeneous conversion of 42 

NO2 into HONO is an important HONO source (Ammann et al., 1998; Broske et al., 2003; 43 

Finlayson-Pitts et al., 2003; George et al., 2005; Kleffmann et al., 1999; Stemmler et al., 2007), but 44 
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the exact mechanisms are unclear. Although substantial field and laboratory studies were carried out 45 

to investigate formation mechanisms of HOHO in the troposphere, HOHO sources and their relative 46 

contributions to ambient HONO are still unclear, especially under pollution conditions.  47 

OH + NO
M
→ HONO                                                              R2 48 

Beijing, a rapidly developing megacity in China, has been suffering from haze pollution for several 49 

years. For example, only during January 2013, the PM2.5 level in the urban area of Beijing exceeded 50 

the Second Grade National Standard of China (75 μg m-3) for 22 days, meaning that people were 51 

exposed to polluted air for nearly the whole month (He et al., 2014). Although the government 52 

rapidly took the strict control measures for anthropogenic emissions, such as vehicle control and 53 

production restriction measures, substantial amounts of haze events have occurred since 2013. Haze 54 

is usually caused by secondary aerosol particles (Guo et al., 2014; Huang et al., 2014; Liu et al., 55 

2017a). Several studies indicated that high level of HONO produced high level of OH radical, 56 

resulting in increased secondary aerosols (An et al., 2013; Huang et al., 2014). Therefore, the source 57 

and formation mechanism of HONO are crucial for better understanding the atmospheric chemistry 58 

during pollution episodes. Numerous field observations were performed to investigate mixing ratios 59 

and potential sources of HONO in Beijing (shown in Table 1), but the studies for the level and 60 

formation mechanism of HONO during haze episodes are still limited.  61 

Beijing has suffered from a severe haze pollution from 16 to 21 December, in winter 2016. The 62 

government issued the first red alert for heavy air pollution in 2016, and rapidly took the most strict 63 

control measures for anthropogenic emissions, such as vehicle control and production restriction 64 

measures. Hereby, we performed a field measurement of HONO at an urban area of Beijing during 65 

16 to 23 December 2016, including this severe pollution process. Simultaneous trace gases (SO2, CO, 66 
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NO, NO2 and O3), PM2.5, and meteorological parameters were also obtained in this measurement. 67 

The objectives of this study are to explore levels and variations of HONO and to evaluate relative 68 

contributions of different HONO sources during this pollution event in Beijing. 69 

Table 1. HONO measurements in Beijing. 70 

Date Type HONO/ppbV reference 

May. Jun-Jul.  

Sep. Dec. 2000 
urban 0.7 - 3.0 (Hu et al., 2002) 

Jul.-Aug. 2002/2003 urban 1.72 (Wu et al., 2009) 

Aug.-Sep. 2004 urban 0.4 - 6.1 (Qin et al., 2006) 

9-10 Feb. 2007 urban 0.15 - 9.71 (Spataro et al., 2013) 

Jul. 2008-Apr. 2009 urban 

0.19 (spring) 

0.18 (summer) 

0.46 (autumn) 

0.48 (winter) 

(Hendrick et al., 2014) 

22 Feb.-2 Mar. 2014 urban 

0.49 - 3.24 

(severe haze) 

0.28 - 1.52 

(clean) 

(Hou et al., 2016) 

28 Oct.-2 Nov. 2014 
urban 

suburban 

0.54 - 2.77 

0.18 - 1.23 
(Tong et al., 2015) 

12-22 Dec. 2015 

urban 
1.34 (haze) 

0.51 (non-haze) 
(Tong et al., 2016) 

suburban 
0.79 (haze) 

0.44 (non-haze) 

22 Sep. 2015- 

25 Jul. 2016 
urban 

2.27 (autumn) 

1.05 (winter) 

1.05 (spring) 

1.38 (summer) 

(Wang et al., 2017) 
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2. Experimental 71 

2.1. Measurement site 72 

The atmospheric HONO mixing ratios and meteorological parameters were measured on the 73 

third floor of No.2 building (~ 10 meters above the ground level) at Institute of Chemistry, Chinese 74 

Academy of Sciences (ICCAS, 39°59′22.68″N, 116°19′21.58″E) in Beijing. About 480 meters to the 75 

south is the Fourth Ring Road. It is a typical urban site and was described in details in previous 76 

works (Hou et al., 2016; Tong et al., 2016; Tong et al., 2015). The observation was performed from 77 

16 to 23 December 2016, including a pollution period and a following clean period. In addition, 78 

mixing ratios of trace gases (including SO2, CO, NO, NO2 and O3) and PM2.5 were simultaneously 79 

acquired from Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences 80 

(RCEES, 40°00′28″N, 116°20′15″E), 2.8 kilometers northeast from the ICCAS site, which is also 81 

adjacent to the Fourth Ring Road and has similar conditions with few spatial differences of NO2 and 82 

NOx levels from the ICCAS site. Black carbon was measured at the Tower Branch of the Institute of 83 

Atmospheric Physics, Chinese Academy of Sciences (IAP, 39°58'54.9078"N, 116°23'4.7904"E), 84 

about 5 kilometers southeast from the ICCAS site. The IAP site is between the North Third and 85 

Fourth Ring Roads, which is surrounded by condensed population and heavy traffic, and thus it is a 86 

typical urban area of Beijing, similar to two sites above. 87 

2.2. Measurement instruments 88 

The atmospheric HONO mixing ratios were conducted using a custom-made HONO analyzer which 89 

was described in details elsewhere (Hou et al., 2016; Tong et al., 2016; Tong et al., 2015). Briefly, the 90 

principle of HONO analyzer is similar to long path absorption photometer (LOPAP) (Heland et al., 91 

2001; Kleffmann et al., 2002). HONO is fast collected by a two-channel glass stripping coil with an 92 
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absorption solution (0.06 M sulfanilamide in 1 M HCl) to form a stable diazonium salt which then 93 

reacts with a dye solution [0.8 mM N-(1-naphthyl) ethylenediamine-dihydrochloride]. Then an azo 94 

dye is formed and finally pumped into a 50 cm liquid waveguide capillary cell (LWCC). A 95 

subsequent detection is performed by an optical absorption spectrometer (Ocean Optics, SD2000). 96 

The final HONO concentration is the difference of signals between the two channels. The liquid flow 97 

rate is 0.3 mL min-1 with a sampling gas flow rate of 1.0 L min-1. The detection limit of the 98 

instrument is 200 pptV with a response time of 15 minutes. A side by side intercomparison between 99 

the custom-made HONO analyzer and a commercial LOPAP instrument was carried out in our 100 

previous study, which certified the accuracy and reliability of HONO analyzer (Hou et al., 2016). 101 

The meteorological parameters consisting of air temperature (T), relative humidity (RH), wind speed 102 

(WS) and wind direction (WD) were measured by a vaisala weather transmitter (WXT520). The 103 

mixing ratios of SO2, CO, NO, NO2, NOx and O3 were determined using SO2 analyzer (Thermo 104 

Scientific, Model 43i), CO analyzer (Thermo Scientific, Model 48i), NOx analyzer (Thermo 105 

Scientific, Model 42i) and O3 analyzer (Thermo Scientific, Model 49i) with detection limits of 106 

1ppbV, 0.05ppmV, 1ppbV and 1ppbV, respectively. Black Carbon was measured using an AE-33 107 

seven-wavelength Aethalometer. 108 

3. Results and discussion 109 

3.1. Temporal variations of meteorological parameters and gaseous species 110 

Fig. 1 gives an overview of PM2.5 and meteorological parameters. The levels of PM2.5 were used to 111 

classify the measurement into three periods. Period I was a haze period from 16 to 19 December 112 

when PM2.5 were mostly higher than 75 μg m-3 with a mean value of 130 μg m-3, the RH ranged from 113 

22% to 66% and wind speed was from 0 to 1.9 m s-1. Period II was from 20 to 21 December, called a 114 
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severe haze period with PM2.5 between 140 and 418 μg m-3 and the mean value of 285 μg m-3. The 115 

RH during period II was between 69% and 88% and wind speed was from 0.1 to 2.2 m s-1. During 116 

two haze periods, the wind speed was mostly less than 2.0 m s-1. Due to the strong winds during 117 

period III from 22 to 23 December, the air was clean with PM2.5 less than 10 μg m-3 and the RH less 118 

than 30%. Moreover, the RH was negatively correlated with the ambient temperature in general. And 119 

most of the observed days had southerly winds, except for 22 December with a strong wind blowing 120 

from north-east. 121 

 122 

Fig. 1. Temporal trends of hourly average RH, T, WD, WS and PM2.5 during the measurement. 123 

The temporal variations of measured trace gases are illustrated in Fig. 2. All the data are hourly 124 

averaged. This pollution episode was characterized by high levels of NOx. The mixing ratios of NO 125 

were extremely high with a maximum of 214 ppbV and a mean mixing ratio of 67 ppbV. The NO2 126 

mixing ratios simultaneously ranged from 8 to 100 ppbV with a mean mixing ratio of 56 ppbV. The 127 

SO2 mixing ratios varied from 1 to 28 ppbV with a mean mixing ratio of 10 ppbV. The mixing ratios 128 
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of O3 and CO varied from 0 to 27 ppbV and 0 to 8.6 ppmV, respectively. HONO varied from 0.3 to 129 

10.7 ppbV with a mean mixing ratio of 3.5 ppbV, higher than those in previous observations (Hou et 130 

al., 2016; Spataro et al., 2013; Wang et al., 2017) in Beijing. 131 

 132 

Fig. 2. Temporal variations of hourly average SO2, HONO, NO2, NO, CO and O3 during the 133 

measurement. 134 

Table 2 shows mean mixing ratios of trace gases during the three periods. The highest mixing ratios 135 

of HONO, NO, NO2, and CO were found during period II, followed by period I and period III. On 136 

the contrary, the O3 mixing ratios were highest during period III. Furthermore, the SO2 mixing ratios 137 

during period I was much higher than those during period II, with the peak being a factor of ~3 138 

higher, which might be due to the conversion of SO2 to sulfate (Ma et al., 2018). 139 

Table 2. Mean mixing ratios of trace gases during the three periods. 140 

Trace Gases 
I (Haze) 

16-19 Dec. 

II (Severe haze) 

20-21 Dec. 

III (Clean) 

22-23 Dec. 

Total 

16-23 Dec. 

HONO (ppbV) 3.4 ± 1.7 5.8 ± 3.0 0.5 ± 0.2 3.5 ± 2.7 

NO2 (ppbV) 60 ± 13 76 ± 14 19 ± 9 56 ± 23 
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NO (ppbV) 75 ± 39 94 ± 40 5 ± 5 67 ± 48 

SO2 (ppbV) 15 ± 4 5 ± 2 3 ± 1 9± 6 

O3 (ppbV) 2 ± 2 1 ± 1 16 ± 7 4 ± 7 

CO (ppmV) 3.5 ± 1.2 6.8 ± 1.2 0.8 ± 0.4 3.9 ± 2.3 

3.2. Diurnal variations of gaseous species 141 

Fig. 3 illustrates diurnal variations of average HONO, NO2, NO, SO2, O3 and CO during the 142 

measurement. The diurnal trends of HONO during the two haze periods I and II were noticeable 143 

while those during period III were insignificant, contrary to the measurement in 2014 (Hou et al., 144 

2016) when the variations during clean period were more visible. Such low and stable levels of 145 

HONO during period III in this study might be attributed to the strong wind which can accelerate 146 

HONO vertical and horizontal mixing. During periods I and II, HONO peaked at around 07:00 LT 147 

(local time) (4.6 ppbV) and at around 05:00 LT (10.0 ppbV), respectively. Then HONO mixing ratios 148 

gradually decreased, caused by increased HONO photolysis rates and vertical mixing after sunrise 149 

(Hendrick et al., 2014). The HONO mixing ratios dropped to minimums (~ 1.4 ppbV) at around 150 

14:00 LT and then accumulated throughout the rest of the day. HONO had a rising process in the 151 

evening due to the absence of photolytic loss, the decrease of the boundary layer height and/or strong 152 

nocturnal HONO sources (Hendrick et al., 2014). High levels of HONO were found at nighttime. 153 

HONO mixing ratio during both periods I and II showed a small decrease before midnight and then 154 

increased again from midnight, suggesting potential additional sources. The average diurnal cycles of 155 

HONO displayed nocturnal or early-morning maximums and daytime minimums during periods I 156 

and II, similar to those in previous studies (Huang et al., 2017; Tong et al., 2016; Wang et al., 2017). 157 

The diurnal variations of NO, NO2, and CO were weak and mixing ratios of these gaseous species 158 

were extremely low during period III, due to strong winds. Additionally, diurnal values of NO and 159 
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CO followed the same pattern during periods I and II, and peaked at around 9:00 LT due to vehicle 160 

emissions during the morning rush hour, subsequently declined to minimums at around 15:00 LT. 161 

After 16:00 LT, NO and CO mixing ratios began to rise due to the evening rush hour and the 162 

reduction of the boundary layer depth after sunset (Hendrick et al., 2014; Tong et al., 2016). The NO2 163 

mixing ratios were generally stable and after 12:00 LT gradually increased during periods I and II. 164 

But NO2 mixing ratios exhibited no obvious variations and remained at low levels during period III. 165 

SO2 mixing ratios peaked at around 14:00 LT during two haze periods and their diurnal patterns were 166 

more significant during period I than during period II.  167 

According to the descriptions of section 3.1 and 3.2, the wind speed was relatively low during 168 

periods I and II, suggesting a limited from regional contribution. However, wind speed was mostly 169 

higher than 2.0 m s-1 during period III, and severely affected the in situ parameters and thus the data 170 

points during period III were not discussed for further analysis of HONO sources in the following 171 

sections. 172 
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 173 

Fig. 3. Diurnal variations of average HONO, NO2, NO, SO2, O3 and CO during periods I (haze), II 174 

(severe haze) and III (clean). The error bars represent the standard deviation during the measurement. 175 

3.3. Nocturnal HONO sources 176 

3.3.1 Contribution of homogeneous processes 177 

The net HONO production (POH+NO
net ) of homogeneous processes during the nighttime is calculated by 178 
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the following equation. 179 

POH+NO
net  = kOH+NOሾOHሿሾNOሿ	- kOH+HONOሾOHሿሾHONOሿ                                   (1) 180 

HONO + OH → NO2 + H2                                                         R3 181 

The rate constants kOH+NO and kOH+HONO are 7.2×10-12 and 5.0×10-12 cm3 molecule-1 s-1, for reaction 182 

R2 and R3 at 298 K, respectively (Li et al., 2012). [NO] and [HONO] are hourly average mixing 183 

ratios of NO and HONO, respectively. kOH+NO and kOH+HONO are similar, hence NO and HONO play 184 

key roles in calculating POH+NO
net . [OH] is the OH radical concentration which was not available 185 

during the measurement, and thus an estimate is made. Tan et al. (2017) observed that the mean value 186 

of the nighttime OH was 5 × 105 molecules cm−3 in summer 2014 in Wangdu. And here 2.5 × 105 187 

molecules cm−3 was used, since the [OH]summer/[OH]winter ratio is about 2 (Spataro et al., 2013, and 188 

references therein). The nocturnal variations of POH+NO 
net , HONO and NO during periods I and II are 189 

illustrated in Fig. 4. Generally, the variations of POH+NO
net  followed those of NO due to extremely 190 

high NO levels governing the variations of POH+NO
net  during the two haze periods. During period I, 191 

POH+NO
net  varied from 0.09 to 0.98 ppbV h-1, and increased before midnight while decreased gradually 192 

after midnight. During period II, POH+NO
net  ranged from 0.19 to 1.25 ppbV h-1 which increased before 193 

midnight but decreased after midnight and then almost kept constant. This result implied that the 194 

nocturnal HONO source from homogeneous processes was much larger during period II than that 195 

during period I. The level of POH+NO
net  during the two haze periods were higher than those in previous 196 

study by Li et al. (2012) at a rural site in Southern China (0 ~ 0.28 ppbV h-1), but lower than our 197 

previous study (2.18 ppbV/h at an urban area of Beijing) (Tong et al., 2015). 198 

To estimate the contribution of homogeneous reaction of NO with OH, an episode (17:00 LT ~ 21:00 199 

LT) is selected to integrate POH+NO
net  with increased HONO mixing ratios. The accumulated HONO 200 
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into HONO frequently occurred in the atmosphere (Spataro and Ianniello, 2014, and references 212 

therein). The nocturnal HONO/NO2 ratios varied from 0.018 to 0.199 during the two haze periods, 213 

comparable to the ranges in previous studies (Alicke et al., 2002; Spataro et al., 2013; Tong et al., 214 

2015). The mean values of HONO/NO2 ratios were 0.064 and 0.095, during periods I and II 215 

respectively. HONO conversion frequency is another parameter to evaluate heterogeneous 216 

conversion of NO2 into HONO and is calculated using the following equations and adopting CO and 217 

NO2 as reference gases, as reported by previous studies (Su et al., 2008; Wang et al., 2017). 218 

CHONO
X  = 

2൬
[HONO]t2

[X]t2
 × ሾXሿതതതത - 

[HONO]t1
[X]t1

 × ሾXሿതതതത൰

൫t2-t1൯൬
[NO2]t2

[X]t2
 × ሾXሿതതതത + 

[NO2]t1
[X]t1

 × ሾXሿതതതത൰
      219 

							= 
2(

[HONO]t2
[X]t2

	- 
[HONO]t1

[X]t1
)

൫t2-t1൯(
[NO2]t2

[X]t2
 + 

[NO2]t1
[X]t1

)
                                                        (2) 220 

CHONO = 
1

3
 (CHONO

0  + CHONO
CO  + CHONO

NO2 )                                               (3) 221 

Where CHONO is HONO conversion frequency from NO2. [HONO]t, [NO2]t and [X]t represent mixing 222 

ratios of HONO, NO2 and reference gases, respectively, at the measuring time t. ሾXሿതതതത is the average 223 

mixing ratio of reference gas during the time interval of t1 and t2, CHONO
X  is the conversion 224 

frequency scaled with X and CHONO
0  is the conversion frequency which is not scaled. The average 225 

CHONO during periods I and II were 0.0058 and 0.0146 h-1, respectively, which were comparable to 226 

previous works, such as 0.007 h-1 in Shanghai (Wang et al., 2013), 0.008 h-1 in Beijing (Wang et al., 227 

2017), 0.014 h-1 in Kathmandu (Yu et al., 2009), and 0.0091 h-1 in Xi’an (Huang et al., 2017). The 228 

higher conversion efficiency of NO2 heterogeneous reaction was found during period II, which might 229 

be attributed to higher RH (69% ~ 88%) (as seen in Fig. S1), since water absorbed on surfaces 230 

participated in the heterogeneous reaction of NO2 to form HONO and several studies confirmed that 231 

surface adsorbed water was clearly related to the RH (Stutz et al., 2004, and references therein). 232 
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Besides the RH, aerosol surface as a media, is another important factor for heterogeneous conversion 233 

of NO2 (Huang et al., 2017; Li et al., 2012). As aerosol surface density is not available in this study, 234 

PM2.5 concentrations are used as surrogates to estimate the influence of aerosol surface on the 235 

heterogeneous conversion of NO2 to HONO. The correlation of HONO/NO2 with PM2.5 236 

concentrations is shown in Fig. 5. The positive correlation of HONO/NO2 with PM2.5 indicated the 237 

heterogeneous conversion of NO2 into HONO on aerosol surfaces. However, the relative amount of 238 

HONO formed on aerosol surfaces might be small due to the weak correlation (R2=0.11). 239 

 240 

Fig. 5. The correlation of HONO/NO2 ratios with PM2.5 during periods I and II. 241 

To further evaluate the contribution of NO2 conversion, the nocturnal correlations between HONO 242 

and NO2 during periods I and II were illustrated in Fig. 6. There was no significant relationship 243 

between HONO and NO2 during period I while there was a significant negative correlation between 244 

them (R2 = 0.79) during period II. Theoretically, if NO2 is a critical precursor of HONO, the positive 245 

correlation between HONO and NO2 should be found but that was not the case. This result can be 246 

explained by that: some other sources were strong enough and thus they masked the contribution of 247 

the NO2 conversion. 248 



249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

 

Fig. 6. Corr

3.3.3. Cont

CO and NO

fossil fuels 

2016). In th

observed (F

photolysis, 

seen in Fig

0.47 and 0

related to th

emitted from

burning (Bo

generally h

resulting fr

Beijing dur

0.49) (Fig. 

relations of 

tribution of

O are consid

or biomass

his study, go

Fig. S2), in

only the da

. 7, the corr

.61 during 

hose of CO 

m combust

ond et al., 2

higher durin

rom burning

ring 23:00 L

8) also sugg

f HONO wit

f direct em

dered as pri

s as well as 

ood correlat

ndicating th

ata during th

relations of 

periods I a

and NO at 

ion process

2013). The B

ng the night

g coal for 

LT~ next 06

gested a pos

th NO2 duri

issions 

imary pollut

vehicle em

tions of CO

hat they ha

he nighttim

f HONO wit

and II, respe

nighttime. B

ses, such as 

BC time se

ttime than t

heating and

6:00 LT) em

ssible comb

 

17 

ing periods

tants emitte

missions (Qu

O with NO a

ad common

me (from 17

th CO and N

ectively. It 

Black carbo

diesel engi

eries during 

that during 

d diesel veh

missions. Th

bustion HON

I (left) and 

ed from com

uan et al., 2

at nighttime

n sources. T

:00 LT to n

NO during 

implied tha

on (BC) is a

ines, industr

periods I an

the daytime

hicles (allo

he high cor

NO source, 

II (right). 

mbustion pro

2014; Sun et

e during the 

To avoid th

next 06:00 L

the nighttim

at the HON

another prim

ry, residenti

nd II is sho

e, with peak

wed to ent

rrelation of 

including v

rocesses like

et al., 2014; 

 two haze p

he influence

LT) was con

me were 0.7

NO sources 

mary polluta

ial solid fue

own in Fig. 

aks at aroun

ter Fifth Ri

HONO wit

vehicle emis

e burning o

Tong et al.

periods were

e of HONO

nsidered. As

70 and 0.27

were partly

ant typically

el, and open

S3, BC was

nd midnight

ing Road o

th BC (R2 =

ssions. 

 

f 

., 

e 

O 

s 

7, 

y 

y 

n 

s 

t, 

f 

= 



 

18 
 

In urban areas, biomass burning is insignificant and vehicle emissions are important parts of direct 266 

emissions (Tong et al., 2016; Nakashima et al., 2017; Ropkins et al., 2017). Hereby, the contribution 267 

of vehicle emissions to measured HONO is estimated. The vehicle emissions are calculated by 268 

[HONOemission] = [NOx] × K, where [HONOemission] and [NOx] are the HONO mixing ratios emitted 269 

from vehicle emissions and the observed NOx mixing ratios, respectively. K is the emission factor. 270 

During this haze episode (from 16 to 21 Dec.), the Beijing government issued an odd-even car ban 271 

requiring alternate driving days for cars with even- and odd-numbered license plates. It means that 272 

vehicle emissions might differ from normal. In order to determine the value of emission factor, we 273 

used the nighttime HONO data and simultaneous NO mixing ratios greater than 20 ppbV (Su et al., 274 

2008). With the air aging, the HONO/NOx ratio gradually increased owing to the conversion of NO2 275 

to HONO, and thus we use the minimum HONO/NOx ratio during our measurement period, which is 276 

1.3%, as the emission factor (Li et al., 2012). This is comparable to the result of 1.0% (± 0.5%) 277 

reported in Hong Kong by Yun et al. (2017) and in the range of 0.16% ~ 2.1% derived by previous 278 

studies (Liu et al., 2017b; Trinh et al., 2017; Kurtenbach et al., 2001). Using this method, the 279 

contributions of vehicle emissions to ambient HONO were estimated to be 52% (± 16%) and 40% (± 280 

18%) during periods I and II, respectively. Thus direct emissions from engine exhaust could be an 281 

important source of HONO in Beijing. 282 
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 283 

Fig. 7. Correlations of HONO with CO and NO at nighttime during periods I and II. 284 

 285 

Fig. 8. The correlation of HONO with BC at nighttime during periods I and II. 286 
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In summary, the secondary formation of HONO (homogeneous processes and heterogeneous 287 

conversion of NO2) strengthened and primary emissions decreased from period I to period II. 288 

Although the heterogeneous conversion of NO2 contributed to nocturnal HONO, it did not seem to 289 

be important. Direct emissions especially vehicle emissions were likely to be a more important 290 

source. Moreover, homogeneous processes could also played a noticeable role and should be 291 

reconsidered under high-NOx conditions. In addition, the decrease in the boundary layer height may 292 

also contribute to nighttime HONO mixing ratios (Yu et al., 2009), especially before midnight. Thus 293 

more relative parameters and further studies are expected to explore the reasons for high levels of 294 

HONO at nighttime. 295 

3.4. Daytime HONO budget  296 

During periods I and II, the levels of NO maintained relatively high with a mean mixing ratio of 69 297 

ppbV, indicating that the homogeneous reaction might be significant during the daytime. To support 298 

this argument, daytime HONO formation rates during periods I and II can be calculated by the 299 

following equation (Soergel et al., 2011): 300 

dHONO

dt
 = sources - losses 

																	= ሺPOH+NO + Potherሻ	- (LOH+HONO + Lphoto + Ldep)                                (4) 301 

Such that, 302 

POH+NO + Pother = 
ΔHONO

Δt
 + LOH+HONO + Lphoto + Ldep                                    (5) 303 

Where dHONO/dt represents the variation of measured HONO mixing ratios and can be substituted 304 

by ΔHONO/Δt. POH+NO and LOH+HONO represent the homogeneous formation and loss rate of reaction 305 

R2 and R3, respectively. The expressions of POH+NO and LOH+HONO have been discussed in section 306 

3.3.1. Pother represents other sources of measured HONO mixing ratios other than the homogeneous 307 
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reaction of NO with OH. Lphoto is the HONO photolysis loss rate of reaction R1, which was 308 

calculated by Lphoto = JHONO × [HONO], JHONO is the photolysis frequency of HONO. Ldep represents 309 

the dry deposition of HONO and is expressed by Ldep = Vd × [HONO] / H, where Vd is the deposition 310 

velocity of HONO and H is the daytime mixing height. Vd was 1.6 cm s-1 and H was assumed as 500 311 

m according to previous studies (Hou et al., 2016; Li et al., 2011). Due to the values of OH radicals 312 

and JHONO were not available in this study, the NCAR Tropospheric Ultraviolet and Visible (TUV) 313 

transfer model (http://cprm.acom.ucar.edu/Models/TUV/Interactive_TUV/) and O3 column density 314 

measured by the Total Ozone Mapping Spectrometer (TOMS, data available at 315 

https://ozoneaq.gsfc.nasa.gov/data/ozone/) were used (Huang et al., 2017; Spataro et al., 2013). 316 

Considering the effects of aerosol on J values, aerosol optical parameters including aerosol optical 317 

depth (AOD), single scattering albedo (SSA) and Angstrom exponent were set as inputs in the TUV 318 

model. The typical AOD, SSA and Angstrom exponent values of 1.535, 0.88 and 1.4 were considered, 319 

respectively, for the two haze periods I and II (Che et al., 2015; Hou et al., 2016; Jing et al., 2015; 320 

Zhang et al., 2014). During the daytime (10:00 LT ~ 15:00 LT), the calculated JHONO values varied 321 

from 1.02 × 10-4 to 2.22 × 10-4 s-1, comparable to previous reports (Hou et al., 2016; Huang et al., 322 

2017). Based on the strong correlations of JO
1

D (derived by TUV model) with OH radicals, the 323 

simultaneous OH concentrations were calculated (Rohrer et al., 2006; Lu et al., 2013). The hourly 324 

average OH ranged from 1.66 × 106 to 2.21 × 106 cm-3 from 10:00 LT to 15:00 LT during periods I 325 

and II, within the range of observed OH in the northern parts of China by Lu et al. and Tan et al. (Lu 326 

et al., 2013; Lu et al., 2012; Tan et al., 2017) and comparable to the study (observed OH 327 

concentration at noontime of 2.4×106 cm-3 in severely polluted air from January to March) at a 328 

suburban area of Beijing in winter 2016 by Tan et al. (2018). 329 
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The average production (POH+NO) and loss (LOH+HONO, Ldep and Lphoto) rates for daytime HONO 330 

budget during periods I and II are illustrated in Fig. S4. The mean values of LOH+HONO, Ldep and Lphoto 331 

were 0.07 ± 0.03, 0.22 ± 0.12 and 1.15 ± 0.61 ppbV h-1, respectively during period I, and 0.11 ± 0.06, 332 

0.34 ± 0.21 and 1.84 ± 1.07 ppbV h-1, respectively during period II. The average POH+NO were 3.04 ± 333 

1.72 and 3.43 ± 1.66 ppbV h-1, during periods I and II respectively, which is much higher compared 334 

to previous reports (Hou et al., 2016; Huang et al., 2017; Wang et al., 2017). Although the POH+NO has 335 

a large uncertainty, it played a key role in daytime HONO budget. And it was even enough to explain 336 

the HONO sources during the daytime, if that is the case, there could be one or more important sinks 337 

other than HONO photolysis, deposition of HONO and gas-phase reaction of HONO with OH to 338 

mediate the discrepancy between sources and sinks of daytime HONO in such complicated pollution 339 

periods. 340 

3.5. The correlations between HONO, PM2.5 and RH 341 

Fig. 9 illustrates the correlations between HONO, PM2.5 and the RH. PM2.5 increased with HONO 342 

mixing ratios and RH, and had a pronounced correlation with HONO (R2 = 0.45), suggesting a 343 

potential chemical link between HONO and haze particles (An et al., 2013; Huang et al., 2014). 344 

Moreover, increased RH is favorable for uptake and mass transport of reactive trace gases, such as 345 

SO2 and N2O5, which facilitated reactions of reactive trace gases into particles and accelerating 346 

formations of secondary pollutants during heavy haze episodes (Liu et al., 2017a). 347 
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