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Self-Adaptive Software (SAS) can reconfigure itself to adapt to the changing environment at runtime, aim-

ing to continually optimize conflicted nonfunctional objectives (e.g., response time, energy consumption,

throughput, cost, etc.). In this article, we present Feature-guided and knEe-driven Multi-Objective optimiza-

tion for Self-Adaptive softwAre (FEMOSAA), a novel framework that automatically synergizes the feature

model and Multi-Objective Evolutionary Algorithm (MOEA) to optimize SAS at runtime. FEMOSAA operates

in two phases: at design time, FEMOSAA automatically transposes the engineers’ design of SAS, expressed

as a feature model, to fit the MOEA, creating new chromosome representation and reproduction operators.

At runtime, FEMOSAA utilizes the feature model as domain knowledge to guide the search and further ex-

tend the MOEA, providing a larger chance for finding better solutions. In addition, we have designed a new

method to search for the knee solutions, which can achieve a balanced tradeoff. We comprehensively evalu-

ated FEMOSAA on two running SAS: One is a highly complex SAS with various adaptable real-world software

under the realistic workload trace; another is a service-oriented SAS that can be dynamically composed from

services. In particular, we compared the effectiveness and overhead of FEMOSAA against four of its variants

and three other search-based frameworks for SAS under various scenarios, including three commonly applied

MOEAs, two workload patterns, and diverse conflicting quality objectives. The results reveal the effectiveness

of FEMOSAA and its superiority over the others with high statistical significance and nontrivial effect sizes.
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1 INTRODUCTION

Self-Adaptive Software (SAS) is a special type of software that is capable of adapting and recon-
figuring itself at runtime through a set of known features (e.g., CPU cap, thread pool size, cache
size, etc.), according to the changing environment [17]. One major goal of SAS is to continually
optimize multiple and often conflicting nonfunctional objectives (e.g., response time versus energy
consumption, throughput versus cost, and the like). However, given the dynamic and uncertain
nature of running software, it is difficult to fully specify all possible conditions and their adap-
tation solutions at design time. Thus, designing an efficient and effective runtime optimization
approach is necessary yet challenging. Depending on the complexity of SAS, software engineers
have exploited various search algorithms (e.g., exact or stochastic search) for continually finding
the optimal (or near-optimal) adaptation solution for SAS at runtime [23][51][12][42][41][15][13].

To optimize SAS at runtime using the search algorithms, there are two crucial challenges: First,
it is difficult to effectively and systematically convert the SAS design to the context of a search
algorithm while considering the right encoding of features in the representation of optimization
(e.g., using only the features that contribute to different aspects of the variability of SAS). Here, the
features might be categorical or numeric, where the former refers to those with distinct character-
istics (e.g., the Cache feature is “on” or “off”), and the latter denotes those that can be quantified,
measured, and sorted (e.g., the size of maxThreads). Furthermore, it is difficult to effectively and
systematically handle the features’ dependencies; for example, one can change Cache Mode only
if the Cache feature is “turned on.” Dependency can become even more complex in the presence
of numeric features; for example, in Tomcat [2], the size of maxThreads should not be less than
the size of minSpareThreads. Those conversion tasks are nontrivial as the design of SAS can be
complex, and most search algorithms cannot handle dependency constraints in nature. Second,
optimizing multiple conflicting objectives and managing their tradeoffs are complex and challeng-
ing, especially for SAS runtime. This is attributed to the huge number of alternative adaptation
solutions and the requirement that the found solution be effective. Moreover, the dynamic and un-
certain nature of SAS further complicates the conflicting relations between objectives, rendering
the tradeoff surface difficult to explore. Those challenges, when not appropriately addressed, can
result in compromised quality, unacceptable running overhead, and imbalanced tradeoff in SAS
runtime optimization.

Most existing work fails to handle the first challenge as researchers have relied on a manual
and/or incomplete conversion of the SAS design in the search algorithm’s context [42][1][22][51],
which renders the process expensive, nonsystematic, and error-prone. Moreover, the feature de-
pendencies are often ignored, wasting the valuable function evaluations on invalid solutions at
SAS runtime while providing no guarantee of finding the valid ones. Inspired by the applications
of search algorithms to Software Product Line problems [45], researchers [23][41] have combined
the feature model [33] with search algorithms to optimize SAS at runtime, considering categorical
dependencies. However, numeric features are ignored, and a solution often encodes all the features
using a simple binary representation. This might lead to the curse of dimensionality and thereby en-
tail unnecessary complexity at SAS runtime. Further, existing approaches cannot prevent wasteful
exploration of invalid solutions and difficult-to-handle dependencies related to numeric features.
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For the second challenge, exact search [23] [9], with the helps of objective aggregation (e.g., a
weighted sum), has been exploited for SAS runtime optimization. However, modern SAS often ex-
hibits high variability, leading to an explosion of the search space of all possible solutions and ren-
dering the problem intractable. Henceforth, exact search may fail to scale at runtime. In contrast,
stochastic search, particularly evolutionary algorithms that are widely applied in Search-Based
Software Engineering (SBSE), tend to be naturally robust in solving problems with extremely high
numbers of alternatives and thus appealing for SAS optimization [29]. Those algorithms, when
properly tailored, can lead to approximate and near-optimal solutions for complex software en-
gineering problems with reasonable running time (minutes, if not seconds) [31]. Furthermore,
stochastic search has proved effective for many real-time systems [22][27][51][12]. Often, existing
approaches rely on a single-objective evolutionary algorithm to optimize SAS by simply trans-
forming a multi-objective problem into an aggregated single-objective one [42][27]. While objec-
tive aggregation might be preferable for some contexts, it has been shown that there are cases
where assigning weights to different objectives is a nontrivial task for software engineers, and
the aggregation can hardly maintain a good diversity of solutions [29]. To alleviate this issue,
studies [1][22][51] have used NSGA-II [20], a popular Multi-Objective Evolutionary Algorithm
(MOEA), to optimize SAS without using weighted aggregation; these have shown that MOEA can
find more convergent and diverse solutions in the tradeoff surface than optimizing via objective
aggregation. However, NSGA-II has a coarse diversity preservation mechanism that is unable to
provide well-distributed solutions in certain cases [52]. Therefore, it is desirable to have a general
framework that can easily work with different MOEAs for optimizing SAS without suffering the
limitation of one specific algorithm. In addition, given the fact that MOEAs produce a set of non-
dominated solutions, there is no established method for the SAS to choose an appropriate one for
adaptation at runtime, thus entailing the risk of imbalanced tradeoffs.

To address these challenges and limitations, this article presents Feature-guided and knEe-
driven Multi-Objective optimization for Self-Adaptive softwAre (FEMOSAA), a novel framework
that automatically synergizes the feature model and a given MOEA to optimize SAS at runtime.
Specifically, our contributions include:

—We rely on the feature model to represent the design of a given SAS with explicit consider-
ations of numeric features and their dependencies. In FEMOSAA, we provide an automatic
and systematic approach to transpose a given design of SAS, expressed as a feature model,
into the MOEA’s context at design time. Further, such transposition extends the internal
structure of MOEAs in order to improve their ability to search for better adaptation solutions
at SAS runtime. Notably, we contribute to the following in the transposition approach:
(1) To tailor the problem to be more suitable for SAS runtime, we discard lengthy binary

encoding. Instead, our approach identifies the elitist features from the feature model
to encode an elegant and polyadic chromosome representation in the MOEA. By
“elitist features,” we refer to those that cannot be removed in the optimization without
damaging the original variability of SAS while minimizing the length of encoding. The
benefit of such encoding is that (i) it is intuitive, simpler, and enables direct dependency
extraction and (ii) reducing the number of genes helps to greatly shrink the search
space and simplify the dependency constraints, which also improves the quality of the
solutions found while shortening the running time of MOEA.

(2) To better guide the search and avoid exploring invalid solutions, our approach extracts
feature dependencies with respect to these elitist features. Then, these dependencies
are injected into the basic mutation and crossover operators of the MOEA to create new
dependency-aware operators. These operators can systematically steer the MOEA to
focus on exploring valid solutions for SAS, creating a larger chance to find better ones.
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—Without loss of generality, we design FEMOSAA in such a way that it can be seamlessly
integrated with different MOEAs1 to optimize SAS at runtime. The elitist features and ex-
tracted dependencies, as processed by the transposition approach at design time, are used
to guide the running behaviors of a given MOEA for SAS runtime optimization. In this
work, we run FEMOSAA with three fundamentally distinct yet widely used MOEAs in the
literature: MOEA-based Decomposition with STable-Matching model (MOEA/D-STM) [36],
Non-dominated Sort Genetic Algorithm-II (NSGA-II) [20], and Indicator-Based Evolution-
ary Algorithm (IBEA) [53].

—To achieve a balanced tradeoff in SAS optimization, FEMOSAA identifies knee solutions au-
tomatically from the final nondominated set. The knee solutions often imply well-balanced
tradeoffs, such that any improvement on one objective of a knee will cause relatively severe
degradations on others.

—We conduct comprehensive experiments on two running SAS: One is a highly complex SAS
that consists of the eBay-like RUBiS benchmark [43] and a set of real-world adaptable soft-
ware (i.e., Apache Tomcat [2], MySQL [40], Ehcache [3], and Xen [48]) under the realistic
FIFA98 workload trace [5]; another is a service-oriented SAS that can be dynamically com-
posed by various services. We compare FEMOSAA with four of its variants (e.g., without
dependency-aware operators) and three other state-of-the-art frameworks (i.e., DUSE [1],
PLATO [42], and FUSION [23]) under various scenarios, including three commonly applied
MOEAs (i.e., MOEA/D-STM, NSGA-II, and IBEA) and two different workload patterns2 (i.e.,
read-write and read-only) along with diverse conflicting quality objectives. The experiments
reveal the effectiveness of FEMOSAA and its superiority over the others when optimizing
conflicting objectives for SAS, with statistically significant results and nontrivial effect sizes.

The contributions have clear impact on the synergy between software engineering for SAS and
evolutionary computation as FEMOSAA combines strengths from both fields. Unlike many SBSE
work that simply formulates the software engineering problem as a classic optimization problem
for some MOEAs, our deeper synergy takes one step further by automatically and dynamically
extracting the domain information of SAS to extend the internal structure of MOEA, thus im-
proving its search ability. As a result, to control and exploit the power of MOEAs, SAS software
engineers only need to provide the feature model when using FEMOSAA, without being an expert
on MOEA. In addition, FEMOSAA improves MOEA and provides insights for MOEA researchers to
design better algorithms for SAS since the identified elitist features and their dependencies serve
as the engineers’ systematic domain knowledge by which we can reduce the search space and
better guide the search, providing a larger chance for finding better solutions.

The remainder of this article is organized as follows: Section 2 illustrates a detailed motivating
example of SAS. Section 3 presents the background and extended notions of numeric features in
the feature model. Section 4 gives an overview of FEMOSAA. Section 5 illustrates our approach
that transposes a feature model to MOEA. Section 6 presents how the internal structure of existing
MOEAs can be extended to combine with our dependency-aware operators and knee selection. Ex-
perimental results, verifiability, and threats to validity are discussed in Section 7. Finally, Sections 8
and 9 present related work and a conclusion, respectively.

1In addition to MOEAs, FEMOSAA also works with single-objective evolutionary algorithms in which case the knee se-

lection method would be deactivated.
2Different workload patterns will create diverse behaviors of the SAS.
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Fig. 1. An example of SAS.

2 A DETAILED MOTIVATING SCENARIO OF SELF-ADAPTIVE SOFTWARE

While our work can be applied to different contexts that demand runtime adaptation, we draw on
a representative and realistic SAS to motivate and illustrate the need. As shown in Figure 1, like
many SASs, the SAS example consists of two parts: an adaptable software that is being managed
at runtime and an engine that controls the adaptation. Additionally, the SAS contains a complex
software stack consisting of RUBiS3 [43], Apache Tomcat [2], Ehcache [3], and MySQL [40], run-
ning on the virtualization hypervisor Xen [48]. The RUBiS benchmark serves as a representative
of many real-world software applications that offer diverse functionalities and services to many
end-users concurrently. We can see from Figure 1, as is the case of most practical software appli-
cations, the SAS’s software stack contains a large amount off-the-shelf real-world software. Each
of the software items support various control features, which, together with those from other soft-
ware in the stack, can be changed dynamically on-the-fly to influence the runtime behaviors of
the software system. An example of the control features includes the number of threads, the mem-
ory allocation, and enabling/disabling cache mechanism. By design, all possible configurations of
control features form the search space or variability of the SAS. As the workload changes, the SAS
is capable of adapting features at runtime to optimize for various nonfunctional quality attributes
(e.g., response time). To achieve such goal, and thanks to the rapid development of search algo-
rithms, SAS is often designed to continually search for that combination of feature configurations
that leads to optimal (or near optimal) quality at runtime. However, to effectively and efficiently
engineer SAS in this way is challenging for the following reasons:

Encoding the Features from the SAS Design. Consider a complex SAS which contains many
features and configurations, systematically and generically choosing the right features and encod-
ing them into the representation of search algorithm is difficult. To optimize the SAS at runtime,
such representation defines the fundamental search space of the problem to be explored; there-
fore, the encoding of features could have a positive or negative impact on the search ability of a
potential search algorithm. Given that some features in the SAS design do not contribute to the
SAS’s variability or can represent the same aspect of variability [6], existing work [23] [41] that
simply encodes all features in a binary format is unnecessary. Consider a feature model with 100
features, binary representation can easily create a search space of 2100 and this, as we will show in
Section 7.4.1, can negatively affect adaptation quality and overhead.

Handling Dependencies in the SAS Design. Many widely used exact and stochastic search
algorithms (e.g., MOEA) are not designed to handle dependency constraints. This makes the

3An eBay-like software application with 26 services.
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treatment of dependencies difficult, especially when the dependencies in SAS come in a mixture
of categorical dependencies (e.g., Cache Mode require Cache) and numeric ones (e.g., maxThreads �
minSpareThreads). As we will show in Section 7.4.2, those dependencies, when ignored [42] [1] [27]
or incorrectly handled [23] [41] (as in existing work), can degrade the adaptation quality.

Explosion of the Search Space. Modern SAS often has high variability, leading to an explosion
of the search space. For example, the original design of the SAS shown in Figure 1 has a search
space of more than 1 billion, which we will elaborate in detail in Section 3.3.

Tradeoff on Conflicting Objectives. SAS often exhibits multiple conflicting quality objec-
tives that need to be optimized simultaneously, and tradeoffs need to be made. In general, many
existing approaches [42] have assumed that the relative importance of objectives can be correctly
quantified as numeric weights, which has been found to be difficult in some cases [29]. Those
weights, when inappropriately specified and expressed, inevitably create negative impact on the
search process and result in unwanted, poor adaptation quality. It is even more difficult to achieve
balanced tradeoff.

These difficulties motivate our work, which automatically synergizes the feature model of SAS
and a given MOEA, creating a feature-guided MOEA with knee selection to optimize SAS at
runtime.

3 BACKGROUND AND PRELIMINARIES

3.1 Multi-Objective Evolutionary Algorithm (MOEA)

Evolutionary algorithm, a stochastic search-based meta-heuristic, has been widely accepted as a
major approach for solving multi-objective optimization problems [19], in which case it is also
known as MOEA. In MOEA, the population contains a set of solutions (individuals), each of which
is represented by a fixed-length thread-like chromosome carrying different values at each gene. As
shown in Figure 2 and Algorithm 1, the evolutionary search of MOEA starts after the initialization
of the population (Lines 2 to 9). During the search process, the elite information can propagate from
parents to offspring via some random and probabilistic reproduction operations (i.e., crossover and
mutation) on the mating parents chosen from the mating selection procedure. Inspired by the sur-
vival of the �ttest rule from evolutionism, survival selection preserves high-quality individuals
with superior fitness values to the next iteration (generation), as shown in Lines 10 to 24. The
evolution process repeats until a stopping criteria (e.g., a predefined function evaluation thresh-
old) is satisfied. The major difference between MOEA and the classic single-objective evolutionary
algorithm lies in the mating and survival selection mechanisms. In particular, instead of finding a
single optimal (or near optimal) solution, as in the single-objective evolutionary algorithm, MOEA
aims to find a set of nondominated solutions4 that approximate the Pareto front with good con-
vergence and uniform distribution (Line 25). Notably, for every solution in the nondominated set,
any improvement of an objective will result in a degradation for at least one other objective.

Generally, the existing MOEAs can be divided into the following three categories according to
the survival selection mechanisms:

� Decomposition-basedmethod: The MOEA decomposes the original multi-objective optimiza-
tion problem into several single-objective optimization subproblems by linear or nonlin-
ear aggregation methods [38]. Then, it uses a population-based technique to solve these
subproblems in a collaborative manner. MOEA/D [52], MOEA/D-STM [36], and NSGA-
III [18] are the representative algorithms of this sort.

4A solution dominates another if it has at least one objective better than another while all other objectives are not worse

than another. Nondominated solutions denote those solutions that are not dominated by any other solutions in the set.
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ALGORITHM 1: General Algorithmic Process of MOEA

Input: Given mutation rate rm , crossover rate rc and the maximum number of evaluation e�almax , which

is often equivalent to the size of population × the maximum number of generations

Output: A set of optimized non-dominated solutions

1: start evolution

2: P = �
3: e�al = 0

4: for i = 1 to Psize do
5: S = getRandomSolution()

6: evaluateFitness(S)

7: e�al = e�al + 1

8: P = P + S
9: end for

10: while e�al < e�almax do
11: P0 := �
12: while |P0 | � Psize do

13: parents := doMatingSelection(P )

14: o�spring := doCrossover(parents , rc )

15: for each solution S in o�spring do

16: doMutation(S , rm )

17: end for

18: evaluateFitness(o�spring)

19: e�al := e�al + |o�spring|
20: P0 := P0 � o�spring
21: end while

22: P := P � P0

23: doSurvivalSelection(P , Psize )

24: end while

25: return getNonDominatedSolutions(P )

26: end evolution

� Pareto-based method: The MOEA uses a Pareto dominance relation as the primary selec-
tion criterion to push solutions as close to the Pareto front as possible. Meanwhile, it em-
ploys some density estimation techniques (e.g., crowding distance [20] and clustering anal-
ysis [54]) to maintain population diversity. The representative algorithms are NSGA-II [20],
SPEA2 [54], and PAES [34], and others.

� Indicator-basedmethod: Here, sophisticated performance indicators are designed to measure
the overall quality of a solution set. The representative algorithm is IBEA [53], which trans-
fers the multi-objective optimization problem into a new single-objective one that aims to
find the optimal set of solutions with respect to a given indicator.

3.2 Knee Solutions

The MOEA generates a set of nondominated solutions that approximate the Pareto front. However,
not every nondominated solutions can lead to a balanced tradeoff for SAS runtime optimization.
Indeed, the most common purpose of MOEA is to search and visualize a set of nondominated
solutions that are as close to the true Pareto front as possible. Then, a human decision-maker
can pick whichever solution that he or she prefers. However, there is no such human available in
the SAS optimization problem. Therefore, a method is required to pick a sole solution from the
resulting set of nondominated solutions to execute adaptation.

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 2, Article 5. Pub. date: June 2018.
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Fig. 2. The general workflow of MOEA. Fig. 3. Pareto optimal

and knee solutions.

A simple Pareto optimal front is shown in Figure 3, where the two objectives should be mini-
mized. Clearly, solutions near the edges strongly favor one objective over the other, but there is a
visible bulge around the middle, which is the knee region. Those solutions in the knee region (or
simply knee solutions) are characterized by the fact that a small improvement in either objective
will cause a large deterioration in the other. In the case where human intervention is limited while
the two objectives are equally important or when it is difficult to correctly weight them (which is
common for SAS), knee solutions are more balanced than the others, and they are almost the most
preferable ones. This is because the knee solutions achieve a good sense of compromise, while mov-
ing the solution in any direction from the knee region would create a bias toward an objective and
lead to imbalanced adaptation results. Finding the knee solutions is challenging because real-world
runtime SAS problems may not pose the perfect convex objective surface as shown in Figure 3.

3.3 Feature Model with Numeric Features

The feature model [16], expressed as the tree structure, is a widely used notation for software engi-
neers to represent the functional variability of a software [6]. In feature-oriented domain analysis,
the feature model is particularly important for expressing the possible variations under which a
software system can operate in order to improve functional and nonfunctionary quality [33]. In
this perspective, features define the prominent or distinctive aspects between different variations
of a software system [33], which range from high-level architectural elements (an entire compo-
nent) to low-level configurations (a specific parameter).

In the context of SAS, the inherited concept of a feature model allows it to define the extent to
which the SAS is able to adapt at runtime (i.e., a range of variations that the SAS can achieve). Given
this, some successful attempts have been made to apply the feature model to design SAS [23][41].
Therefore, to correctly exploit the feature model for SAS, the software engineer must identify
(i) the variations of different features that are supported by the SAS and (ii) the dependency con-
straints that determine the validity of a given variation (adaptation solution). However, while the
feature model is useful to express the variability of SAS (i.e., the search space of the adaptation
decision-making problem), it does not correlate the effects of those variations to the concerned
quality attributes. Therefore, in this work, we exploit an additional system model to evaluate how
a variation can affect the quality of SAS, as we will discuss in Section 7.2.

Figure 4 shows an example of a feature model for one of the SASs we study in this article.5 As
we can see, there are four types of in-branch relation between a feature and its parent:

� Optional refers to the feature that might be deselected (e.g., Cache).
� Mandatory denotes core features that cannot be deselected (e.g., Thread Pool).

5In this article, we use a graphical figure of the feature model for more intuitive presentation. In practice, the feature model

might be expressed in XML or conjunctive normal form, which can be parsed and analyzed directly by FEMOSAA.
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Fig. 4. The feature model for the example SAS shown in Figure 1. (The numeric features are shown in bold

and italic letters. A zipped cache mode means the cached data are compressed, thereby costing a smaller

amount of memory; otherwise, it is unzipped. CPU % denotes to what extent the SAS can consume CPU

capacity, where each 100% means a CPU core, e.g., 200% means two cores; 150% means one full core and 50%

of another).

� XOR represents the feature in a group such that exactly one group member can be selected
(e.g., Cache Mode).

� OR means a group in which at least one group member needs to be selected (e.g., Cache
Size).

When a feature is selected, it means that it is “turned on”; similarly, deselection of a feature
means that it is “turned off.” Selecting a feature implies that its parent should be selected, too. In
this work, we call a feature deselectable if it has an Optional , OR, orXOR relation to its parent or
conditionally deselectable if it has a Mandatory relation to its parent but there exist deselectable
ancestors. On the other hand, common cross-branch relations include:

� Fi require Fj means the former can only be selected if the latter is selected.
� Fi exclude Fj denotes two features that are symmetrically mutually exclusive.
� Fi at -least -one-exist Fj is an implied relation between the members of an OR group. It rep-

resents the same notion as that of OR.
� Fi at -least -one-require Fj is an implied relation between a member of an OR group and an-

other external feature, which has require at the root of the said OR group. It means Fi can
only be selected if at least one member of the OR group, to which Fj belongs, is selected.

All these relations constitute the dependency chain(s) in the model. As in Figure 4, the number of
features in the preceding example is 1,151, with a search space of more than a billion.

To better incorporate the feature model with SAS and simplify the design, we distinguish cat-
egorical features and numeric features. We define numeric features as: A feature is numeric if
it has more than one child in its XOR group, and all its children can be quanti�ed by real numbers.
For example, in Figure 4, Memory is clearly a numeric feature. Otherwise, the feature is categorical
(e.g., Cache Mode). Similarly, a dependency is numeric as long as it is linked to numeric features
and it involves quantitative comparisons. As in Figure 4, we propose the following cross-branch
numeric dependencies for engineers to specify in their design:

� Range-to-range. This is associated with two numeric features, and it can be expressed as, for
example, Fi range-to-range Fj (Fi < Fj ), meaning that Fi ’s selected child in its XOR needs to

ACM Transactions on Software Engineering and Methodology, Vol. 27, No. 2, Article 5. Pub. date: June 2018.



5:10 T. Chen et al.

be smaller than that of Fj . It can be easily translated into a categorical dependency: Fi < Fj
simply means that Fi ’s XOR child C would have an exclude dependency on each Fj XOR
child that is larger than or equal to the value of C . Other quantitative comparisons (e.g., >)
can be also applied.

� To-range. This constrains a categorical feature Fi (dependent) with respect to a numeric
feature Fj (main); for example, Fi to-range Fj (Fj < 10), meaning that Fi can only be selected
if Fj ’s selected child in its XOR falls in the given range, as expressed by the mathematical
formula. This can be translated to categorical dependency such that Fi would have exclude
dependency on each of Fj ’s XOR children that is not in the range.

� Range-to. This is the inverse of to-range dependency where a numeric feature (dependent) is
constrained by a categorical feature (main).

Clearly, numeric dependencies can only be cross-branched, while categorical ones exist on both
in-branch and cross-branch. When a dependency is associated with one categorical feature and
one numeric feature (i.e., to-range and range-to), we call it a hybrid dependency, which is a special
case of numeric dependency. Note that numeric features might have all types of dependencies, but
categorical features cannot be linked to the range-to-range numeric dependency.

3.3.1 The Benefits of Explicitly Considering Numeric Features. As mentioned, given that the
feature model is discrete and statically defined at design time, it is possible to convert those numeric
features and their dependencies into categorical ones without affecting the original variability of
SAS. However, explicitly considering numeric features in the feature model will introduce the
following benefits in terms of both design time analysis and runtime optimization in FEMOSAA:

� Explicitly considering the numeric features provides simpler and more intuitive design of
the feature model as numeric features can be interpreted directly by the software engineers.

� Converting the numeric features into categorical ones will unnecessarily complicate the
feature model, which can implicitly induce software engineers to design the feature model
in a way that the children of numeric features would need to be encoded as genes. As
mentioned, this will greatly increase the number of solution variables in the optimization,
leading to the curse of dimensionality. Therefore, explicitly considering numeric features
can provide us with the foundation to design novel and simpler encoding of chromosome
representation in MOEA, as we will show in Section 5.1.

� Explicitly considering the numeric features results in fewer dependencies, in contrast to the
case where the numeric features are converted into categorical ones. As we will show in
Section 5.2, this simplifies our dependency extraction process for injecting dependencies
into the mutation and crossover operators of MOEA. In addition, fewer dependencies im-
plies simpler dependency structure; that is, a dependent feature has fewer main features,
which in turn reduces the running overhead of our dependency-aware operators at runtime.

4 FEMOSAA OVERVIEW

As shown in Figure 5, a SAS generally consists of two parts: an adaptable software that is managed
at runtime and an engine that controls the adaptation. The adaptable software could be a software
stack that contains different interconnected software or middleware.

Our FEMOSAA framework is deployed as the adaptation engine, and it operates on both the
design time and runtime of the SAS. At design time, FEMOSAA analyzes and transposes the fea-
ture model of SAS, which is provided by the software engineers, to the context of MOEA. The
transposition first identifies elitist features (see Section 5.1), which are passed to the process
for extracting the dependency to accommodate selected features (step 1), as we will explain in
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Fig. 5. The architecture of FEMOSAA.

Section 5.2. With the help of FEMOSAA, those elitist features and dependencies are stored and will
be used directly by the MOEA at runtime (steps 2 and 3). Given that only the elitist features would
be encoded into the chromosome representation of MOEA, the identified elitist features can be
used as the objective functions’ inputs and can serve as the indication of which sensors/actuators
to use or to implement (step 2).

FEMOSAA has two main components at runtime: (i) a Modeler which contains the objectives
(fitness functions) that build the correlation between features and quality attributes. Those ob-
jectives functions can be created using analytical models [44], simulation [26], or machine learn-
ing [10] [11] [14] in which they might be updated on-the-fly using data from sensors. And (ii) an
Optimizer that realizes the MOEA (extended by our knee selection) and is guided by the transposed
information from the feature model to find a single optimized solution for adaptation via actuators
(see Section 6).

Given the uncertain and dynamic environment, these two components constitute the feedback
loop that continually adapts the SAS toward better quality (e.g., improved response time). The
adaptation cycle starts with monitoring the status of the SAS and the environment (step 1), which
is then used to update the objective functions and model (step 2). Next, the feature-guided MOEA
optimizes and searches for a set of nondominated solutions based on the updated objective func-
tions (step 3), after which the knee selection selects the most balanced one for adaptation (step 4).
The optimization can be triggered either by violations of quality requirements or, as in this work,
by a fixed frequency (e.g., at a particular point in time). Note that we consider the execution order
of a solution as a separate issue from the optimization. Thus, given a valid and optimized solution,
we assume that the valid order of execution, with respect to the dependency, is enforced in the
actuators through analyzing the dependencies in the feature model.

5 TRANSPOSING A FEATURE MODEL OF SELF-ADAPTIVE SOFTWARE

TO MOEA AT DESIGN TIME

In this section, we present an automatic and systematic approach as part of FEMOSAA that trans-
poses a feature model into MOEA’s context. At design time, the approach finds the elitist features
from the model (by which we refer to those that cannot be removed in the optimization without
damaging the original variability of SAS while minimizing the length of encoding to form chromo-
some representation); it then extracts the feature dependency with respect to these elitist features.
Such information will be used at runtime to guide the evolutionary optimization.

To guarantee correctness of the transposition, it is imperative to ensure that the feature model
has been fully tested and verified by existing tools [6]. This ensures that faults (e.g., dead features,
false options, and contradictory relations) have been already dealt with before the transposition.
The verification of a feature model is beyond the scope of this work, however. Unlike our work,
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Fig. 6. The growing process in SAS’s feature model.

the dependency related to numeric features is not treated explicitly in existing testing tools. How-
ever, as discussed in Section 3.3, a numeric (and hybrid) dependency can be easily transferred into a
categorical dependency, which can be then tested directly. We also assume that all possible children
(including 0) of numeric features are discretized and predefined. It is worth noting that discretizing
the numeric features is the first step to removing unnecessary complexity in our SAS optimiza-
tion problem because many real-world features are often discrete and/or can be customized based
on software engineers’ knowledge (e.g., it may be known that changing memory allocation by
less than 1MB does not affect the behavior and quality of a SAS; thus, instead of considering the
memory feature as a continuous feature, the possible child features of the memory feature can be
discretized at every 1MB).

While FEMOSAA is generic and can be applied to any case as long as the feature model and
MOEAs are involved, in the following, we specify the transposition approach in FEMOSAA for
general cases but refer to a concrete example for more intuitive illustration where appropriate.
Specifically, in Section 5.1, we introduce an approach to identify the elitist chromosome repre-
sentation of a SAS’s feature model. Subsequently, in Section 5.2, we illustrate how the related
dependency chains and the value trees can be extracted (Section 5.2.1) and merged (Section 5.2.2),
according to the genes identified in Section 5.1.

5.1 Finding Elitist Features for Chromosome Representation

5.1.1 Growing the Feature Model Tree. Deselectable features in a feature model often do not
explicitly indicate the “on” and “off” features as children, but they are important information for us
to parse and understand the full variability of the model. Hence, to correctly transpose the feature
model, we first grow the feature model tree to disclose the hidden information inferred from the
deselectable features. As illustrated in Figure 6, this is achieved by adding children representing
On and/or O� to any given feature F in the feature model using the following steps in order:

� G-1. If F is a leaf feature that has an OR relation to its parent, we then add two children
representing On and O� in a XOR group to F . This explicitly states that, in such a case, the
leaf F can have two mutually exclusive options, which is important to our encoding.

� G-2. If F is a leaf feature that has neither an OR nor XOR relation to its parent, we then
add one child representing On in aXOR group to F . This ensures that every feature has the
option of “on” (and translates them into branches to be parsed by G-3), except those with
an OR orXOR relation to their parent, as the former has been considered in G-1 while the
latter’s “on” option can be expressed by the parent.

� G-3. If F is a branch feature that has an Optional , OR, orXOR relation to its parent, we then
add one child representing O� in a XOR group to F and to the descendants of F that are
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Fig. 7. The example SAS’s feature model after the process of finding elitist features.

branch features (if they do not currently have a child representing O�). This ensures that
both the deselectable and conditionally deselectable features expose the option of “off.”

After growing the tree, the added features and the steps that create them are shown in Figure 7.

5.1.2 Identifying Genes from the Feature Model Tree. We have now obtained a model with no
hidden information; the next phase is to find the elitist features for genotype encoding in MOEA,
thus creating an elitist chromosome representation. Intuitively, following the grown tree, our
approach encodes a feature F as a gene in the chromosome if and only if it is the parent of a XOR
group, which contains more than one group member. Hence, F ’s children within the XOR group
constitute its set of alternative optional values to be chosen in MOEA, subject to the constraints
in dependencies. Drawing on this, the representation can be simplified in three aspects without
affecting the original variability:

(1) Eliminating features whose variability can be expressed by their parent (i.e., those with
XOR relations to the parent); for example, the variability of CPU ’s children can be rep-
resented by itself.

(2) Eliminating features whose variability can be expressed by their descendants; for example,
the variability of the Cache feature can be represented by the combination of Cache Mode
and Cache Size features; Cache Mode can be represented by Heap Size and Disk Size.

(3) Eliminating those features that have no implication on variability (e.g., the Thread Pool is
always mandatory). This, however, does not mean that we simply remove all mandatory
features (as in [31]); instead, our approach retains those mandatory features with a XOR
group of children as they would often help us to considerably reduce the number of genes,
as explained in (1) above.

From now on, those features, which are chosen to be encoded in the chromosome, are called genes.
It is easy to see that numeric features are always chosen as genes. As shown in Figures 7 and 8,
there are 10 features being considered as genes in the example feature model of SAS.6 To make
the model informative, we prune those features that are the only members of their corresponding
XOR group. For all genes, if they select O� or 0 as their value, then it means they are deselected;
any other values mean that they are selected. Note that when a gene selects 0, it implies that the
numeric value is 0 and that the feature is “turned off,” which will have no further effects on the SAS.

6The other features, which are not genes, can be fixed to On in the SAS.
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Fig. 8. The resulted chromosome representation of the SAS studied in form of genes (G1, G2, . . . ,G10).

In this way, the elitist chromosome representation is polyadic, elegant, and free of unnecessary
information (e.g., some unneeded relations to the parent of a feature), which is otherwise unavoid-
able in the classic binary representation. This, as we will show in Section 7.4.1, can bring nontrivial
benefits for optimization quality and runtime overhead.

5.2 Extracting Feature Dependency for Guiding Evolution

5.2.1 Analyzing and Refactoring the Dependency. While the identified elitist chromosome repre-
sentation can naturally prevent violation of theXOR relation, it does not contain any information
about other dependency constraints (require, OR, etc.). This issue is nontrivial as leaving it without
treatment could result in a high possibility of exploring invalid solutions that negatively affect the
quality of adaptation. To this end, our next step in the transposition is to extract and analyze the
dependency chain(s) that accommodate the genes so that they can be injected into the mutation
and crossover operators of MOEA to prevent the search from exploring an invalid solution. Here,
a single dependency between two genes represents the constraint on the dependent gene with re-
spect to the conditions of the main gene. The extracted dependencies and their imposed constraints
are shown in the Table 1, which will be discussed in Section 5.2.2. Specifically, we distinguish two
categories of dependency: in-branch and cross-branch.

Extracting in-branch dependency chain(s) aims to handle the constraints introduced by Optional ,
Mandatory , OR, and XOR relations with respect to the genes. To achieve this, the features’ in-
branch dependencies are extracted in both vertical and horizontal directions while considering all
the four relations.

Vertical analysis for extracting in-branch dependency helps to ensure that the in-branch relation
between feature and parent is captured. As shown in Figure 9, for any feature F in the original
feature model, we conduct the following vertical analysis:

� VA-1. If F is a gene and it is deselectable (Optional , OR , or XOR to its parent) or condi-
tionally deselectable (Mandatory to its parent but has deselectable ancestors), then, for each
path from F , the closest descendant gene D� of F would have require dependency on F as
D� cannot be selected without the presence of F . Additionally, if D� has Mandatory relation
to its parent and the path between F and D� does not contain deselectable features, then F
would also have require on D� as both features need to be selected at the same time.

� VA-2. In addition to VA-1, if F hasXOR relation to its parent and it is a gene, then F would
have a require on its parent, denoted as P� = � (F ’s parent P� would always be a gene, as
ensured by our gene identification process), where � is the reference of F in P� ; similarly,
P� = � would also have require on F as both features need to be selected at the same time. On
the other hand, if F has XOR relation to its parent but it is not a gene, then, for each path
from F , the closest descendant gene D� of F would have its own require on P� = � . Under
the same case, if D� has Mandatory relation to its parent and the path between F and D�
does not contain deselectable features, then P� = � would also need to have require on D� .
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Fig. 9. The vertical analysis for extracting in-branch dependencies in SAS’s feature model with respect to

the elitist genes.

Fig. 10. The horizontal refactoring for extracting in-branch dependencies in SAS’s feature model with respect

to the elitist genes.

� VA-3. In addition to VA-1, if F has OR relation to its parent, we find the closest deselectable
ancestor of F , denoted as A, if such an A does exist. Now, if at least one ancestor of F is a
gene, or F ’s parent is neither deselectable nor conditionally deselectable, or there exists at
least one closest descendant gene, D� , of a path fromA, such that D� has Mandatory relation
to its parent and there is no deselectable features in the path between D� and A, then this
means that the OR group for which F ’s parent is the root needs to select at least one group
member. Thus, unless there already exist an at -least -one-exist dependency, F (if F is a gene)
or its closest descendant genes, each of which follows different paths (if F is not a gene),
would have at -least -one-exist on (i) the other closest descendant genes of F if it is not gene;
(ii) those sibling genes of F in the same OR group; and (iii) the closest descendant genes,
each of which follows different paths from F ’s siblings that are not genes but are in the
same OR group as F .

The horizontal refactoring, on the other hand, is to ensure that elimination of some features
does not mislead the dependencies implied by the original variability. Suppose that F is a feature
in the original feature model and that A is the closest deselectable ancestor of F , if such an A does
exist. Now, assuming that A is not a gene and that there is no gene on the path from A to F , we
then conduct the following horizontal refactoring, as shown in Figure 10:

� HR-1. If F has Optional relation to its parent, then we do nothing, even if it is a gene. This
is because the selection of F does not affect A’s closest descendant genes, each of which
follows the other paths from A.
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Fig. 11. The refactoring for extracting cross-branch dependencies in SAS’s feature model with respect to the

elitist genes.

� HR-2. If F is a gene that has Mandatory relation to its parent and it is conditionally dese-
lectable, then, for each path fromA, the closest descendant gene D� ofA (excluding F itself)
would have require on F . This can ensure that, when D� is selected, F would be also selected.

� HR-3. If F has OR relation to its parent and it does not have at -least -one-exist dependency
for the group, then for each path fromA (except the paths that pass through F ’s OR group),
the closest descendant gene D� of A would have at -least -one-require on F , if F is a gene; or
on those closest descendant genes of F , each of which follows different paths from F , if F is
not a gene. Hence, when D� is selected, at least one member of the OR group of F (or their
closest descendant genes) would be also selected.

� HR-4. If F has XOR relation to its parent, then we do nothing, even if it is a gene. This
is because our gene identification process ensures that the parent of F would always be a
gene, which also express the selection of F .

After considering the in-branch dependency, we now focus on refactoring the cross-branch
dependency. If both sides of a cross-branch dependency are genes, then it can be extracted directly.
However, if either side (or both) of the feature is not a gene, then a treatment is needed. Suppose
that a feature F is associated with one or more cross-branch dependencies and that F is not a gene;
we then do the following refactoring, as shown in Figure 11:

� CR-1. If F is a branch, then its cross-branch dependencies are migrated to those closest
descendant genes of F , each of which follows different paths from F . Further, if F is the
root of an OR group and it is the main feature in any require dependency, then those requires
would be changed to at -least -one-require, which are migrated to the member genes of F ’s
OR group, and to the closest descendant genes, each of which follows different paths from
those members that are not genes.

� CR-2. If F is a leaf, then its cross-branch dependencies are migrated to the parent of F ,
denoted as P� , where the dependency would remain the same but the main gene becomes
P� = � , where � is the reference of F in P� . Here, F would always have XOR relation to P�
because, if F was to have Mandatory relation to P� , then there would be a contradiction as
the main feature of a cross-branch dependency is mandatory. In addition, when F is a leaf,
our growing process has ensured that F has neither OR nor Optional relation to P� , which
would always be a gene.

Finally, putting everything together, the extraction that occurs on the model and the extracted
dependency chain(s), with respect to the elitist chromosome, are shown in Figures 12 and 13,
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Fig. 12. The example SAS’s feature model and the extracted dependency after the processes of VA, HR, and

CR.

Fig. 13. The extracted dependency chains of genes for the example feature model.

respectively. The constraint of a dependent gene imposed by a dependency, according to Table 1,
can be expressed using a value tree, where each leaf is a set of optional values constrained by the
corresponding condition in a branch (i.e., the selected values of the main gene). For example, in
Figure 14, the value tree for the dependency between the Cache Mode (G2) gene and Transmission
Compression (G1) gene constrains that the former can only be O� or Unzipped if the latter is On;
or any optional values, otherwise. Note that if a gene is not a dependent of any dependency, then
it would have a value tree without any branches.

5.2.2 Merging the Dependency. After the extraction, we can see that a dependent gene might
have multiple dependencies on the same or different main genes. To construct a combined value
tree for a dependent gene, the dependencies, by which it is constrained need to be merged one
by one, using set operators (union or intersection) to combine the leaves from their value trees.
Table 1 shows which set operators are needed for each dependency type when merging with the
others; this is derived from the conjuncture normal form of the related genes.

Specifically, for every dependent gene, the merging process has the following steps:

—Step 1. If it has two or more dependencies with identical main genes, then the leaves, which
are constrained by the same condition in the branches, would be combined directly using
the set operations shown in Table 1.
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Table 1. The Extracted Dependency Constraints Between Two Genes and the Related

Set Operations for Merging Dependency

Dependency (denoted as D ) Constraints on Gi Merge with Other Dependency D �

Gi require G j if G j = Of f or 0, then
As = {Of f } or {0}. Otherwise, As = A.

As � A�s .

Gi = � require G j if G j = Of f or 0, then As = A � {� }.
Otherwise, As = A.

As � A�s .

Gi require G j = � if G j � � , then As = {Of f } or {0}.
Otherwise, As = A.

As � A�s .

Gi = �1 require G j = �2 if G j � �2, then As = A � {�1 }.
Otherwise, As = A.

As � A�s .

Gi exclude G j if G j � Of f or 0, then
As = {Of f } or {0}. Otherwise, As = A.

As � A�s .

Gi = � exclude G j if G j � Of f or 0, then As = A � {� }.
Otherwise, As = A.

As � A�s .

Gi = �1 exclude G j = �2 if G j = �2, then As = A � {�1 }.
Otherwise, As = A.

As � A�s .

Gi at -least -one-require G j if G j = Of f or 0, then
As = {Of f } or {0}. Otherwise, As = A.

if D� is (or merged from only) at -least -one-require that
related to the same root of OR group as D ’s, then
As � A�s . Otherwise, As � A�s .

Gi = � at -least -one-require
G j

if G j = Of f or 0, then As = A � {� }.
Otherwise, As = A.

if D� is (or merged from only) at -least -one-require that
related to the same root of OR group as that of D , then
As � A�s . Otherwise, As � A�s .

Gi at -least -one-exist G j if G j = Of f or 0, then
As = A � {Of f } or A � {0}. Otherwise,
As = A.

if D� is (or merged from only) at -least -one-exist that
related to the same root of OR group as that of D , then
As � A�s . Otherwise, As � A�s .

Gi range-to-range G j (e.g.,
Gi < G j )

if G j = � , then As = {�1, ..., �n }
where ��n 	 A, and ��n meets the
given condition with respect to � , e.g.,
��n < � , etc.

As � A�s .

Gi (R) range-to G j if G j = Of f or 0, then As = A � R .
Otherwise, As = A.

As � A�s .

Gi (R) range-to G j = � if G j � � , then As = A � R . Otherwise,
As = A.

As � A�s .

Gi to-range G j (R) if G j = � ; � � R , then
As = {Of f } or {0}. Otherwise, As = A.

As � A�s .

Gi = �1 to-range G j (R) if G j = �2; �2 � R , then As = A � {�1 }.
Otherwise, As = A.

As � A�s .

Additionally, when the set operation leads to an empty set, we fix As = {Of f } or {0}.

Gi andG j are dependent and main gene, respectively;A is the entire set of optional values forGi ;As denotes the set of values
forGi , given a selected value ofG j ; � , �1, �2, and �n denote some selected values forGi orG j ; R is a given constrained set
of range, e.g., G j < 10, etc.; D� is another single or merged dependency for which Gi is the dependent gene; A�s denotes the
set of values for Gi , given the selected value(s) of the main gene(s) in D�.

—Step 2. If it has dependencies on different main genes, all branch nodes of one single or al-
ready combined value tree are replicated and grafted (as a whole) to each right-most branch
node of another single or already combined value tree, forming new levels for the newly
combined value tree representing the combinatorial conditions. Then, for the two value
trees that were grafted, their leaves, whose original ancestors are now on the same path
from root to a right-most node in the newly grafted tree, are combined using the set oper-
ations shown in Table 1 to create the new leaf-set.

The process stops when all related dependencies are merged and their value trees are combined,
resulting in a finally combined value tree. As an example, Figure 14 illustrates the merging process
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