Dehydrogenation and rehydrogenation of a 0.62LiBH4-0.38NaBH4 mixture with nano-sized Ni

Liu, Yinzhe; Heere, Michael; Contreras, Luis; Paterakis, Christos; Sørby, Magnus; Hauback, Bjørn; Book, David

DOI: 10.1016/j.ijhydene.2018.04.211

License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Dehydrogenation and rehydrogenation of a 0.62LiBH$_4$-0.38NaBH$_4$ mixture with nano-sized Ni

Yinzhe Liua, Michael Heereb,c, Luis Contreras Vasqueza, Christos Paterakisa, Magnus H. Sørbyb, Bjørn C. Haubackb, David Booka

a School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
b Physics Department, Institute for Energy Technology, Kjeller, NO-2027, Norway
c Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Eggenstein–Leopoldshafen, D–76344, Germany

YXL454@student.bham.ac.uk

Abstract

The dehydrogenation reaction pathways of a 0.91(0.62LiBH$_4$-0.38NaBH$_4$)-0.09Ni mixture in the temperature range of 25-650 °C in flowing Ar and the cycling stability in H$_2$ are presented. No H$_2$ is released immediately after melting at 225 °C. The major dehydrogenation occurs above 350 °C. Adding nano-sized Ni reduces the dehydrogenation peak temperatures by 20-25 °C, leading to three decomposition steps where Ni$_4$B$_3$ and Li$_{1.2}$Ni$_{2.5}$B$_2$ are found in the major dehydrogenation products for the 1st and the 3rd step; whilst the Ni-free mixture decomposes through a two-step decomposition pathway. A total of 8.1 wt.% of hydrogen release from the 0.91(0.62LiBH$_4$-0.38NaBH$_4$)-0.09Ni mixture is achieved at 650 °C in Ar. This mixture has a poor hydrogen cycling stability as its reversible hydrogen content decreases from 5.1 wt.% to 1.1 wt.% and 0.6 wt.% during three complete desorption-absorption-cycles. However, the addition of nano-sized Ni facilitates the reformation of LiBH$_4$.

Keywords
Hydrogen storage; Nanomaterial; Eutectic borohydrides; Dehydrogenation; Rehydrogenation; Reaction pathways

1 Introduction
Due to its high energy content, hydrogen is considered one of the most promising energy vectors for use in establishing sustainable energy systems [1,2]. One of the main challenges for the use of hydrogen as a fuel is the safe and efficient storage of hydrogen [3]. Hydrogen can be stored in several different ways, among which the solid-state storage approach has received extensive attention [4–7].

Metal borohydrides, such as LiBH₄ or Mg(BH₄)₂, chemically store the hydrogen atoms by covalently bonding hydrogen to boron in the complex anion [BH₄]⁻. Such compounds have been considered as promising solid-state hydrogen storage media since 2003, due to their high volumetric hydrogen content and low operating pressures (<12 bar) [5,8–14]. For instance, the volumetric hydrogen density of LiBH₄ is 121 kg H₂ m⁻³ [8], which is about four times higher than the 40 kg H₂ m⁻³ for gaseous H₂ compressed at 700 bar [15]. However, the hydrogen release and uptake properties of metal borohydrides are often hindered by poor thermodynamics (i.e. high temperatures are required) and sluggish kinetics, which has prevented their use as reversible hydrogen stores [5].

One of the potential approaches to decrease the hydrogen sorption temperatures of borohydrides is to form low-melting-point borohydride mixtures, such as LiBH₄-NaBH₄, LiBH₄-KBH₄, LiBH₄-Mg(BH₄)₂, LiBH₄-Ca(BH₄)₂ and NaBH₄-KBH₄ [16–22]. These mixtures are often called eutectic borohydrides and have lower fusion temperatures than their pure constituents, leading to dehydrogenation at relatively low temperatures through kinetic effects [11]. In fact, the nature of molten salts is critical in utilizing H₂ release from borohydrides, especially from alkali-metal borohydrides that often melt before their major H₂ desorption begin.
In addition, the dehydrogenation of borohydrides from the liquid rather than the solid state may lead to less unwanted phases in the reaction products, such as \([\text{B}_{10}\text{H}_{10}]^{2-}\) and \([\text{B}_{12}\text{H}_{12}]^{2-}\) phases [23]. Since metal dodecaborates act as boron sinks that hinder the rehydrogenation of decomposed borohydrides [24,25], the formation of such compounds is not favorable and needs to be avoided in solid-state hydrogen storage systems. Moreover, the low melting point is beneficial for the nanoconfinement-by-infiltration approach, in which molten borohydrides are infiltrated into a porous material to reduce the decomposition temperature as well as to improve the reversibility [26–32].

The eutectic \(\text{LiBH}_4\)-\(\text{NaBH}_4\) mixture has received attention owing to its relatively low cost among known eutectic borohydride mixtures and a high theoretical gravimetric hydrogen storage capacity of approximately 15 wt.% [17]. According to experimental measurements and theoretical calculations, two eutectic compositions have been proposed in the past: 0.62\(\text{LiBH}_4\)-0.38\(\text{NaBH}_4\) [17,28] and 0.71\(\text{LiBH}_4\)-0.29\(\text{NaBH}_4\) [33]. The melting of this kind of mixtures occurs at around 216-225 °C [28,33], which is about 60 °C lower than that of \(\text{LiBH}_4\) [34] and about 280 °C lower than that of \(\text{NaBH}_4\) [35,36]. The dehydrogenation of 0.62\(\text{LiBH}_4\)-0.38\(\text{NaBH}_4\) mixture starts at 287 °C with a total of 10.8 wt.% hydrogen release upon heating to 650 °C in Ar [37]. In general, the decomposition of borohydrides is complex and usually involves the formation of a series of intermediate phases, as a function of temperature and pressure [38–41]. Under an Ar atmosphere, the dehydrogenation pathways of the 0.62\(\text{LiBH}_4\)-0.38\(\text{NaBH}_4\) mixture are mainly accompanied by the precipitation of \(\text{LiH}\), \(\text{Li}_{2}\text{B}_{12}\text{H}_{12}\) and \(\text{B}\) from 287 °C to 520 °C and the formation of \(\text{Na}\) and \(\text{B}\) from 520 °C to 650 °C [37]. These high dehydrogenation temperatures are indeed above the US DOE (department of energy) target of on-board \(\text{H}_2\) storage for light-duty vehicles [42] and therefore need to be further reduced with the help of a detailed understanding of the dehydrogenation pathways.

Many attempts to tailor the temperature required for dehydrogenation and to improve the cycling stability of borohydrides have been made, such as adding additives/catalysts [9,19,43–47], forming reactive hydride composites [48–55]
and confining into nano-porous scaffolds [56–59]. Furthermore, adding Ni to LiBH₄ forms an interesting LiBH₄-Ni system, which has received attention due to the low dehydrogenation enthalpy values (18-34 kJ mol⁻¹ H₂) of the possible chemical reactions (Equation 1-3), generating nickel borides (i.e. N₄B₃, Ni₂B, Ni₃B) [60], which have been described as valuable additives [60–62]. The addition of 25 wt.% nano-sized Ni to LiBH₄ reduces the dehydrogenation peak temperature by 50 °C, and improves the reversible hydrogen content from 4.3 wt.% for Ni-free sample to 10.8 wt.% as a consequence of the effect of the Ni₄B₃ [60].

\[
\begin{align*}
6\text{LiBH}_4 + 8\text{Ni} &= 2\text{Ni}_4\text{B}_3 + 6\text{LiH} + 9\text{H}_2 & \text{Equation 1} \\
2\text{LiBH}_4 + 4\text{Ni} &= 2\text{Ni}_2\text{B} + 2\text{LiH} + 3\text{H}_2 & \text{Equation 2} \\
2\text{LiBH}_4 + 6\text{Ni} &= 2\text{Ni}_3\text{B} + 2\text{LiH} + 3\text{H}_2 & \text{Equation 3}
\end{align*}
\]

Thus, to reduce the dehydrogenation temperature of the 0.62LiBH₄-0.38NaBH₄ mixture, this work used 18 wt.% (9 mol%) nano-sized Ni particles as additive. In addition, the modified decomposition pathways were studied by determining the phases and the structural evolution as a function of temperature, using a series of samples heat-treated at selected temperatures through a combination of experimental techniques, i.e. powder X-ray diffraction (PXD), Raman spectroscopy, Fourier Transform infrared spectroscopy (FTIR), Thermogravimetry differential scanning calorimetry (TG-DSC) and temperature programmed desorption – mass spectrometry (TPD-MS). The rehydrogenation of this LiBH₄-NaBH₄-Ni mixture was also investigated using a Sieverts type apparatus.

2 Materials and Methods

2.1 Synthesis
LiBH₄ (≥ 95.0%), NaBH₄ (≥ 99.99%) and nano-sized Ni powder (100 nm, ≥ 99.9%) were received from Sigma-Aldrich, stored and handled solely in an Ar glovebox.
The 0.62LiBH$_4$-0.38NaBH$_4$ and 0.91(0.62LiBH$_4$-0.38NaBH$_4$)-0.09Ni mixtures were prepared using a Retsch PM 400 planetary ball mill in 1 bar Ar for 10 h (in total) at 175 rpm. The ball milling process used 250 mL stainless steel milling pots and 13 mm (diameter) stainless steel balls. The ball-to-sample mass ratio was 66:1. To avoid sample overheating during milling, this process was set to rest for 5 min in between every 5 min of operation.

The milled samples were heat-treated by heating at 2 °C min$^{-1}$ in Ar (flowing at 160 mL min$^{-1}$) to different targets temperatures: 250, 468, 515, 586 and 650 °C. These samples were cooled to room temperature (RT) before further characterization.

2.2 Characterization

2.2.1 Powder X-ray diffraction

Powder X-ray diffraction (PXD) measurements were performed using a Bruker D8 Advance X-Ray Diffractometer with Cu K$_\alpha$ radiation ($\lambda = 1.5418$ Å). Samples were loaded and sealed inside a PMMA airtight dome-shaped sample holder inside an Ar glovebox, before transfer to the PXD. The surface of sample was flattened and smoothed to ensure a well-defined geometry. The measurements were performed in the range 2θ = 5–90° at a scanning rate of 2° min$^{-1}$ using a 9 position multi-changer stage. In case of relatively small amount of powder samples, these samples were loaded into rotating glass capillaries (inner diameter = 0.5 mm) and sealed with silicone grease, then measured in 10-70° 2θ at a scanning rate of 1° min$^{-1}$.

Phase identification from the PXD patterns was performed with EVA software and the PDF-2 database [63]. Quantitative Phase Analysis (QPA) was performed with the Rietveld method using TOPAS-Academic [64] and jEdit software. Published Crystallographic Information Files (*.cif) from the Inorganic Crystal Systems Database [65] for each compound were used for performing the refinements.
2.2.2 Raman/FTIR Spectroscopy

Raman spectroscopy measurements were performed using a Renishaw inVia Reflex Raman spectrometer with a confocal microscope (equipped with a 20x objective). The laser and grating system used were 488 nm (30 mW) and 2400 l mm⁻¹, respectively. About 5-10 mg of sample was loaded in an aluminium crucible, which was placed and sealed in the INSTEC HCS621V cell. Samples were measured in 1 bar Ar. The obtained vibrational modes were analyzed using Renishaw Wire 4.0 [66] and compared with literature data for assignments.

Fourier Transform infrared spectroscopy (FTIR) measurements were carried out inertly using a BRUKER Alpha Platinum-ATR spectrometer. The instrument was placed inside an Ar glove box. A small amount of sample (~ 2 mg) was placed directly on a diamond disc equipped on the infrared source and then compressed by a one-finger clamp for obtaining intensive signals. The spectra were collected over a wide wavenumber range from 400 to 4000 cm⁻¹ with a resolution of 2 cm⁻¹ at RT. In general, measurements including 32 scans were averaged for each spectrum and the background. The obtained vibrational results were compared with literature data for assignments.

2.2.3 Thermal Analysis

Thermal properties were investigated using a Netzsch STA 449 F3 Jupiter® Thermogravimetry DSC (TG-DSC). Approximately 1 mg of sample was loaded in an Al crucible and sealed with a lid using mechanical press inside an Ar glovebox. The samples needed to be transferred outside the glovebox for loading onto the TG-DSC, and thus have been exposed to air for a few seconds. The exact amount of sample was weighed out using the balance system equipped on the TG-DSC. The sample was heated at 5 °C min⁻¹ in Ar (flowing at 70 mL min⁻¹) from 50 to 250 °C.

2.2.4 Temperature Programmed Desorption

An in-house manufactured Temperature Programmed Desorption (TPD) apparatus connected to a Thermo ProLab Mass Spectrometry (MS) was used to
test the H₂ desorption properties. Around 20 mg powder was loaded into a stainless steel tube and sealed in a T-shape sample holder before being transferred and attached to the TPD frame. Samples were heated at 2 °C min⁻¹ in Ar flowing at 160 mL min⁻¹ from 50 to 650 °C. The amount of H₂ released from the sample was interpreted using the same method as explained in Ref. [37].

2.2.5 Recombination
A Sieverts type apparatus [67] was used to dehydrogenate and rehydrogenate samples by subjecting them to suitable condition combinations. Approximately 300 mg of sample was loaded into the bottom of the reactor in an Ar glovebox to test the reversible H₂ capacity. The reactor was then sealed, transferred and attached to the Sieverts apparatus. The reaction conditions were: 500 °C, 1 bar H₂ and 10 h for desorption; and 400 °C, 130 bar H₂ and 12 h for absorption.

3 Results and Discussion

3.1 Characterization of as-milled mixture
The nano-sized Ni (~ 100 nm) was mixed with LiBH₄ and NaBH₄ by ball milling. The PXD pattern of the as-milled LiBH₄-NaBH₄-Ni presented in Figure 1 shows Bragg peaks for LiBH₄, NaBH₄, Ni and NiO phases, suggesting no reaction between the parent borohydrides and additive has occurred during the milling process. The QPA refinement (Figure B. 1 in Supporting Information) suggests the following composition: 40.1(7) wt.% of LiBH₄, 42.1(5) wt.% of NaBH₄, 16.5(3) wt.% of Ni and 1.3(3) wt.% of NiO, respectively. This small amount of NiO, which was present as a minor impurity phase in the as-received nano-Ni (6 wt%, see Figure A. 1 in Supporting Information), is neglected for simplicity in phase composition reported below. The refined composition of the as-milled sample is 0.91(0.62LiBH₄-0.38NaBH₄)-0.09Ni and is in the following noted as LiNa-Ni. Due to the addition of nano-sized Ni, the nominal phase composition of LiNa-Ni is different from that of 0.62LiBH₄-0.38NaBH₄. However, the molar ratios of LiBH₄ to NaBH₄ for these two mixtures are identical.
In previous work [37], the changes of unit cell volumes of LiBH$_4$ (enlargement) and NaBH$_4$ (shrinkage) components in the as-milled 0.62LiBH$_4$-0.38NaBH$_4$ mixture (noted as LiNa) have been linked to the formation of solid solutions, Li(Na)BH$_4$ and Na(Li)BH$_4$. However, in this work the addition of nano-sized Ni enlarges the refined unit cell volumes for the LiBH$_4$ and NaBH$_4$ constituents in the LiNa-Ni mixture. These values are both larger than that for the LiBH$_4$ and NaBH$_4$ constituents in the LiNa mixture and for as-milled LiBH$_4$ and NaBH$_4$ as shown below:

<table>
<thead>
<tr>
<th></th>
<th>LiBH$_4$ in LiNa-Ni</th>
<th>LiBH$_4$ in LiNa [37]</th>
<th>LiBH$_4$ [37]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell volume [Å3]</td>
<td>219.71 ± 0.08</td>
<td>> 217.03 ± 0.08</td>
<td>>= 216.8 ± 0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NaBH$_4$ in LiNa-Ni</th>
<th>NaBH$_4$ [37,68]</th>
<th>NaBH$_4$ in LiNa [37]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell volume [Å3]</td>
<td>236.91 ± 0.11</td>
<td>> 234.78 ± 0.13</td>
<td>> 234.06 ± 0.022</td>
</tr>
</tbody>
</table>
These increases may be related to the insertion of Ni as interstitials but there is no direct evidence. Furthermore, a systematic error due to different instrument setups / calibration setups cannot be neglected. Thus, it is suggested that the changes in the unit cell volumes cannot be regarded as an indicator for the formation of a solid solution in LiNa-Ni mixture.

Raman and FTIR spectra of LiNa-Ni are shown in Figure 2. The vibrations of B-H stretching and bending modes resemble those of LiBH₄ and NaBH₄ phases [69–72]. The observed wavenumbers are in good agreement with the Ni-free sample (Table B. 2 and Table B. 3 in Supporting Information) [37]. The measured wavenumbers of the total symmetric stretching mode (ν₁) for NaBH₄ in the as-milled LiNa-Ni and LiNa mixtures are found to be 2323 cm⁻¹ and 2324 cm⁻¹, respectively. These wavenumbers are 7-8 cm⁻¹ lower than the 2331 cm⁻¹ measured for as-milled pure NaBH₄, suggesting again the volume expansion via an increase in B-H bond length according to Badger’s rule [73,74]. This expansion was proposed due to the substitution of Li⁺ into NaBH₄ [37], suggesting the formation of a Na(Li)BH₄ solid solution in the as-milled LiNa-Ni mixture. However, no shift in wavenumbers has been found for the LiBH₄ peaks, possibly due to the limited solubility of Na⁺ in orthorhombic LiBH₄ (o-LiBH₄) [33].
Figure 2 RT Raman (488 nm laser, 2400 l/mm grating system) and FTIR spectra for the as-milled 0.91(0.62LiBH$_4$-0.38NaBH$_4$)-0.09Ni (LiNa-Ni) mixture compared with that of as-milled 0.62LiBH$_4$-0.38NaBH$_4$ (LiNa) mixture. For better comparisons, the spectra at different regions are normalized to the most intensive peak in the region. Dashed lines are added as a guide for the eye. Due to the high fluorescence effect occurred in the as-milled LiNa-Ni mixture, it has a relatively larger signal to noise ratio in the Raman data than that of the Ni-free sample.
3.2 Melting Behavior

Figure 3 shows the DSC results of as-milled LiNa-Ni mixture compared with the Ni-free mixture.

![DSC graph](image)

Figure 3 DSC patterns of as-milled 0.91(0.62LiBH₄-0.38NaBH₄)-0.09Ni mixture (red solid curve), compared with the as-milled 0.62LiBH₄-0.38NaBH₄ mixture (black dash curve). Samples were heated from 50 to 250 °C at 5 °C min⁻¹ and then cooled to RT at the same rate in Ar flowing at 70 mL min⁻¹.

The orthorhombic to hexagonal phase transition of LiBH₄ in the LiNa-Ni mixture occurs at an onset temperature of 99 ± 1 °C during heating. This is in agreement with the Ni-free sample within the standard deviation, and about 15 °C lower than the common phase transition temperature of LiBH₄ (~115 °C) [37]. This temperature reduction was proposed due to the existence of Li(Na)BH₄ [33,37]. Therefore, the Li(Na)BH₄ solid solution is formed in the as-milled LiNa-Ni mixture even though it is not observed in the PXD and Raman data. The corresponding phase transition temperatures during cooling of the LiNa-Ni and LiNa mixtures are both 89 ± 1 °C. This temperature is lower than that during heating as a consequence of under-cooling [33].
From DSC data the fusion and solidification onset temperatures of the as-milled LiNa-Ni mixture are determined to be $225 \pm 1 \, ^\circ C$ and $222 \pm 1 \, ^\circ C$, respectively, influenced by a minor under-cooling effect. These temperatures are similar to those for the Ni-free sample ($227 \pm 1 \, ^\circ C$ and $222 \pm 1 \, ^\circ C$), suggesting the addition of 9 mol% of nano-sized Ni does not change the melting point for the 0.62LiBH_4-0.38NaBH_4 mixture. However, by integration the area of those events, it is found that the phase transition areas are slightly reduced (Table B. 4 in Supporting Information). These areas are linearly proportional to the enthalpy.

3.3 Dehydrogenation Behavior

The TPD-MS trace for the dehydrogenation of the as-milled LiNa-Ni mixture is compared with the as-milled LiNa mixture in Figure 4.

![Figure 4 TPD-MS data show hydrogen desorption of the as-milled 0.91(0.62LiBH₄-0.38NaBH₄)-0.09Ni mixture (red solid curve), compared with that for the as-milled 0.62LiBH₄-0.38NaBH₄ mixture (black dash curve). Samples were heated at 2 °C min⁻¹ in flowing Ar at 160 mL min⁻¹ between 50 and 650 °C.](image-url)
The LiNa-Ni mixture starts to release H₂ from a relatively low temperature between 150-200 °C (Figure B. 2 in Supporting Information), which is about 50 °C lower than its melting point (225 °C) and about 100 °C lower than the dehydrogenation onset temperature (287 °C) for the Ni-free sample. However, a very limited amount of H₂ is released in this low temperature range.

The major dehydrogenation of the LiNa-Ni mixture starts above 350 °C, which is much lower than the 400 °C for the Ni-free sample. During decomposition, three peaks corresponding to three different dehydrogenation steps are observed at 468 °C, 515 °C and 586 °C. The peak temperatures for the 1st and 2nd peaks are 20 °C and 25 °C lower than the peaks at 488 °C and 540 °C for the Ni-free mixture. The 3rd peak at 586 °C is not observed in the Ni-free sample, suggesting a different decomposition pathway. Therefore, the dehydrogenation of LiNa-Ni mixture can be roughly divide into three ranges accordingly: 300-490 °C, 490-565 °C and 565-650 °C.

A total of 8.1 wt.% of hydrogen is released from LiNa-Ni upon heating to 650 °C in Ar. This value is calculated from the TPD-MS data (Figure 4) using the method described in Ref. [37]. When the weight of additives (17.8 wt%) is excluded, the LiBH₄-NaBH₄ content liberates 9.9 wt.% of hydrogen. The latter value is 9% less than the 10.9 wt.% for the Ni-free sample. B₂H₆ gas [75] is not detected during dehydrogenation of any sample in this work due to the experimental set-up whereby the mass spectrometer is connected to the TPD frame via a heated capillary tube and so the amount of gas that is able to reach the detector is limited. Therefore, the presence of a small amount of B₂H₆ cannot be ruled out.

3.4 Decomposition Pathways

Figure 5 summarizes the RT PXD results of as-milled LiNa-Ni mixture and LiNa-Ni samples heat-treated at 250 °C, 468 °C, 515 °C, 586 °C and 650 °C.
In general, the PXD patterns in Figure 5 only indicate the stable phases at room temperature that provide guidance for a general understanding of the dehydrogenation. Due to the fact that LiH ($T_{\text{melt}} = 687.6 \pm 0.8 ^\circ\text{C}$), B ($T_{\text{melt}} = 205.28 \pm 21.3 ^\circ\text{C}$) and Ni$_2B_3$ ($T_{\text{melt}} = 1007.55 ^\circ\text{C}$) have higher melting points than the heat-treatment temperatures (max. 650 $^\circ\text{C}$) used in this work [76,77], their presences in the product remain solid once precipitated. Though the melting point of Li$_{1.2}$Ni$_{2.5}$B$_2$ has not been reported, Ref. [78] suggested it is stable in crystalline structure to 760 $^\circ$ C. Thus, it is expected to be in its solid-state in the decomposition products. In addition, the metallic Na has a low melting point at 97.5 \pm 0.6 $^\circ$C [77], and thus stays in its liquid form once formed. However, unstable or intermediate phases are not represented but cannot be ruled out.

In order to investigate the solid-state reactions occurring in the low temperature range (150-250 $^\circ$ C), as-milled LiNa-Ni mixture was heated to 250 $^\circ$ C, treated at 250 $^\circ$ C, 468 $^\circ$ C, 515 $^\circ$ C, 586 $^\circ$ C and 650 $^\circ$ C in flowing Ar. The intensities are normalized. Dashed lines were added as a guide for the eye.
below the temperature where major dehydrogenation started in Ar. After heat-treatment, Bragg peaks of NiO disappear (Figure 5); indicating reactions between the parent borohydrides (very likely LiBH₄) and NiO. According to Ref. [79], LiMOₓ (M = transition metal) was observed as the main reaction product in a reaction involving transition metal oxide (MOₓ) and LiBH₄. Thus, the formation of LiₓNiₓO₂ (i.e. LiₓNiₓO₂, x =0.25, 0.33, 04, 0.75, 1 [80]) is expected in our work. However, no Bragg peaks of a possible reaction product LiₓNiₓO₂ have been observed by PXD at RT. In addition, a separate study of LiBH₄-Ni (14 wt.% Ni) systems with bulk (3 μm) and nano-sized Ni (~ 100 nm) (Figure D. 1 in Supporting Information) indicates that the reduction of the dehydrogenation peak temperatures of LiNa-Ni (Figure 4) is caused by the addition of nano-sized Ni.

The PXD data for the sample heat-treated at 468 °C (Figure 5) show LiH, Ni₄B₃ and NaBH₄ phases. The formation of Ni₄B₃ is caused by the reaction between LiBH₄ and nano-sized Ni (Equation 1) leading to a 20 °C reduction of dehydrogenation peak temperature compared to the Ni-free sample, and thus in agreement with the literature [60]. However, other possible reaction products such as Ni₂B (Equation 2) or Ni₃B (Equation 3) [60] are not observed, suggesting these reactions have not occurred under the applied conditions or reaction products are amorphous. Signals related to Li₂B₁₀H₁₀ (i.e. most intensive Bragg peaks at 14.5, 15.7, 17.8 and 18.8 2θ°) [81] or Li₂B₁₂H₁₂ (i.e. most intensive Bragg peaks at 16.0 and 18.5 2θ°) [82] are not observed in the PXD patterns. However, the corresponding Raman spectra (Figure B. 3 in Supporting Information) present signals of remaining NaBH₄ (1276 cm⁻¹), B (1121 cm⁻¹ and 1191 cm⁻¹), and Li₂B₁₂H₁₂ (765 cm⁻¹). The identification of LiH from PXD, as well as B and Li₂B₁₂H₁₂ from Raman spectroscopy confirm the decomposition of LiBH₄ via two competing decomposition pathways as suggested in Equation 4 and 5. There is no evidence of the decomposition of NaBH₄, which is in good agreement with the Ni-free sample [37]. Thus the 1st dehydrogenation step (300-490 °C) is associated with the reaction between LiBH₄ and nano-sized Ni along with the dehydrogenation of LiBH₄ in the mixture.
\[\text{LiBH}_4 = \text{LiH} + B + 3/2 \text{H}_2 \quad 13.9 \text{ wt.\%} \quad \text{Equation 4} \]
\[\text{LiBH}_4 = 5/6 \text{LiH} + 1/12 \text{Li}_2\text{B}_{12}\text{H}_{12} + 13/12 \text{H}_2 \quad 10.0 \text{ wt.\%} \quad \text{Equation 5} \]

At 515 °C, Bragg peaks of elemental Na, LiH and Ni₄B₃, along with weak peaks from NaBH₄, are observed in the PXD pattern (Figure 5). This indicates H₂ release mainly due to dehydrogenation of NaBH₄ for the 2nd dehydrogenation step (490-565 °C). The corresponding Raman spectra at this temperature (Figure B. 3 in Supporting Information) shows [B₁₂H₁₂]**²⁻** (762 cm⁻¹), B (1112 cm⁻¹), and two unknown peaks at 1249 cm⁻¹ and 1224 cm⁻¹ (shoulder).

At 586 °C, where the 3rd dehydrogenation step occurs, phases such as Li₁.₂Ni₂.₅B₂, Ni₄B₃ and Na are present in the PXD pattern (Figure 5), but the Bragg peaks of LiH have disappeared. Li₁.₂Ni₂.₅B₂ has not been observed in any other sample heat-treated at lower temperatures. Its existence is in agreement with the formation of Li₁.₂Ni₂.₅B₂ at 600 °C for 2LiBH₄-Ni (micro-sized Ni ~ 41 μm) [83]. Li₁.₂Ni₂.₅B₂ is stable and it is observed in the PXD pattern of the sample heat-treated at 650 °C, where Ni₄B₃ has disappeared. The corresponding Raman spectra at 586 °C (Figure B. 3 in Supporting Information) shows [B₁₂H₁₂]**²⁻** (752 cm⁻¹), and three unknown peaks at 1059 cm⁻¹, 1173 cm⁻¹ and 1220 cm⁻¹. The signals of B are not observed. Thus the dehydrogenation reaction occurring at this temperature is proposed to a chemical reaction between LiH, B and Ni₄B₃ that forms Li₁.₂Ni₂.₅B₂, H₂ and unknown phase(s).

Furthermore, it has been found that the position of the boron breathing mode (ν₂) of the [B₁₂H₁₂]**²⁻** red shifts with increasing heat-treatment temperature (Figure B. 3 in Supporting Information). This reduction in wavenumber is possibly due to the formation of Na₂B₁₂H₁₂ or a solid solution: LiₙNa₁-xB₁₂H₁₂, since the Raman shift of Na₂B₁₂H₁₂ was about 20 cm⁻¹ lower than that of Li₂B₁₂H₁₂ [84] and the addition of Ni facilitated the formation of metal dodecaborates [85]. A degradation of the boron skeleton of [B₁₂H₁₂]**²⁻** could cause a shift of wavenumbers. However, this is unlikely to occur due to the stable cluster structure [86]. Moreover, lithium borates (such as LiB₃O₅, Li₂BO₂, Li₂B₄O₇,
Li$_4$B$_2$O$_5$) have been ruled out as contributing towards the unknown Raman peaks in the heat-treated samples at 515 and 586 °C [87–91].

3.5 Recombination

The measured (Meas.) H$_2$ release during cycling (Figure C. 1 in Supporting Information) for the LiNa and LiNa-Ni mixtures are summarized in Table 1. The corrected values (Corr.) exclude the weight of additive.

Table 1 Measured (Meas.) hydrogen release (wt.%) of 0.91(0.62LiBH$_4$-0.38NaBH$_4$)-0.09Ni during cycling (500 °C, 1 bar H$_2$ and 10 h for desorption, and 400 °C, 130 bar H$_2$ and 12 h for absorption), compared with 0.62LiBH$_4$-0.38NaBH$_4$. The corrected values (Corr.) are found by disregarding the weight of the Ni additive.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st cycle</td>
<td>5.5</td>
<td>5.1</td>
<td>6.2</td>
</tr>
<tr>
<td>2nd cycle</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>3rd cycle</td>
<td>0.8</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

The LiNa mixture releases 5.5 wt.% of hydrogen during the 1st dehydrogenation (Table 1). The amount of hydrogen desorbed under the same conditions after reabsorption decreases dramatically to 1.1 wt.% at the 2nd cycle and further to 0.8 wt.% at the 3rd cycle. This poor cycling stability agrees with Ref. [28].

The LiNa-Ni mixture releases 6.2 wt.% of hydrogen (corrected value) during the 1st dehydrogenation (Table 1), which is 13 % higher than the 5.5 wt.% for the Ni-free sample, due to the destabilization effect of the nano-sized Ni additive. After rehydrogenation, the LiNa-Ni mixture absorbs 1.3 wt.% of hydrogen (corrected value) at the 2nd cycle, which is slightly higher than the 1.1 wt.% for the Ni-free sample. In addition, the reversible hydrogen content at the 3rd cycle for the LiNa-Ni mixture is 0.7 wt.% (corrected value), which is slight lower than the 0.8 wt.% for the Ni-free sample. Nevertheless, the reversible hydrogen contents of LiNa-Ni mixture at the 2nd and 3rd cycles are significantly reduced in contrast to that for the 1st cycle, which is not expected due to the Ni-induced high reabsorption
capacity of LiBH$_4$ [60]. This may be caused by the use of much harsher rehydrogenation conditions (350 bar, 550 °C, 24 h) in Ref. [60].

Figure 6 and Figure 7 show PXD and FTIR results for the LiNa and LiNa-Ni samples in their reabsorbed state after being cycled three times.
Figure 6 (a) PXD patterns (Cu Kα, λ = 1.5418 Å) and (b) FTIR spectra of 0.62LiBH₄-0.38NaBH₄ decomposed at 500 °C in 1 bar static H₂ for 10 h and recombined in 130 bar H₂, 400 °C for 12 h at 3rd reabsorbed states (denoted as 3rd Abs.), compared with the as-milled sample (denoted as RT).
The three-time rehydrogenated LiNa mixture (Figure 6) contains LiH (PXD) and NaBH₄ (PXD, FTIR), indicating the NaBH₄ component is stable during cycling and the LiBH₄ component is not reversible under the applied conditions. The LiBH₄ is not fully decomposed after being kept at 500 °C in 1 bar H₂ for 10 h (Figure C. 2 in Supporting Information). Thus, the small amount of reabsorbed hydrogen contents at the 2nd and 3rd cycle (Table 1) may be mainly due to the dehydrogenation of the remaining LiBH₄.

The PXD pattern of the three-time rehydrogenated LiNa-Ni mixture (Figure 7) shows Bragg peaks of NaBH₄, LiH, NaH, Ni₄B₃, Ni₃B and Ni₂B phases, indicating the occurrence of: reactions of LiBH₄ with Ni; decomposition of LiBH₄; and partial decomposition of NaBH₄ during the cycling. Due to the addition of nano-sized Ni, LiBH₄ is found to be fully decomposed after the first dehydrogenation process as no LiBH₄ signal has been observed in either PXD or FTIR result (Figure C. 3 in Supporting Information). A broad shoulder peak at around 2470 cm⁻¹ is
cm⁻¹ is found in the FTIR data for the reaction product of LiNa-Ni at the 1st dehydrogenated state (Figure C. 3 in Supporting Information), which is due to the formation of closo-boranes ([B₁₀H₁₀]²⁻ at ~2467 cm⁻¹ or [B₁₂H₁₂]²⁻ at ~2480 cm⁻¹) [92,93]. This broad peak has not been observed by FTIR for the dehydrogenation product of the Ni-free sample at the same state (Figure C. 2 in Supporting Information), confirming the addition of Ni facilitates the formation of dodecaborates, as mentioned in Ref. [85].

The Bragg peaks of NaH are first found in the PXD pattern for the dehydrogenation product of LiNa-Ni after being kept at 500 °C in 1 bar H₂ for 10 h (Figure C. 3 in Supporting Information) and its observation can be explained as follows: due to the low boiling point of Na (i.e. 281 °C at 10⁻⁵ bar of Na gas [94]), any reaction product Na (liquid) vaporizes immediately. The gaseous Na will condense when it reaches the colder part outside the hot zone (might further solidify, subject to temperature). The escaped Na reacts in an exothermic reaction with gaseous H₂ to form NaH, leading to a physical segregation of decomposition products [95]. The hydrogenation of Na was also noted to occur at 300 °C in 2-3 bar H₂ [96]. Thus, when the decomposition occurs in Ar, NaH is not observed (Figure 5). To prevent such eventualities, Na could be physically or chemically confined using nano-scaffolds (nanoconfinement) or metal fluorides [97] or closed containers [98].

In addition, Ni₄B₃ is one of the major dehydrogenation products of the LiNa-Ni mixture after being kept at 500 °C in 1 bar H₂ for 10 h (Figure C. 3 in Supporting Information). It could convert to Ni₃B after rehydrogenation, and Ni₃B could be further oxidized by B to Ni₂B [95]. Since the Bragg peaks for NaH disappear after the first rehydrogenation step (Figure C. 3 in Support Information), it is proposed that NaH reacts with Ni₄B₃ under H₂ and consequently forms NaBH₄ and Ni₃B during H₂ absorption.

After being cycled 3 times, the FTIR data (Figure 7) for the rehydrogenated LiNa-Ni mixture show peaks at 1079 cm⁻¹, 1238 cm⁻¹, 1308 cm⁻¹ and a shoulder around 2270 cm⁻¹. These peaks are similar to LiBH₄ (i.e. 1091 cm⁻¹, 1236 cm⁻¹,
1308 cm\(^{-1}\) and a 2273 cm\(^{-1}\) in as-milled LiNa-Ni), suggesting an amorphous LiBH\(_4\) phase is reformed, which can be attributed to the catalytic effect of Ni\(_4\)B\(_3\) on rehydrogenation [60].

Broad signals around 2400-2500 cm\(^{-1}\) have been noticed in the FTIR data for the rehydrogenated LiNa (Figure 6) and LiNa-Ni (Figure 7), indicating the formation of [B\(_{10}\)H\(_{10}\)]\(^2\) (\(~2467\) cm\(^{-1}\) [92] or [B\(_{12}\)H\(_{12}\)]\(^2\) (\(~2480\) cm\(^{-1}\) [93]. However, none of the mentioned dodecaboranes could be identified from the corresponding PXD data, where we would have expected Bragg peaks in the low 2\(\theta\) range (15-20 2\(\theta\)) [81,82], thus indicating that they could be present in an amorphous or nano-crystalline state.

Although the cycling stability of the LiNa mixture has not been significantly improved by adding nano-sized Ni particles, the reaction product Ni\(_4\)B\(_3\) facilitates the reformation of LiBH\(_4\) under much milder conditions (lower temperature and pressure) than reported before [60].

4 Conclusions
The dehydrogenation mechanism of the 0.91(0.62LiBH\(_4\)-0.38NaBH\(_4\))-0.09Ni mixture is systematically studied between 25 °C and 650 °C in flowing Ar. The addition of 9 mol\% nano-sized Ni powder does not affect the low orthorhombic to hexagonal LiBH\(_4\) phase transition temperature (99 °C) and the low melting temperature (225 °C), whilst it reduces the dehydrogenation peak temperatures by 20-25 °C, leading to three major decomposition steps, from:

1) 300 °C to 490 °C, H\(_2\) release is associated with a reaction between LiBH\(_4\) and nano-sized Ni (forming LiH and Ni\(_4\)B\(_3\)), along with the dehydrogenation of the LiBH\(_4\) component in the mixture, forming LiH, B, Li\(_2\)B\(_{12}\)H\(_{12}\);

2) 490 °C to 565 °C, the dehydrogenation is mainly due to the decomposition of the NaBH\(_4\) component, forming Na, B, and possibly Na\(_2\)B\(_{12}\)H\(_{12}\);

3) 565 °C to 650 °C, H\(_2\) liberation is due to a reaction between LiH, B and Ni\(_4\)B\(_3\), forming Li\(_{1.2}\)Ni\(_{2.5}\)B\(_2\) and unknown phases.
A total of 8.1 wt.% of hydrogen is released upon heating to 650 °C in Ar, which is lower than 10.9 wt.% of the Ni-free mixture. This 0.91(0.62LiBH₄-0.38NaBH₄)-0.09Ni mixture has a poor cycling stability as its reversible hydrogen content reduced from 5.1 wt.% to 1.1 wt.% to 0.6 wt.% during three complete desorption-absorption-cycles. However, it is suggested that its LiBH₄ content is partially reversible under much milder conditions than reported before [60].

5 Acknowledgements

This work was supported by the People Programme - Marie Curie Actions of the European Union Seventh Framework Programme FP7/2007-2013 [grant numbers 607040 - Marie Curie ITN ECOSTORE].

6 References

[40] Hwang SJ, Bowman RC, Reiter JW, Rijssenbeek J, Soloveichik GL, Zhao JC, et

Brucker. EVA Software - The next era in phase analysis 2016.

Supporting Information

Appendix A Analysis of as-received nano-sized Ni powder

Figure A. 1 shows the PXD pattern of the as-received nano-sized Ni at room temperature. Bragg peaks are mainly observed for the cubic Ni phase. Some low-intensity peaks associated with NiO are detected. The amount of NiO is 6.4 ± 0.2 wt.% according to QPA refinement results.

![Figure A. 1 QPA refinement result of as-received nano-sized Ni, including the observed XRD (Cu Kα, $\lambda = 1.5418 \ \text{Å}$) profile (blue), the calculated profile (red, used to fit the observed profile) and the difference profile (grey). Goodness-of-fit = 1.483.](image)

The Philips XL-30 (LaB6) with Link Isis EDS Scanning Electron Microscope (SEM) was used to identify the size and morphology of nano-sized Ni powder (Figure A. 2). Powder agglomeration was observed.

![Figure A. 2 Secondary SEM images of as-received nano-sized Ni powder at room temperature.](image)
Appendix B Analysis of LiBH$_4$-NaBH$_4$-Ni mixture

Figure B. 1 and Table B. 1 illustrate the TOPAS QPA refinement results of the as-milled 0.91(0.62LiBH$_4$-0.38NaBH$_4$)-0.09Ni mixture.

![Figure B. 1 QPA refinement result of the as-milled 0.91(0.62LiBH$_4$-0.38NaBH$_4$)-0.09Ni mixture, including the observed XRD (Cu K$_{α}$ $\lambda = 1.5418 \text{ Å}$) profile (blue), the calculated profile (red, used to fit the observed profile) and the difference profile (grey). Goodness-of-fit = 1.459.]

Table B. 1 Refined crystal structure parameters of the LiBH$_4$ and NaBH$_4$ components in the as-milled 0.91(0.62LiBH$_4$-0.38NaBH$_4$)-0.09Ni mixture in contrast to of as-milled 0.62LiBH$_4$-0.38NaBH$_4$ mixture

<table>
<thead>
<tr>
<th></th>
<th>As-milled Pure</th>
<th>As-milled Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LiBH$_4$</td>
<td>NaBH$_4$</td>
</tr>
<tr>
<td>a (Å)</td>
<td>7.199 ± 0.003</td>
<td>-</td>
</tr>
<tr>
<td>b (Å)</td>
<td>4.438 ± 0.002</td>
<td>-</td>
</tr>
<tr>
<td>c (Å)</td>
<td>6.798 ± 0.002</td>
<td>-</td>
</tr>
<tr>
<td>Volume (Å3)</td>
<td>216.84 ± 0.01</td>
<td>-</td>
</tr>
</tbody>
</table>

	c-NaBH$_4$	-	-	-
a (Å)	6.169 ± 0.002	6.163 ± 0.002	6.188 ± 0.001	
Volume (Å3)	234.8 ± 0.013	234.06 ± 0.022	236.91 ± 0.11	

Table B. 2 and Table B. 3 summarize the Raman and FTIR frequencies for the 0.91(0.62LiBH$_4$-0.38NaBH$_4$)-0.09Ni mixture compared with that for 0.62LiBH$_4$-0.38NaBH$_4$ mixture. As a metal, Ni was not detectable by vibrational techniques.
Table B. 2 Experimental wavenumbers (cm⁻¹) of the as-milled 0.91(0.62LiBH₄-0.38NaBH₄)-0.09Ni mixture observed in Raman compared with that for the as-milled 0.62LiBH₄-0.38NaBH₄ mixture observed in FTIR compared as-milled 0.62LiBH₄-0.38NaBH₄

<table>
<thead>
<tr>
<th>Mode</th>
<th>LiBH₄</th>
<th>NaBH₄</th>
<th>LiBH₄-NaBH₄</th>
<th>LiBH₄-LiBH₄-Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>v₄</td>
<td>Aᵣ</td>
<td>1096</td>
<td>1097</td>
<td>1097</td>
</tr>
<tr>
<td>v₄'</td>
<td>Aᵣ</td>
<td>n.a.</td>
<td>1240</td>
<td>1242</td>
</tr>
<tr>
<td>v₂</td>
<td>A₁</td>
<td>1277</td>
<td>1279</td>
<td>1282</td>
</tr>
<tr>
<td>v₂</td>
<td>B₁₆₂</td>
<td>1290</td>
<td>1290</td>
<td>1290</td>
</tr>
<tr>
<td>v₂'</td>
<td>Aᵣ</td>
<td>1319</td>
<td>1320</td>
<td>1317</td>
</tr>
<tr>
<td>2v₄</td>
<td>2163</td>
<td>2157</td>
<td>2159</td>
<td>2156</td>
</tr>
<tr>
<td>2v₄'</td>
<td>2180</td>
<td>2177</td>
<td>2167</td>
<td>n.a.</td>
</tr>
<tr>
<td>v₃</td>
<td>Aᵣ</td>
<td>2273</td>
<td>2275</td>
<td>2275</td>
</tr>
<tr>
<td>v₁</td>
<td>Aᵣ</td>
<td>2299</td>
<td>2299</td>
<td>2300</td>
</tr>
<tr>
<td>v₁</td>
<td>A₁</td>
<td>2331</td>
<td>2335</td>
<td>2323</td>
</tr>
<tr>
<td>v₂+ν₄</td>
<td>E</td>
<td>2401</td>
<td>2403</td>
<td>2404</td>
</tr>
</tbody>
</table>

Table B. 3 Experiment wavenumbers (cm⁻¹) of the as-milled 0.91(0.62LiBH₄-0.38NaBH₄)-0.09Ni mixture observed in FTIR compared as-milled 0.62LiBH₄-0.38NaBH₄

<table>
<thead>
<tr>
<th>Mode</th>
<th>LiBH₄</th>
<th>NaBH₄</th>
<th>LiBH₄-NaBH₄</th>
<th>LiBH₄-LiBH₄-Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As-received</td>
<td>Lit. [B9-10]</td>
<td>As-received</td>
<td>Lit. [B9-10]</td>
</tr>
<tr>
<td>v₄</td>
<td>Aᵣ</td>
<td>1089</td>
<td>1089</td>
<td>1092</td>
</tr>
<tr>
<td>v₄</td>
<td>B₂</td>
<td>1107</td>
<td>1119</td>
<td>1117</td>
</tr>
<tr>
<td>v₄'</td>
<td>Aᵣ</td>
<td>1233</td>
<td>1254</td>
<td>1237</td>
</tr>
<tr>
<td>v₂</td>
<td>B₁₆₂</td>
<td>1285</td>
<td>1284</td>
<td>1286</td>
</tr>
<tr>
<td>v₂'</td>
<td>Aᵣ</td>
<td>1307</td>
<td>1323</td>
<td>1310</td>
</tr>
<tr>
<td>2v₄'</td>
<td>2180</td>
<td>2176</td>
<td>2180</td>
<td>2179</td>
</tr>
<tr>
<td>2v₄</td>
<td>2213</td>
<td>2222</td>
<td>2221</td>
<td>2222</td>
</tr>
<tr>
<td>v₃</td>
<td>Aᵣ</td>
<td>2271</td>
<td>2277</td>
<td>2274</td>
</tr>
<tr>
<td>v₃</td>
<td>B₂</td>
<td>2282</td>
<td>2297</td>
<td>2297</td>
</tr>
<tr>
<td>v₃</td>
<td>Aᵣ</td>
<td>2300</td>
<td>2307</td>
<td>2300</td>
</tr>
<tr>
<td>v₂+ν₄</td>
<td>E</td>
<td>2399</td>
<td>2393</td>
<td>2400</td>
</tr>
</tbody>
</table>

Figure B. 2 shows the hydrogen desorption from the as-milled 0.91(0.62LiBH₄-0.38NaBH₄)-0.09Ni compared with the as-milled 0.62LiBH₄-0.38NaBH₄ mixture in the temperature range of 50 to 300 °C. The onset dehydrogenation...
temperature of $0.91(0.62\text{LiBH}_4-0.38\text{NaBH}_4)-0.09\text{Ni}$ locates in between 150 to 200 °C as a consequence of the small amount of NiO (1.3(3) wt.%).

Figure B. 2 TPD-MS data show hydrogen desorption of the as-milled $0.91(0.62\text{LiBH}_4-0.38\text{NaBH}_4)-0.09\text{Ni}$ mixture, compared with that for the as-milled $0.62\text{LiBH}_4-0.38\text{NaBH}_4$ mixture. Samples were heated at 2 °C min$^{-1}$ in flowing Ar at 160 mL min$^{-1}$ between 50 and 300 °C.

Table B. 4 Summarizes the DSC curve areas for the as-milled $0.91(0.62\text{LiBH}_4-0.38\text{NaBH}_4)-0.09\text{Ni}$ compared with the as-milled $0.62\text{LiBH}_4-0.38\text{NaBH}_4$ mixture. These area values are linearly proportional to the enthalpy.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Energy</th>
<th>Heating</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Phase change</td>
<td>Fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mu V \text{ mg}^{-1} \text{ LiBH}_4$</td>
<td>$\mu V \text{ mg}^{-1} \text{ LiNa}$</td>
</tr>
<tr>
<td>1 $0.62\text{LiBH}_4-0.38\text{NaBH}_4$</td>
<td>18.9 ± 1.0</td>
<td>12.7 ± 0.6</td>
<td>13.2 ± 0.7</td>
</tr>
<tr>
<td>2 $0.91(0.62\text{LiBH}_4-0.38\text{NaBH}_4)-0.09\text{Ni}$</td>
<td>15.5 ± 0.7</td>
<td>11.1 ± 0.6</td>
<td>11.8 ± 0.6</td>
</tr>
</tbody>
</table>
Figure B. 3 shows the room temperature Raman results of heat-treated 0.91(0.62LiBH$_4$-0.38NaBH$_4$)-0.09Ni samples (at 468 °C, 515 °C and 586 °C) compared with the as-milled LiNa-Ni mixture at room temperature. Due to high fluorescence effect, Raman data in the B-H stretching region are not available.

Due to its high melting point, B ($T_{\text{melt}} = 2052.8 \pm 21.3$ °C) is expected to stay in solid-state once precipitated. Beside, since the Li$_2$B$_{12}$H$_{12}$ phase did not have any melting/fusion/frothing behavior when it is heated to 600 °C (thermogravimetric analysis, DTA/TGA) [B11], it is therefore expected in their solid-state in the decomposition products.

[B2] Hagemann H, Filinchuk Y, Chernyshov D, van Beek W. Lattice anharmonicity and structural evolution of LiBH$_4$: an insight from Raman and X-

Appendix C Cycling stability of LiBH₄-NaBH₄ and LiBH₄-NaBH₄-Ni mixtures

Figure C. 1 shows the H₂ releases of each desorption process during cycling for the 0.62LiBH₄-0.38NaBH₄ and 0.91(0.62LiBH₄-0.38NaBH₄)-0.09Ni mixtures.

Figure C. 1 Sievert’s measurements showing hydrogen release (in wt.%) while keeping the as-milled 0.62LiBH₄-0.38NaBH₄ (a, b, c) and 0.91(0.62LiBH₄-0.38NaBH₄)-0.09Ni (d, e, f) mixtures under 1 bar H₂ at 500 °C (ΔT/Δt = 5 °C min⁻¹) for 10 h for desorption and under 130 bar H₂ at 400 °C for 12 h for rehydrogenation.

Figure C. 2 and Figure C. 3 show the PXD and FTIR results for the 0.62LiBH₄-0.38NaBH₄ and 0.91(0.62LiBH₄-0.38NaBH₄)-0.09Ni mixtures during cycling. The Cu based impurities (Cu₂O and CuO) observed in PXD pattern was introduced
from the outer surface of sample holder during operation (not participated in dehydrogenation). No $[\text{B}_n\text{H}_m]^{2-}$ has been seen in PXD patterns (10-20° 2θ).

![PXD pattern and FTIR spectrum](image)

Figure C. 2 (a) PXD pattern (Cu K_{α}, $\lambda = 1.5418$ Å) and (b) FTIR spectrum of 0.62LiBH$_4$-0.38NaBH$_4$ decomposed at 500 °C in 1 bar static H$_2$ for 10 h (denoted as 1st Des.) and recombined in 130 bar H$_2$, 400 °C for 12 h at 3rd reabsorbed states (denoted as 3rd Abs.), compared with the as-milled sample (denoted as RT).
Figure C. 3 (a) PXD pattern (Cu Kα, λ = 1.5418 Å) and (b) FTIR spectrum of 0.92(0.62LiBH$_4$-0.38NaBH$_4$)-0.09Ni decomposed at 500 °C in 1 bar static H$_2$ for 10 h (denoted as 1st Des.) and recombined in 130 bar H$_2$, 400 °C for 12 h at 1st and 3rd reabsorbed states (denoted as 1st Abs. and 3rd Abs., respectively), compared with the as-milled sample (denoted as RT).
Appendix D Dehydrogenation behavior of LiBH₄-Ni system

To characterize the nano-sized effect of Ni addition, two types of Ni powder from Sigma-Aldrich (bulk: average mean size 3 μm, 99.7%; nano-sized: average mean size <100 nm, 99.9%) were mixed with LiBH₄ using ball milling. Figure D. 1 shows their temperature-dependent desorption results from 50 °C to 500 °C in flowing Ar using TPD-MS.

![Figure D. 1 TPD-MS results of as-milled LiBH₄-Ni (14 wt.%) samples in the range of 50-500°C heated at 2 °C min⁻¹ in contrast to as-milled LiBH₄. The desorbed H₂ was carried by Ar flowing at 160 mL min⁻¹ and measured by MS. Signals were normalized for comparison. No B₂H₆ was detected.](image)

The LiBH₄-Ni (bulk) sample started dehydrogenation at 287 °C that was very close to 285 °C for the as-milled LiBH₄. Thus, the added 14 wt.% bulk Ni did not decrease the decomposition onset temperature. However, it reduced the peak temperature by 10 °C (to 460 °C) compared with the 470 °C for the as-milled LiBH₄. Upon heating to 500 °C, the amount of H₂ released from the LiBH₄-Ni (bulk) sample was 5.2 wt.%. If the weight of Ni is excluded, LiBH₄ content released 6.0 wt.% of hydrogen, which was slightly smaller than the 6.7 wt.% for the as-milled LiBH₄.
The nano-sized Ni not only decreased the decomposition onset temperature (from 285 °C for as-milled LiBH$_4$) to 187 °C, but also reduced the peak temperature by 25 °C (to 445 °C) compared with the 470 °C for Ni-free sample. In contrast to the bulk Ni sample, this peak temperature was also 15 °C lower.

The decrease of onset temperature was possibly due to the NiO presented; whilst the reduction in peak temperature was caused by the nano-sized Ni additive and enhanced by its nano-scale effect when compared with the bulk Ni sample. The H$_2$ release from nano-sized Ni sample was 5.5 wt.% when heated to 500 °C. This value was close to the 5.2 wt.% for bulk Ni sample. They were about half of the 12.3 wt.% reported by Ref. [D1] for a LiBH$_4$-Ni (25 wt.%) sample when heated to 527 °C using a Thermo-Gravimetric Analysis (TGA) apparatus. Since this work used different experimental conditions (such as size and amount of nano-sized Ni, sample preparation methods, equipment and decomposition conditions) when compared with Ref. [D1], it is difficult to determine the reason for this difference in observed H$_2$ evolutions. Moreover, considering the available composition of LiBH$_4$ in the nano-sized Ni sample, about 6.4 wt.% of hydrogen was released from the LiBH$_4$ content, which was slightly larger than the 6.0 wt.% for the bulk Ni sample but was still smaller than the 6.7 wt.% for Ni-free sample.