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Abstract 

Background: Ischaemia-reperfusion injury (IRI) is the main cause of complications following liver 

transplantation. Reactive oxygen species (ROS) were thought to be the main regulators of IRI. 

However recent studies demonstrate that ROS activates the cytoprotective mechanism of autophagy 

promoting cell survival. Liver IRI initially damages the liver endothelial cells (LEC) but whether 

ROS-autophagy promotes cell survival in LEC during IRI is not known.  

 

Methods: Primary human LEC were isolated from human liver tissue and exposed to an in vitro 

model of IRI to assess the role of autophagy in LEC. The role of autophagy during liver IRI in vivo 

was assessed using a murine model of partial liver IRI.  

 

Results: During IRI ROS specifically activate ATG7 promoting autophagic flux and the formation of 

LC3B positive puncta around mitochondria in primary human LEC. Inhibition of ROS reduces 

autophagic flux in LEC during IRI inducing necrosis. In addition siRNA knockdown of ATG7 

sensitized LEC to necrosis during IRI. In vivo murine livers in uninjured liver lobes demonstrate 

autophagy within LEC that is reduced following IRI with concomitant reduction in autophagic flux 

and increased cell death.  

  

Conclusion: These findings demonstrate that during liver IRI ROS-dependent autophagy promotes 

LEC survival and therapeutic targeting of this signaling pathway may reduce liver IRI following 

transplantation. 

 

Key words: Autophagy; Free radicals; Ischaemic liver injury; Necrosis 
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Introduction 

The incidence of end-stage liver disease or cirrhosis continues to rise worldwide (1). The only 

curative treatment for liver cirrhosis remains transplantation. As part of liver transplantation the 

hepatic blood flow is temporary interrupted to aid surgery but this leads to the development of the 

ischaemia-reperfusion injury (IRI) once blood flow to the liver is restored (2,3). Moreover 20% of the 

complications following liver transplantation, including graft dysfunction and/or primary graft non-

function, are directly attributable to IRI (4).  

IRI is a pro-inflammatory antigen-independent process that causes liver parenchymal cell injury (4). 

Specifically, the first cell type to be injured by liver IRI are the liver endothelial cells (LEC) (5). 

However the mechanisms that regulate LEC injury during IRI remain to be fully determined. It is 

known that reactive oxygen species (ROS) are key regulators of liver IRI (2,6). ROS can be generated 

by both parenchymal and non-parenchymal cells (e.g. Kupffer cells) within the liver during IRI (6,7). 

Recent studies suggest ROS generated within liver parenchymal cells, such as LEC, may be integral 

to the development of liver IRI (6). Importantly ROS can have divergent effects upon cell survival 

with emerging evidence suggesting that ROS generation during early IRI is cytoprotective through its 

activation of the autophagy-signaling pathway (8,9).  

Autophagy is an evolutionarily conserved process that is regulated by a distinct cellular machinery 

known as the autophagy related proteins (ATGs).  Activation of autophagy allows cells to enclose 

targeted cargo in a double membrane structure known as an autophagosome during periods of cellular 

stress such as IRI (10). Following sequential maturation steps that involve various ATGs, 

ATG8/LC3B and the docking protein p62 regulate the fusion of the autophagosome with lysosomes to 

form autophagolysomes with resultant cargo degradation (11). The substrates from cargo breakdown 

are then available for anabolic cellular processes (10). Recently it has become apparent that the cargo 

targeted by autophagy can be highly selective leading to the elimination of mitochondria (mitophagy), 

endoplasmic reticulum (ERphagy) and bacteria (xenophagy) (10). In particular autophagy in LEC has 

recently been shown to be regulated by KLF2 (12). These studies suggest that failure of this 

mechanism of autophagy activation can lead to endothelial cell death during periods of stress and is 

associated microvascular dysfunction, a key feature of liver IRI (12).  

There is growing interest in the regulation of liver IRI by autophagy (9) particularly because ROS has 

been shown to regulate the autophagy-signaling pathway (13). However the role of both ROS and 

autophagy in LEC remains to be determined although studies in cells of endothelial lineage such as 

Human Umbilical Vein Endothelial Cell and vascular endothelium suggest that autophagy is 

cytoprotective during oxidative stress (14,15). Our study investigated the role of ROS and autophagy 

in determining primary human LEC function during IRI.  
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Methods and Materials 

LEC Isolation and Culture 

Liver tissue was obtained via the Hepatobiliary and Liver Transplant Surgery program at the Queen 

Elizabeth Hospital Birmingham, UK, from fully consenting adult patients undergoing transplantation, 

hepatic resection for liver metastasis, hepatic resection for benign liver disease or normal donor tissue 

surplus to surgical requirements. Ethical approval for the study was grant by the Local Research 

Ethics Committee (LREC) (reference number 06/Q702/61). LEC were isolated from human liver 

tissue as previously described (16). Briefly, parenchymal cells were collected after collagenase 

digestion of mechanically disaggregated liver and were further purified by density gradient 

centrifugation over Percoll. Endothelial cells were isolated from the resultant heterogeneous cell 

mixture by positive immunomagnetic selection using antibodies raised against CD31 (Dako) and 

magnetic beads (Dynal) conjugated with goat anti-mouse antibody according to the manufacturer's 

protocol. All endothelial cells were maintained in complete media comprising Human Endothelial-

SFM basal growth medium (Invitrogen) containing 104 U/ml penicillin and 10 μl/ml streptomycin, 10 

ng/ml epidermal growth factor (R&D Systems), 10 ng/ml vascular endothelial growth factor and 10% 

heat-inactivated human serum (TCS Biologicals). All endothelial cells were plated out into collagen-

coated culture flasks (Sigma) and maintained at 37°C in a humidified 5% CO2 incubator until 

confluent. The endothelial cells were used for experiments only up to passage 6, and phenotypic 

identity and purity were confirmed by staining for endothelial markers as previously described (16). 

This rigorous standardized protocol used to isolate primary human LEC is well accepted and has been 

shown to maintain LEC function and phenotype and has been in longstanding use in our laboratory 

(17).  

 

In vitro model of IRI 

In experiments, primary human LEC were cultured in the conditions described above. LEC were used 

an in an in vitro model of IRI that we have previously described (6, 8, 18). Hypoxia was achieved by 

placing cells in an airtight incubator (Don Whitley) flushed with 5% CO2 and 95% N2 until oxygen 

content in the chamber reached 0.1%, as verified by a dissolved oxygen monitor (DOH-247-KIT, 

Omega Engineering, UK). Normoxia denotes LEC maintained in ambient oxygen conditions, hypoxia 

denotes LEC maintained at 0.1% oxygen for 24 hours and hypoxia-reoxygenation (H-R) denotes LEC 

kept at 0.1% oxygen for 24 hours and then transferred to ambient oxygen conditions for a further 24 

hours. In experiments involving N-acetylcysteine (NAC) the antioxidant was made fresh as a stock 

solution and added using the correct dilution factor to the relevant experimental wells. Vehicle only 

wells were used as controls. NAC was added to LEC at the time of placement of cells into normoxia, 

hypoxia or H-R. 

 

Determination of LEC ROS production, apoptosis and necrosis 

Primary human LEC ROS production, apoptosis and necrosis during in vitro IRI was determined by 

using a three-colour reporter assay system that we have previously described (6). Briefly, ROS 

accumulation was determined using the fluorescent probe 2′,7′-dichlorofluorescin-diacetate (DCF) 

(Merck, 287810).  Apoptosis was determined by labeling cells with Annexin-V (Molecular Probes, 

Invitrogen, A35122) and 7-Amino-Actinomycin D (7-AAD) (Molecular Probes, Invitrogen, A1310) 
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was used to assess necrosis. For flow cytometry at least 20,000 events were recorded within the gated 

region of the flow cytometer for each primary human LEC preparation in each experimental 

condition. Only the cells within the gated region were used to calculate Mean Fluorescence Intensity 

(MFI). 

 

Transfection of ATG7 small interfering RNA (siRNA) in Primary Human LEC 

Scrambled siRNAs and specific validated siRNAs for ATG7 were purchased from ThermoFisher 

Scientific. Primary human LEC were seeded in the wells of culture dishes. After 24 h, the cells were 

transfected with 50 nmol/L scrambled siRNAs or 50 nmol/L ATG7 siRNA using the Lipofectamine 

RNAiMAX transfection reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s 

protocol. Knockdown of ATG7 was confirmed with PCR using standard primers.   

 

Immunofluorescence for LC3B Puncta and Dual Immunofluorescence for LC3B and 

Mitochondrial Marker TOMM-20 in Primary Human LEC 

Following experiments primary human LEC were fixed in ice-cold methanol followed by serial 

washing with PBS. LEC were permeabilization in 0.1% Triton X-100 for 20 min at room temperature. 

LEC were then incubated in blocking buffer for 45 min. Cells were then incubated in primary rabbit 

anti-human LC3B antibodies (1:400, Cell Signalling Technology) or control antibody for 2 hour at 

room temperature. After rinsing with PBS, LEC were incubated with donkey-anti-rabbit IgG Alexa 

Fluor 594 secondary antibody (1:2000; Molecular Probes) for 1 h at room temperature. Cells were 

mounted with ProLong® Gold antifade with DAPI (Molecular Probes). Images were captured with a 

CCD camera and imported into Adobe Photoshop and LC3B puncta in cells was quantified using 

imageJ software. 

For dual immunofluorescence experiments following incubation with IgG Alexa Fluor 594 secondary 

antibody, LEC were washed with PBS and incubated at room temperature for 1 hour with mouse anti-

human TOMM20 antibodies (1:200, Abcam). After rinsing with PBS, sections were incubated with 

goat anti-mouse IgG Alexa Fluor 488 secondary antibody (1:1000; Molecular Probes) for 1 h at room 

temperature. Cells were mounted with ProLong® Gold antifade with DAPI (Molecular Probes). 

Images were captured with a CCD camera and imported into Adobe Photoshop. LC3B puncta and 

TOMM20 staining in cells were quantified using imageJ software. 

 

Western blotting 

For western immunoblotting studies, primary human LEC were lysed at the end of the relevant 

experimental period using NP-40 lysis buffer (20 mM TRIS-HCl pH 8 (Sigma-Aldrich, T3253), 137 

mM NaCl (Sigma-Aldrich, S3014), 10% glycerol (Sigma-Aldrich, G5516), 1% Nonidet P40 (Sigma-

Aldrich, 18896), 2 mM EDTA (Sigma-Aldrich, E6758). Protein concentration was determined by 

Bradford protein assay and 25 μg of protein was resolved on a 10% SDS-PAGE gel and transferred to 

a nitrocellulose membrane (Hybond; Amersham Biosciences, RPN3032D). The blotted membrane 

was blocked for 1 h at room temperature in TBS pH 7.4/Tween 0.1% (Sigma-Aldrich, P9416) 

containing 5% (wt/vol) bovine serum albumin (BSA) (Sigma-Aldrich, A9418). All primary antibody 

incubations were performed at overnight at 4°C in TBS-Tween 0.1% containing 5% BSA (wt/vol). 
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The incubation steps were followed by three washing steps of 5 min with TBS containing 0.1% 

Tween. All primary antibodies were purchased from New England Biolabs and used at a dilution of 

1:1000 as per manufacturer’s instructions. Specific primary antibodies used for primary human LSEC 

included: (1) BECN1 (3495), (2) LC3B (3868), (3) ATG5 (8540) and (4) ATG7 (2631) (5) p62 

(5114). Binding of specific mAb was detected with a horseradish peroxidase-conjugated anti-rabbit 

IgG at a dilution of 1:2000 for 1 h (Sigma-Aldrich, A8792). Primary antibodies used for mouse liver 

lysates included: (1) ATG7 (8558) (2) LC3B (3868) (3) p62 (5114). Protein bands were visualized 

using the enhanced chemiluminescence detection system (Amersham Biosciences, RPN2109) 

followed by exposure of the membranes to Hyperfilm-ECL (Amersham Biosciences, 28-9068-37). 

Equality of protein loading on was checked by immunoblotting for β-actin (Sigma-Aldrich, A2228) 

(dilution 1:20000). All Western immunoblots were performed at least three times. Protein levels were 

quantified using densitometric scanning and normalized to loading control levels. Some samples 

required prolonged exposure of immunoblots for up to 48 hours at -4
o
C. 

 

In vivo model of Partial Liver Ischaemia-Reperfusion Injury 

All animal experiments were performed at University Medical Centre Groningen (UMCG) in 

compliance with the guidelines of the local animal ethics committee according to Experiments on 

Animals Act (1996) issued by the Ministry of Public Health, Welfare and Sports of The Netherlands. 

Wild-type C57 Black 6 (C57/B6) mice were anesthetized with isofluorane inhalation. Following 

laparotomy an atraumatic clip was placed across the portal vein, hepatic artery, and bile duct just 

above the branching to the right lateral lobe. The median and left lateral lobes (approximately 70% of 

the murine liver mass) rapidly showed significant blanching. Following satisfactory clamp placement, 

the intestines were placed back into the abdominal cavity carefully and covered the incision with 

well-moistened gauze with saline. The ischaemic time used for the experiments was 90 minutes and 

reperfusion time was 6 hours. The animals were then placed into heated chambers were free access to 

chow and free water. Sham operated animals were handled in exactly the same manner other than 

undergoing clamping of the portal triad. Immediately following the reperfusion period animals were 

again anaesthesia with isofluorane. The laparotomy wound was opened and 10 l of heparinised 

saline was injected directly into the IVC and then venous blood collected into a microsyringe. The 

animal was then euthanized by exsanguination. The liver was then removed.  

 

Serum Preparation, Quantification of Liver Transaminase Levels 

Serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was were 

quantitative indices of liver damage used to assess liver injury and could be quantified in serum 

obtained from mice subjected to liver IRI. The samples were processed and quantified at the UMCG 

clinical chemistry laboratory using standard operating protocols. Data are presented as units per litre 

(U/L) at 37°C. 

 

TUNEL Assay 

TUNEL assay was performed on mouse liver sections according to the manufacturer’s instructions 

(Roche). Samples were air-dried for 30 minutes at RT and washed three times with PBS for 3 minutes 

each. The sections were pre-fixed with 1 % PFA for 10 minutes at RT, and then post-fixed by pre-
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cooled ethanol/acetic acid (2:1) at -20°C for 5 minutes. The fixed tissue sections were incubated with 

DAPI for nuclei staining following exposure to equilibration buffer for 10 seconds at RT and TdT 

enzymes for 30 minutes at 37 °C. Images were captured with a CCD camera and imported into Adobe 

Photoshop. The quantification of TUNEL-positive LEC was performed by manually counting the 

number of TUNEL-LEC cells per randomly selected 10 high power fields (HPF) per section in a 

blinded fashion by GMR. 

 

Histopathology, Immunohistochemistry and Immunofluorescence  

Following exsanguinations, representative pieces of ischaemic or non-injured liver lobes were quickly 

removed and fixed in ice cold 10% phosphate-buffered formalin for 24 hours at 4°C. The tissue is 

then partially dehydrated with ethanol and embedded in JB4 plastic mounting media using standard 

histological methods. Five-micrometer sections cut and stained with haematoxylin and eosin (H&E). 

Immunoperoxidase staining for LC3B (rabbit monoclonal antibody, clone 5F10, New England 

Biolabs) and CD31 (goat polyclonal antibody, R&D Systems) were performed on the FFPE mouse 

liver tissue. Tissue sections were deparaffinized followed by antigen-retrieval. Antibodies were 

incubated at room temperature for 1 h at LCB (1∶ 400 dilution) and CD31 (1:100 dilution). Antibody 

staining was developed using the IMMPACT DAB detection system (Ventana Medical Systems) and 

accompanied by hematoxylin counterstain. Immunohistochemical staining was determined by 

quantifying total area stained per randomly selected 10 HPF per section using imageJ software. 

For dual immunofluorescence tissue sections were deparffinized followed by antigen-retrieval. After 

washing in TBS-Tween0.1% sections were incubated with LC3B antibody (1:400) for 1 hour at room 

temperature followed by incubation with IgG Alexa Fluor 594 donkey anti-human secondary 

antibody. Sections were washed with TBS-Tween0.1% and incubated at room temperature for 1 hour 

with mouse anti-human CD31 antibodies (1:100, Abcam). After rinsing with PBS, sections were 

incubated with goat anti-human IgG Alexa Fluor 488 secondary antibody (1:2000; Molecular Probes) 

for 1 h at room temperature. Sections were mounted with Anti-Fade mountant (Molecular Probes) and 

images were captured with a CCD camera and imported into Adobe Photoshop. Immunofluorescence 

staining was determined by quantifying staining intensity relative to control using imageJ software. 

 

Statistical Analysis 

All data are expressed as mean  SEM. Statistical comparisons between groups were analysed by 

Student’s t test. All differences were considered statistically significant at a value of p<0.05. 
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Results 

Human LEC Maintain Intracellular ROS throughout IRI that is inhibited by the General 

Antioxidant NAC 

Isolated primary human LEC were exposed to our established in vitro model of IRI (6,8) and 

intracellular ROS assessed using DCF as described above. During normoxia LEC demonstrate high 

ROS content and exposure to hypoxia and then H-R does not significantly alter intracellular ROS 

content (Fig 1). Furthermore primary human LEC isolated from different liver diseases such as 

alcoholic liver disease, biliary cirrhosis and steatotic liver disease show similar intracellular ROS 

profiles during in vitro IRI (data not shown).  

The general antioxidant NAC is able to efficiently inhibited ROS production within cells generated 

from a variety of sources including the mitochondria and cystolic enzymes (6). Incubation of primary 

human LEC with NAC significantly reduces intracellular ROS content during normoxia, hypoxia and 

H-R with maximal effects noted with 6 hours of NAC treatment in each experimental condition (Fig 

2). Taken together these data demonstrate that primary human LEC maintain high intracellular ROS 

levels during in vitro IRI that can be inhibited by NAC.  

 

Intracellular ROS Regulates ATG7 Activity, Autophagic Flux and LC3B Positive Puncta in 

Primary Human LEC during IRI 

ROS has been previously linked to autophagy activation (13) and in primary human LEC NAC 

mediated ROS inhibition led to a specific reduction in ATG7 activity during in vitro IRI during 

normoxia, hypoxia and H-R (Fig 3) with no effect noted on ATG5, Beclin-1 or ATG 12 (data not 

shown). In the canonical autophagy signaling pathway ATG7 activation is upstream LC3B lipidation 

and autophagosome formation (10). The formation of autophagosomes can be investigated by 

assessing the ratio of LC3B:p62 deriving an assessment of autophagic flux. NAC reduced autophagic 

flux during in vitro IRI as demonstrated by the reduction in LC3B protein and increase in p62 protein 

during normoxia, hypoxia and H-R (Fig 3). These findings suggest that ROS specifically regulates 

ATG7 activity in human LEC during IRI the inhibition of which leads to a reduction in autophagic 

flux in primary human LEC.  

To further assess autophagy flux in human LEC we used specific siRNA knockdown of ATG7 in 

LEC. As demonstrated in Fig 4(i) and 4(ii) this experimental approach decreased ATG7 expression by 

approximately 60% in primary human LEC. Moreover ATG7 knockdown inhibits autophagic flux as 

demonstrated by the decrease in LC3B and accumulation of p62 in human LEC during normoxia, 

hypoxia and H-R (Fig 4(ii). The inhibition of ATG7 activity in primary human LEC sensitizes cells to 

necrosis and not apoptosis (data not shown) during normoxia, hypoxia and H-R (Fig 4(iii) suggesting 

that ATG7 function is integral to LEC survival during IRI.  

ROS-dependent ATG7 activation also affects tempro-spatial LC3B positive puncta in LEC during IRI 

as demonstrated by the loss of LC3B positive puncta throughout the cytoplasm after NAC treatment 

(Fig 5). Importantly this phenomenon was noted in normoxia, hypoxia and H-R. Taken together these 

findings shown that ROS-dependent ATG7 activity mediates autophagic flux and autophagosome 

formation in primary human LEC during IRI.  
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ROS Mediate Mitophagy in Human LEC during IRI 

Recent studies have suggested that selective forms of autophagy occur within specific disease 

processes (10). It is well established that during liver IRI dysfunctional mitochondria contribute to 

parenchymal cell injury (19). Indeed the selective elimination of dysfunctional mitochondria, known 

as mitophagy, has recently been linked to progression of liver IRI (9). We assessed whether LC3B 

positive puncta are found in proximity to mitochondria in primary human LEC during IRI. To 

investigate this we utilized the specific mitochondrial marker TOMM-20. Indeed TOMM-20 and 

LC3B co-localise within human LEC during IRI (Fig 6). Importantly inhibition of ROS with NAC for 

6 hours caused a significant reduction in TOMM-20 and LC3B dual positivity suggesting that ROS-

dependent ATG7 is a key regulator of mitophagy in primary human LEC during IRI. 

 

ROS Inhibition Sensitises Human LEC to Necrosis during IRI 

The above data demonstrate that ROS activates autophagy/mitophagy in primary human LEC and 

therefore is would be expected that inhibition of ROS would induce cell death if 

autophagy/mitophagy were a cytoprotective mechanism in LEC as suggested in Figure 4 with ATG7 

knockdown sensitising LEC to necrosis. Accordingly we found NAC-mediated ROS-ATG7 inhibition 

increased human LEC necrosis during IRI (Fig 7). Maximal effects were noted during H-R after 6 

hours of NAC treatment. Importantly ROS inhibition senitised primary human LEC to necrosis and 

not apoptosis (data not shown).  

 

Reduced Expression of LC3B in LEC is associated with liver IRI in vivo  

Our in vitro data suggests that ROS-ATG7-mitophagy is an important mechanism for human LEC 

survival during IRI. We utilised a murine model of partial murine liver IRI to investigate this 

relationship in vivo. As Figure 8 demonstrates partial liver IRI increases serum ALT and AST levels 

relative to sham-operated mice and H&E liver sections demonstrate that the ischaemic injury in IRI 

liver lobes was observed within the peri-venular region of the liver with sparing of the peri-portal 

areas. In accordance with the in vitro data, sham operated mice and non-ischaemic/non-IRI liver lobes 

demonstrated sinusoidal staining with the specific autophagy marker LC3B (Fig 8(ii). This sinusoidal 

staining was also evident when murine liver tissue from sham-operated mice and was similar to the 

immunostaining seen with the specific LEC marker CD31. In the IRI liver lobes we observed that 

both LC3B and CD31 staining is significantly reduced following injury (Fig 8(vi). Using dual 

immunofluorescence we demonstrate that LC3B colocalises with CD31 in non-injured and sham-

operated livers (Fig 8(iii). Following IRI the peri-venular liver sinusoids demonstrated no LC3B or 

CD31 staining but do demonstrate TUNEL positive cells in the sinusoids (Fig 8(vii) confirming the 

onset of apoptosis. Furthermore similar to our observations in vitro we observed that in non-injured 

livers ATG7 activity was present with active autophagic flux that is significantly reduced following 

liver IRI (Fig 8(iv & viii). Taken together this observation support the observation that ATG7-

mediated autophagy activation is associated with LEC survival during liver IRI.  
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Discussion 

Liver IRI remains a significant clinical problem following liver transplantation and with the injury 

targeting the liver parenchymal cells. LEC are the first cell type in the liver to be injured by IRI 

(5,20,21). ROS generation is a key regulator of liver IRI and was until recently viewed as the primary 

driver for parenchymal cell death during IRI (22) but more recent studies demonstrate that ROS is 

cytoprotective through its activation of the cellular process of autophagy (8). Indeed autophagy 

activation has been shown to limit injury following a variety of acute liver injuries (23-25) and its role 

in regulating liver IRI is attracting growing attention (11). Limited studies have explored the role of 

ROS-dependent autophagy during IRI (26,27) but the relationship between ROS and autophagy in 

LEC during IRI is not known. 

Whilst the generation of low amounts of ROS is essential for normal cellular function excess 

production of ROS is thought to cause cell death (28). The classical cellular response to IRI is an 

increase in ROS generation during hypoxia that is further accentuated during reperfusion (6). 

Importantly our in vitro model of liver IRI involves the manipulation of oxygen tension and does not 

recapitulate the other features of IRI such as glucose deprivation. Previous work from our group has 

shown that intracellular ROS generated in primary human hepatocytes activates autophagy to promote 

cell survival during IRI (8). We now demonstrate that primary human LEC do not demonstrate this 

classical response to IRI (18) as they exhibit high levels of intracellular ROS levels that remain 

unaltered during in vitro IRI. Moreover ROS does not induce cell death during IRI but instead is 

linked to ATG7 activity that can then regulate the downstream autophagy machinery as demonstrated 

by the formation of LC3B positive puncta and protein analysis consistent with autophagic flux (29). 

Although ROS-dependent ATG7 activation of autophagy has been reported in other endothelial cell 

types (30-34) this is the first study to demonstrate this function of autophagy in primary human LEC. 

Importantly in vascular endothelial cells the ROS-autophagy signalling pathway induces endothelial 

damage (35) highlighting that autophagy may function differently in cells of different endothelial 

lineage. Interestingly even in normoxic conditions autophagic puncta are present within primary 

human LEC that maybe a reflection of the inherent scavenging function that LEC perform within the 

liver. The critical role of ROS-dependent autophagy activation in LEC is demonstrated by the 

inhibition of ROS in primary human LEC sensitising cells to necrosis. This data is further 

corroborated by the selective knockdown of ATG7 also sensitising LEC to necrosis. Importantly our 

study used DCF to study ROS generation that specifically detects H2O2 and the role of other ROS 

sub-species such as mitochondrial ROS, superoxide (O2
-) and hydroxyl radicals (OH

.
) in regulating 

LEC autophagy remains to be determined (36). It is important recognise that whilst our in vitro model 

recapitulates many of the features of IRI it does not include the restoration of flow during reperfusion 

and in particular omits the shear stress and biomechanical alterations that are integral to in vivo IRI. 

These factors may significantly change the autophagic response in LEC during IRI.  

The in vitro data in the presented in this study suggests that autophagy in primary human LEC 

involves the selective elimination of dysfunctional mitochondria through the process of mitophagy. 

Recent studies have demonstrated that specific mitochondrial receptors such a FUNDC1 regulate 

mitophagy during hypoxia and ensure the timely elimination of dysfunctional mitochondria prior to 

mitochondrial depolarization (37) and cell death (38) as seen in other acute liver injuries (39). Taken 

together our study suggests that ROS-dependent mitophagy activation promotes LEC survival. 

However ROS may also promote LEC survival through activation of autophagy-independent 

pathways (40,41). In addition autophagy activation in other liver cells may also play a regulatory role 

during IRI (8) and the relationship between LEC autophagy and these other cells remains to be 
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determined. Moreover inflammatory signals such as soluble TNF and cell bound ligands upon 

inflammatory cells, that are an integral feature of liver IRI (4), may alter LEC autophagy and impact 

upon LSEC survival. Finally whilst our isolation technique isolates LEC from liver tissue the 

technique may also harvest vascular endothelium cells as well as liver sinusoidal endothelial cells and 

thus our cells represent a heterogeneous population of liver endothelial cells.  

Our in vitro data strongly suggests that autophagy/mitophagy regulates LEC survival during IRI and 

to assess this mechanism in vivo we utilised a murine model of partial liver IRI. 

Immunohistochemical analysis of murine livers demonstrated that LC3B positive staining was seen in 

liver sinusoids within uninjured liver lobes, which corresponded to the LEC marker CD31. Dual 

immunofluorescence confirmed that CD31 and LC3B co-localise within normal liver. Following IRI 

there is centrilobular necrosis with loss of both LC3B and CD31 immunostaining with concomitant 

impairment of autophagic flux as demonstrated with Western blotting showing the loss of LC3B and 

accumulation of p62. Recent studies have suggested that autophagy in LEC is regulated by KLF2 

through a Rac1-rab7 pathway (12). These studies suggest that failure to reactivate autophagy during 

reperfusion by activating KLF2 may regulate the increased cell death in LEC and is associated 

microvascular dysfunction (12). It remains to be determined whether KLF2 activation is ROS-

dependent in LEC or whether alternative signalling pathway such as TFEB (42), AMPK (43), HIF1 

(44) and FOXO (45) can also regulate LEC autophagy. Overall our findings suggest that the early 

injury to LEC during IRI is linked to a disruption in the autophagy-signalling pathway (25,46).  

Our finding that NAC causes autophagy inhibition and leads to LEC necrosis during IRI has 

important clinical implications. It suggests that general antioxidants targeted to the liver may not be 

an effective intervention to reduce IRI because whilst it may aid hepatocyte survival (6) it will induce 

LEC death and potentially exacerbate the pro-inflammatory liver microenvironment (47).  

In summary our study demonstrates that in primary human LEC ROS-ATG7-dependent 

autophagy/mitophagy promotes LEC survival during liver IRI suggesting that targeting this signaling 

pathway in LEC during liver IRI maybe an effective therapeutic strategy to reduce liver injury 

following surgery.  
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Figure Legends 

 

Figure 1. Intracellular ROS Levels in Primary Human LEC during in vitro IRI  

(i) Demonstrates a typical forward scatter (FS) versus side scatter (SS) plot of primary human LEC. 

The FS versus SS plots shown is from the hypoxia sample of a liver preparation but similar plots were 

obtained during normoxia and hypoxia (data not shown).  

(ii) Illustrates a representative flow cytometry plot of intracellular ROS content in primary human 

LEC during normoxia (black), hypoxia (red) and H-R (blue). The experiment was repeated at least 7 

times in doublet. Data are expressed as MFI and readings are based upon values taken from cells 

within the gated region in Fig 1(i).  

(iii) The bar chart represents pooled data of at least 7 separate experiments illustrating intracellular 

ROS content in primary LEC during normoxia, hypoxia and H-R. Data are expressed as MFI and 

readings are based upon values taken from cells within the gated region in Fig 1(i).  

 

Figure 2. N-Acetylcysteine Induces a Time-Dependent Decrease in Intracellular ROS in 

Primary Human LEC during in vitro IRI 

Isolated primary human LEC were exposed to normoxia, hypoxia or H-R in the presence or absence 

of the general antioxidant NAC. Representative flow cytometry plots illustrate the effect of NAC on 

primary human LEC intracellular ROS content during normoxia, hypoxia and H-R. FS versus SS 

plots of primary human LEC are the same as those illustrated in Fig 1(i) (data not shown). The bar 

chart adjacent to the plots demonstrates the pooled data of four separate experiments illustrating the 

effects of NAC upon human LEC ROS content during each of the three experimental conditions. Data 

is expressed as MFI and readings are based upon values taken from cells within the gated region 

shown in Fig 1(i). Data are expressed as mean  S.E. (*p<0.05).   

 

Figure 3. Intracellular ROS in Primary Human LEC Regulates ATG7 Activity and Autophagic 

Flux during in vitro IRI 

(i) Following normoxia, hypoxia and H-R primary human LEC were lysed and expression of ATG7, 

LC3B and p62 was assessed by Western blotting as described in the Methods and Materials section. 

LEC were incubated with NAC for the stated times in the either normoxia, hypoxia or H-R. All 

western blots were performed at least three times and presented blots are representative of all samples 

(n=3). (ii) Blots were then analysed using denisometric analysis and values normalized to -actin 

loading controls (n=3). Data are expressed as mean  S.E. (*p<0.05, **p<0.01, ***p<0.001). 

 

Figure 4. siRNA ATG7 Knockdown in Human LEC does not Affect Intracellular ROS 

Production but does Alter Autophagic Flux and Sensitises Human LEC to Necrosis 

(i) Lipofectamine based transfection of primary human LEC with ATG7 siRNA led to a 60% 

knockdown in expression as verified by PCR expression of ATG7 mRNA. (ii) Following 24 hours of 
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normoxia, hypoxia and H-R primary human LEC were lysed and expression of ATG7, LC3B and p62 

was assessed by Western blotting as described in the Methods and Materials section. All western blots 

were performed at least three times and presented blots are representative of all samples (n=3). Blots 

were then analysed using denisometric analysis and values normalized to  actin loading controls 

(n=3), Data are expressed as mean  S.E. (*p<0.05). (iii) Representative flow cytometry plots 

illustrate the effect of the ATG7 knockdown upon primary human LEC necrosis during in vitro IRI. 

LEC were exposed to 24 hours of normoxia, hypoxia and H-R. Percentage positive cells for the ROS 

probe DCF are shown on the x-axis and the necrosis marker 7-AAD is shown on the y-axis. The 

percentage of cells that demonstrate necrosis is shown in parentheses. Experiments were performed at 

three times in doublet (n=3).  

 

Figure 5. Intracellular ROS Regulates LC3B Positive Puncta in Primary Human LEC during 

IRI 

(i) Primary human LEC were exposed to normoxia, hypoxia and H-R in the absence and absence of 

NAC. Following the desired incubation period LEC were fixed and permeabilised. LC3B positive 

puncta within LEC was assessed using immunofluorescence and representative images are shown 

(n=3). (ii) LC3B positive puncta in LEC were quantified using image analysis. NAC significantly 

reduces LC3B positive puncta in primary human LEC during normoxia, hypoxia and H-R. Data are 

expressed as mean  S.E. (*p<0.01) (n=3).   

 

Figure 6. LC3B and TOMM20 Co-localise in Primary Human LEC during IRI 

(i) Primary human LEC were exposed to normoxia, hypoxia and H-R for 6 hours in the presence and 

absence of NAC. Cells were fixed and permeabilized and LEC expression for LC3B (red) and 

TOMM20 (green) assessed using immunofluorescence. DAPI was used for nuclear staining and 

composite overlay images are shown on the right. Experiments were performed at least three times 

and representative images are shown (n=3).    

(ii) LC3B positive puncta and TOMM20 staining in LEC were quantified using image analysis. NAC 

significantly reduces dual LC3B/TOMM20 positive puncta in primary human LEC during normoxia, 

hypoxia and H-R, Data are expressed as mean  S.E. (*p<0.01) (n=3). 

 

Figure 7. Intracellular ROS Inhibition with N-acetylcysteine Increases Primary Human LEC 

Necrosis during in vitro IRI 

Representative flow cytometry plots illustrate the effect of the NAC upon primary human LEC 

necrosis during in vitro IRI in the presence and absence of NAC. Percentage positive cells for the 

ROS probe DCF are shown on the x-axis and the necrosis marker 7-AAD is shown on the y-axis. The 

percentage of cells that demonstrate necrosis is shown in parentheses. Experiments were performed at 

three times in doublet (n=3).  
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Figure 8. Reduced Expression of LC3B in LEC is associated with Liver IRI in vivo 

(i) Demonstrates serum AST/ALT levels in C57/B6 mice following sham operations and exposure to 

liver IRI (n=9-10). (ii) The top panel demonstrates the increased liver injury seen in the liver 

following IRI as assessed by H&E staining. The middle panel demonstrates CD31 immunostaining in 

sham, non-IRI and IRI of the liver and the bottom panel demonstrates the pattern of staining with the 

specific autophagy marker LC3B (n=5-7). (iii) demonstrates the percentage area stained by LC3B and 

CD31 in murine liver sections following sham operations, non-injured lobes and liver IRI. Data are 

expressed as mean  S.E. (*p<0.05) (n=5-7).  (iv) FFPE murine liver tissue was assess for LC3B (red) 

and CD31 (green) expression in sham, non-IRI and IRI liver lobes. Overlay images are also 

demonstrated. TUNEL stained murine liver tissue is demonstrated on the right with apoptotic cells 

within the liver sinusoids shown with the white asterisks  (n=5-7). (v) Whole murine liver lysates 

were assessed for ATG7, LC3B and p62 expression and representative blots are shown. All western 

blots were performed at least three times (n = 3). (vi) demonstrates the relative intensity of LC3B and 

CD31 immunofluoresence for the data presented in Fig 8(iv) (n=5-7). Data are expressed as mean  

S.E. (*p<0.05).  (vii) Demonstrates the number of TUNEL positive LEC in liver sections following 

sham-operations, non-injured liver lobes and liver IRI lobes (n=5-7). Data are expressed as mean  

S.E. (*p<0.05). (viii) Shows denisometric analysis of whole liver lysates analysed for LC3B, ATG7 

and p62. Values have been normalized to -actin loading controls (n=3). Data are expressed as mean 

 S.E. (*p<0.05).   
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