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11 Abstract

12 Time series spectroscopic and textural analysis data were obtained from 5 varieties of tuber samples 

13 during microwave baking. These data were analyzed using evolutionary computing methods including 

14 partial least square discriminant analysis (PLSDA), partial least square regression (PLSR) and locally 

15 weighted partial least squares regression (LWPLSR). PLSDA was able to discriminate the tuber 

16 samples into three separate classes corresponding to their spectral properties. The predictability of 

17 spectra in full wavenumber region (4000–600 cm−1) and fingerprint region (1500–900 cm-1) were 

18 calculated using PLSR and LWPLSR and the relative performances of developed models were 

19 compared. It was observed that similar or even better predictions were obtained by models using 

20 spectra in the fingerprint region. Then, first-derivative and mean centering iteration algorithm 

21 (FMCIA) was carried out to select potential effective wavelengths and these selected wavelengths 

22 were further simplified using successive projections algorithm (SPA) for improving the model 

23 efficiency. Based on the FMCIA-SPA method for wavelength selection, the optimized models were 

24 established using LWPLSR for determination of tuber textural property (TTP) in terms of hardness, 
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25 resilience, springiness, cohesiveness, gumminess and chewiness, with correlation coefficient of 

26 prediction (RP) of 0.797, 0.881, 0.584, 0.574, 0.728 and 0.690, respectively. The results of this study 

27 demonstrated that FTMIR-ATR spectroscopy could be used reliably and rapidly for the non-

28 destructive assessment of textural property of microwave baked tuber.

29

30 Keywords 

31 FTMIR-ATR; Textural property; Potato; Multivariate regression; Non-destructive testing

32

33 1. Introduction

34 The tubers in terms of potato (Solanum Spp.) and sweet potato (Ipomoea batatas L.) are the primary 

35 staple food in many parts of the world (Villordon et al., 2014). The potato and sweet potato could 

36 provide more edible energy than many other staple foods. Since their higher moisture content (about 

37 80%), the shelf-life of tuber products is relatively short (Saha et al., 2014). Thermal drying is 

38 considered as an effective way for preservation of tuber products. In the process of heat treating, the 

39 tuber sensory attribute would be affected by interactions of starch molecular with non-starch 

40 polysaccharides and sugars. Because of the starch gelatinization and retrogradation behaviour during 

41 thermal processing, the tuber textural property (TTP) could have many changes (Kim et al., 1997). 

42 For consumers, one of the most important quality attributes of tubers is the texture (Bordoloi et al., 

43 2012). The food texture is normally defined as an integration of mechanical attributes of a food 

44 product perceptible relying on tactile, mechanical, visual and auditory receptors. As a critical sensory 

45 attribute, the texture of tuber product is mainly depended on its chemical compositions such as starch 

46 contents, non-starch polysaccharides, lignin and protein (Kita, 2002). The breakdown of tuber cell 

47 wall and middle lamellae structural components could have a great influence on the tuber texture 

48 (Alvarez and Canet, 1998). The textural parameters of tuber products mainly involve hardness, 

49 resilience, springiness, cohesiveness, gumminess and chewiness. However, the conventional detection 

50 methods for evaluation of tuber texture are based on appearance and taste, which is not only 

51 inaccurate but also time-consuming (Davies and Dixon, 1976). To eliminate the influence from 

52 human factors, the mechanical measurement methods such as texture profile analysis and the 3-point 
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53 bending test have been proposed to detect the food texture (Fagan et al., 2007a). Nevertheless, the 

54 texture analyser with strong destructiveness and low efficiency is not the ideal solution. More 

55 importantly, both the sensory and instrumental evaluation approaches are suitable for sampling 

56 inspection, which means that only a small number of samples can be detected. However, the tuber 

57 industry requires a non-destructive and cost-effective technique for rapid and effective inspection of 

58 tuber texture. 

59

60 Recently, some interesting approaches are based on the use of computer vision, nuclear magnetic 

61 resonance (NMR), biosensors, electronic noses, and vibrational spectroscopy methods to describe the 

62 quality of tuber products (Arkhypova et al., 2008; Biondi et al., 2014; Ding et al., 2015; Hansen et al., 

63 2010; Pedreschi et al., 2011; Su and Sun, 2016d; Sun, 2016). In particular, for sensory analysis of 

64 tuber products, surface defects on potatoes and kinetics of color changes in potato slices were 

65 measured using computer vision systems (Pedreschi et al., 2006; Razmjooy et al., 2012). Due to the 

66 limitation of the charge coupled device (CCD) camera, the resolution of the common image was 

67 usually very low and the microstructure of the test sample cannot be obtained. Besides, the sensory 

68 texture attributes of cooked potatoes were assessed using NMR-imaging (Thybo et al., 2004). 

69 However, the sensory attributes such as graininess and mealiness could not be detected with this 

70 restricted technique. As another non-invasive and rapid spectroscopic technique, infrared (IR) 

71 spectroscopy can provide information about different food compositions at the same time and there is 

72 also no pre-treatment for sample preparation. Although near-infrared (NIR) spectroscopy is widely 

73 applied for food quality evaluation, the information given by NIR is based on molecular overtone and 

74 combination vibrations that are less sensitive and specific (Cen and He, 2007). 

75

76 Fourier transform mid-infrared (FTMIR) spectroscopic technique is proved to provide more specific 

77 information than NIR sensors and has been successfully exploited for qualitative and quantitative 

78 analyses of food and food products (Alexandrakis et al., 2012; Karoui et al., 2010; Klaypradit et al., 

79 2011; Su et al., 2015). The MIR spectroscopy monitors the vibrational and rotational motions of 

80 molecules in which very small differences in sample composition can be measured. As MIR spectra 
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81 are rich in information on both physical states and molecular structures of food components, it allows 

82 for not only chemical determination of organic constituents but also physical identification of food 

83 texture property. MIR spectroscopy with attenuated total reflectance (ATR) has been identified as 

84 having considerable potential for real-time application in food industry. Many studies have 

85 investigated the potential of the IR spectroscopy to determine food sensory texture attributes including 

86 hardness, shear force, adhesiveness, chewiness, cohesiveness and springiness (Cai et al., 2011; Fagan 

87 et al., 2007a; Fagan et al., 2007b; Wu et al., 2014). However, there are few researches on 

88 measurement of textural property of tuber products using MIR spectroscopy. 

89

90 The MIR region (4000–400 cm−1) contains four broad continuous regions in terms of the X−H 

91 stretching region (4000−2500 cm−1), the triple bond region (2500−2000 cm−1), the double bond region 

92 (2000−1500 cm−1), and the fingerprint region (1500−400 cm−1) (Stuart, 2005). The numerous 

93 wavenumbers in the MIR region are irrelevant information for chemometrics analysis (Li et al., 2015). 

94 These redundant spectra need to be reduced and the survived spectra should be the most important 

95 wavenumbers. Some available methods such as genetic algorithms (GA), synergy interval partial least 

96 squares (SiPLS), backward interval partial least squares (biPLS), and competitive adaptive reweighted 

97 sampling (CARS) have been widely used for selection of feature wavenumbers in MIR region (Li et 

98 al., 2016; Wu et al., 2015). By selecting feature wavenumbers, both the model accuracy and 

99 detection efficiency could be improved. Our study sought to investigate the Fourier transform mid-

100 infrared attenuated total reflectance (FTMIR-ATR) spectroscopic technique in quantitative prediction 

101 of the textural property of microwave baked tuber products. Spectral analysis of 125 samples from 5 

102 tuber varieties at 5 time points was conducted. On the basis of the results, 6 different textural 

103 parameters including hardness, resilience, springiness, cohesiveness, gumminess and chewiness were 

104 evaluated by developing multivariate analytical methods. Then, the TTP was evaluated using a new 

105 spectral selection method. The ultimate objective of this study was to rapidly predict the TTP based 

106 on feature wavenumbers in the MIR region.

107

108 2. Materials and methods
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109 2.1. Samples preparation

110 To develop a robust calibration model, fresh tuber samples from five types (25 samples for each type) 

111 in terms of Rooster red potato (origin: UK), Desiree red potato (origin: UK), Evangeline sweet potato 

112 (origin: Egypt), Abees sweet potato (origin: Egypt), organic Abees sweet potato (origin: Egypt) (GB-

113 ORG-05 EU/non-EU agriculture) were purchased from large supermarkets in Birmingham, West 

114 Midlands, England. These samples were then transported to the freshness keeping compartment 

115 (about 4 °C, relative humidity 85%) at the laboratory of School of Chemical Engineering, University 

116 of Birmingham (UoB), UK, so as to reduce moisture loss and enzyme activity of tubers. After being 

117 peeled and sliced to the thickness of 10 mm (the axial length of 15 mm), 25 samples of each tuber 

118 variety were divided into five equal parts (5 samples for each part) and then respectively baked in a 

119 lab-scale microwave oven (800 W) for 0, 10, 20, 30, 35s, resulting in 125 samples (25 × 5) in total for 

120 five tuber varieties, eventually. Among them, 25 samples (5 samples from each tuber variety) were 

121 randomly selected as the prediction set, and the rest of 100 samples (20 samples of each time period) 

122 were used as the calibration set (group F). The samples in group F were divided into five equal groups 

123 based on the baking time (T1 for 0s, T2 for 10s, T3 for 20s, T4 for 30s and T5 for 35s). The samples 

124 of T1, T2 and T3 formed a new group G, and samples of T3, T4 and T5 combined another group H. 

125 Then, each sample was first scanned by a FT-IR spectral imaging system before the reference values 

126 of textural parameter being collected.

127

128 2.2 Data collection of FT-IR microspectral imaging system

129 The samples were analyzed using a LUMOS FT-IR microscope (Bruker Optics, Germany) in ATR 

130 mode (Cao et al., 2016; Woess et al., 2017). This system was equipped with a liquid nitrogen cooled 

131 narrow-band photoconductive mercury cadmium telluride (MCT) detector, a deuterated triglycine 

132 sulfate (DTGS) detector, a highly resolving digital CCD camera, a germanium (Ge) ATR crystal, a 

133 solid state laser, a IR beam splitter, and a permanently aligned RockSolidTM interferometer which 

134 was extremely insensitive against mirror tilts, vibrations and thermal effects. All components were 

135 motorized and electronically coded. The images of regions of interest were captured by the CCD 

136 camera. The aperture was 20 μm × 20 μm to obtain a high S/N ratio as well as a high spatial 

https://en.wikipedia.org/wiki/West_Midlands_(county)
https://en.wikipedia.org/wiki/West_Midlands_(county)
https://en.wikipedia.org/wiki/England
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137 resolution, which allowed high quality MIR spectra to be acquired in the wavelength range of 2500–

138 16680 nm (4000 to 600 cm−1) at 4 cm−1 spectral resolution. Before each sample scan, a background 

139 scan was acquired with an empty sample plate. To remove any interference from the previous sample, 

140 the ATR crystal was cleaned using 70% ethanol and dried with a pure cotton fabric after each sample 

141 scan. Then, a total of 32 successive scans for each point of a sample were co-added and converted to 

142 absorbance based on the OPUS 7.2 software. More detailed information about the schema of the 

143 equipment as well as detector theory and technology can be found in the study of Bhargava and Levin 

144 (2008). Fig. 1B shows the representative microscopic images of Rooster tuber samples of 5 time 

145 periods from 0 to 35s. The spectra of 4 typical points from each sample were collected and averaged 

146 to represent that sample.

147

148 2.3 Textural property measurement

149 The textural property of a tuber sample was assessed by performing double compression test using a 

150 TA.XT.plus texture analyser (Stable Micro Systems Ltd., Godalming, Surrey, England) fitted with 

151 a 30 kg load cell. The force and height calibrations were executed prior to tests as these calibrations 

152 ensured that the measurements made by the Texture Analyser were accurate. In order to calculate the 

153 textural parameters accurately, the tests should be conducted with the same test and post-test speeds. 

154 Moreover, to replicate the biting action well, the diameter of compression plate used was larger than 

155 the diameter of tuber samples (15 mm) so that the tested samples can not only barrel out but also be 

156 fully contacted and properly compressed. In addition, different compression distances from the strain 

157 of 20% to 80% were tested to emulate the chewing action. It was found that the 40% strain was more 

158 appropriate to evaluate tuber samples after observing their behaviours. Therefore, each sample in this 

159 study was axially compressed twice to 40% deformation with a 40-mm diameter cylindrical 

160 aluminium plate at the pre-test speed of 2.0 mm/s, and the test and post-test speed of 1.0 mm/s, 

161 respectively. After the first compression, the plate returned to the trigger position. The trigger type 

162 was auto and the trigger force was 5.0 g. Besides, the interval between two compressions was 10 s. 

163 The acquisition of time data was 500 points per second. In this study, one tuber sample was first 

164 analysed by the FTMIR-ATR spectroscopic system and its textural property was then inspected using 
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165 the texture analyser. After, the force–time deformation curve of the tuber sample could be displayed 

166 based on the fully integrated Texture Exponent 32-bit software in the computer. The textural 

167 parameters including hardness, resilience, springiness, cohesiveness, gumminess and chewiness could 

168 be acquired from the force–time deformation curve for analysis. According to such an operation 

169 process, both spectral data and textural parameters of all the five categories of tuber samples from 0s 

170 to 35s were collected. The specific definition and calculation of relevant mechanical parameters of 

171 texture can be found in the study of Trinh and Glasgow (2012). The statistics of these textural 

172 parameters are summarized in Table 1. The large variability of not lower than 0.226 suggested that the 

173 samples acquired in this study had strong representative and would be very helpful for the 

174 development of a robust model. Other textural parameters such as adhesiveness, stringiness and 

175 fracturability were not calculated in this test because of their intrinsic attributes.

176

177 2.4 Spectral pre-treatment

178 The obtained spectra mainly contained the tuber sample information but might involve systemic 

179 noises due to instrumental drift and light scattering. To develop an accurate spectroscopic model, the 

180 raw spectra should be corrected by applying mathematical pre-processing methods to reduce the 

181 undesirable information. In this study, spectral data were treated with four pre-processing methods: 

182 first derivative (1st Der) (7 points window, 2 order polynomial), second derivative (2nd Der) (7 points 

183 window, 2 order polynomial), orthogonal signal correction (OSC), and mean centering (MC) (Azzouz 

184 et al., 2003). Specifically, 2nd Der and OSC were first individually used to the data. Meanwhile, the 

185 methods of MC combined with both 1st Der and OSC were respectively applied. The optimal pre-

186 processing technique would be survived when the lowest root mean square error of cross validation 

187 (RMSECV) and highest correlation coefficient (R) were acquired.

188

189 2.5 Feature wavenumber selection and optimization

190 The obtained FTMIR-ATR spectral data (4000 to 600 cm−1) contain 1667 continuous wavenumbers. 

191 To accelerate data processing and enhance model robustness, spectral dimension reduction and 

192 uninformative wavelength elimination need to be carried out. The first-derivative and mean centering 
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193 iteration algorithm (FMCIA) is a new efficient spectral selection approach that has been deeply 

194 utilized for detection of tuber quality based on NIR spectroscopy (Su and Sun, 2016a, c). In a recent 

195 study, the model performance was improved a lot using the wavelength selection method of 

196 regression coefficients (RC) combined with the FMCIA (Su and Sun, 2017). Moreover, successive 

197 projections algorithm (SPA) has been proved to be a more effective tool than RC for modelling and 

198 solving the collinearity problem (He et al., 2014). Detailed information about FMCIA and SPA can be 

199 found in other studies (Su and Sun, 2016b; Wu et al., 2012). In this study, FMCIA and SPA were 

200 combined to choose the most useful feature wavenumbers. Specifically, FMCIA was first applied to 

201 collect a batch of the common potential variables that were related to comprehensive internal 

202 characteristics of tuber samples. To explore the effectiveness of these selected spectra, SPA was then 

203 conducted to obtain the most effective wavenumber subsets from the potential feature variables 

204 selected based on FMCIA. It is recommended to use the variables that carry the most effective 

205 information to develop simplified models for rapid detection. To our knowledge, it is the first time to 

206 use the FMCIA-SPA method for spectral wavelength selection in IR spectra analysis.

207  

208 2.6 Regression model development

209 Locally weighted partial least squares regression (LWPLSR) can be seen as a suitable strategy to 

210 estimate the nonlinear dependence relation between X-block (i.e., spectra) and Y-block (i.e., analyte 

211 concentrations), and to facilitate the selection of proper calibration sets. For each unknown sample to 

212 be predicted, local regression models are carried out using specific calibration equations to improve 

213 prediction accuracy by selecting a reduced set of calibration spectra providing similar features. The 

214 closest samples characterized by a minimum distance between the query and the calibration samples 

215 can be employed for local model calculation. This is on basis of using partial least squares regression 

216 (PLSR) algorithm to extract a set of latent variables (LVs) explaining the sources of variation of 

217 spectral signals correlated to sample composition. Normally, the database X (p × q matrix) in the 

218 calibration set of LWPLSR model consists of p samples where the kth sample Xk has q spectral 

219 variables selected to estimate the Y vectors. The query Xl is the sample whose concentration needs to 

220 be estimated.
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221                                                                                                                         (1)                                𝐗 = [X1 X2 X3… X𝑞]𝑇

222                                                                                                                            (2)                              𝐘 = [Y1 Y2 Y3… Y𝑝]𝑇

223                                                                                                                (3)                                       X𝑘 = [X𝑘1 X𝑘2 X𝑘3… X𝑘𝑞]𝑇

224                                                                                                                    (4)                                     X𝑙 = [X𝑙1 X𝑙2 X𝑙3… X𝑙𝑞]𝑇

225 where T denotes the transpose of the matrix. In the LWPLSR, the similarity Sk between Xk and Xl is 

226 introduced to determine weights on samples in the calibration set.

227          (k=1, 2, 3…, p)                                                                                             (5)     S𝑘 = exp( ‒
𝜌𝑑𝑘

μ𝑑 ) 

228                                                                                                                           (6)                               𝐒 = [S1 S2 S3… S𝑝]𝑇

229                                                                                                                       (7)𝑑𝑘 =
q

∑
t = 1

(𝑥𝑘,𝑡 ‒ 𝑥𝑙,𝑡)2

230                                                                                                                          (8)                                d = [d1 d2 d3… d𝑝]𝑇

231                                                                                                                                          (9)𝑑 =
1
𝑝

𝑝
∑

𝑘 = 1
𝑑𝑘

232                                                                                                           (10)         μ𝑑 =
p

∑
k = 1

(𝑑𝑘 ‒ 𝑑)2/(𝑝 ‒ 1)

233 where d denotes the distance vector, dk represents the distance between Xk and Xl,  is the tuning 𝜌

234 parameter that can be determined by cross-validation, d̅ is the mean distance, and  is the standard μ𝑑

235 deviation. The similarity Sk decreases in an exponential manner and approaches asymptotically to zero 

236 as the distance from the query increases. Moreover, Sk decreases more slowly as the parameter  is 𝜌

237 smaller. LWPLSR treats PLSR as a special case when  = 0 as Sk = 1 for all samples. The sample size 𝜌

238 of the LWPLSR models varied between 10 and 300 in steps of 10. The optimal combination of the 

239 aforementioned parameters was selected from results obtained by a multi-parametric approach using 

240 the RMSECV as response function. The PLSR is commonly applied as statistical method for building 

241 linear regression model while the PLSDA is a supervised classification approach that can be applied 

242 to heighten the separation between groups of observations based on the PLSR (Su and Sun, 2016b). 

243 The response of Y-variable in PLSDA is a set of binary variables which is connected with the category 
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244 of the sample. The latent variables (LVs) of these three PLS models were measured by venetian blinds 

245 cross-validation by mapping the number of factors against the RMSECV. The optimum number of 

246 LVs was determined by the lowest value of RMSECV. An excellent model must have higher R as 

247 well as lower RMSE. 

248

249 2.7 Assessment of model accuracy

250 The performance of PLS models was assessed using R and RMSE in calibration (RC, RMSEC), cross-

251 validation (RCV, RMSECV), and prediction (RP, RMSEP). Other parameters such as sensitivity, 

252 specificity and classification error were employed to evaluate the performance of PLSDA models. In 

253 this usage, the sensitivity (also called the true positive rate) is defined as the possibility of 

254 distinguishing a sample as belonging to the interested class, while the specificity (also called the true 

255 negative rate) is defined as the probability of identifying a sample as not pertaining to the interested 

256 class. In other words, specificity quantifies the avoiding of false positives, as sensitivity does for false 

257 negatives. The above spectral analysis and multivariate modelling was performed using the Matlab 

258 R2016a software (The Mathworks Inc., Natick, MA, USA). In addition, the time-series variation of 

259 tuber texture property during microwave baking was analyzed using the software of IBM SPSS 

260 Statistics 24.0 version. The corresponding statistical significance of regression was assessed using a 

261 one-way analysis of variance (ANOVA). P-values were calculated for each model, and the 

262 level of significance was assigned to probability lower than 0.05.

263

264 3. Result and discussion
265 3.1 Texture analysis of baked tuber

266 The connections of average reference values of TTP at five time points were described with curves in 

267 Fig. 2. To develop robust calibration models for tuber textural analysis, five different categories of 

268 fresh sweet potato and red potato tuber samples were investigated in this study. It was found that the 

269 hardness of sweet potato (Fig. 2a) was smaller than the red potato (Fig. 2g) in the beginning, but the 

270 larger gumminess and chewiness (Fig. 2e and f) were obtained by the sweet potato and the final 

271 values of these parameters were almost equivalent in the end. This demonstrated that the tuber 
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272 products both sweet potato and red potato were fully cooked at 35 s. For the cohesiveness (Fig. 2c and 

273 i), the larger values were obtained by the sweet potato throughout the process. Nevertheless, the 

274 similarity of variation tendency of these six textural parameters between sweet potato (Fig. 2a-f) and 

275 red potato (Fig. 2g-i) was noticed. Accordingly, wide applicability models should be established 

276 based on all these tuber samples. The statistics of estimated models for textural analysis of tuber 

277 samples during microwave baking was summarized in Table 2. 

278

279 3.2 Spectral feature of tuber samples

280 The average spectral data of micro-FTMIR-ATR of all samples obtained from various time points are 

281 depicted in Fig. 3a. As can be seen, the spectral trends (4000–600 cm−1) of time-series samples (0–35s) 

282 are similar, but the distinct amplitude of spectra caused by the baking time of tuber samples are 

283 realized. The inspection of chemical species of tuber in characteristic spectra has been illustrated. The 

284 absorption peaks of wide bands at 3750–2800 cm−1 and 1800–1500 cm−1 were ascribed to the effect of 

285 strong water absorption due to O–H stretching vibrations (Ayvaz et al., 2016). This indicated that the 

286 decrease of spectral amplitude from 0 to 35s in these two regions was due to the loss of tuber moisture. 

287 Fig. 3b presents the magnified energy absorbance information associated with different kinds of 

288 functional groups. It was found that the spectral region of 1500 to 900 cm−1 is of greatest importance 

289 for the recognition of molecular structure (Lu and Rasco, 2012). For instance, the infrared absorptivity 

290 at 1345 cm−1, 1357 cm−1, 1429 cm−1 were related to asparagine and glutamine corresponding to C–H 

291 deformation, C–N stretches and C–H deformation, respectively. Besides, the region of 1200 cm−1–

292 1000 cm−1 which is associated with C–C ring vibrations, overlapped with the stretching vibrations of 

293 C–O–H side groups and the C–O–C glycosidic band vibrations of carbohydrates (Barth, 2000). In 

294 addition, the glucose was associated with bands at 1015 cm−1, and the unconspicuous absorption band 

295 at 1062 cm−1 was assigned to C-O stretch vibration (Wilkerson et al., 2013). This indicated that the 

296 fingerprint spectra in the region of 1500 to 900 cm−1 may be more closely related to the tuber texture. 

297 Therefore, there is a need to develop regression models in both the full wavenumber region (4000–

298 600 cm−1) and the fingerprint region (1500-900 cm-1) to study all kinds of tuber mechanical 

299 parameters.
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300

301 3.3 PLSDA model for evaluation of spectral property 

302 The spectral property of baked tuber was investigated based on PLSDA algorithm using raw spectra 

303 and OSC pus MC pre-treatment. To extract spectral features of PLSDA, the optimum numbers of LVs 

304 were determined based on the minimum values of RMSECV statistic. The obtained identification 

305 results of targeted class (T1-T5) in three modes (F, G and H) are tabulated in Table 3, where the 

306 performance of PLSDA is assessed by model parameters such as the sensitivity, specificity, 

307 classification error and RCV for each class. For identification of T1 and T2, the performances of all 

308 models developed based on F and G were very good, and the highest accuracy was obtained in T1 

309 followed by T2, which demonstrated that the spectra from T1 and T2 were easier to be distinguished 

310 from all the spectral data. This situation was mainly due to the higher tuber moisture content in T1 

311 and T2. The larger moisture loss in T2 resulted in a bigger gap between T1 and T2. On the contrary, 

312 PLSDA models generated a very bad recognition of samples in T4 from the mode H, with the lowest 

313 accuracy values (RCV = 0.130-0.226, RMSECV = 0.575-0.584). This indicated that the spectral 

314 property in T4 was more similar to that in T3 and T5 because of the little moisture loss in the late 

315 period of baking. Nevertheless, the models developed using pre-processing method showed better 

316 classification power than raw spectral model, apart from the detection of class T3 in mode F (RCV = 

317 0.333). Based on the PLSDA using pre-treatment method to classify T3, the accuracy (RCV = 0.684) 

318 acquired in the mode G had more than doubled in comparison to the mode F and was higher than the 

319 mode H as well. The results showed that the small spectral variation can be revealed using the 

320 PLSDA with proper pre-treatment, and all the tuber samples in mode G can be discriminated into 

321 three separate clusters (T1, T2 and T3) with better effect corresponding to their spectral properties. 

322 The optimal results obtained from PLSDA models for evaluation of spectral property were clearly 

323 plotted using curves as shown in Fig. 4.

324

325 3.4 Detection of TTP using PLSR in the full-wavenumber region

326 FTMIR-ATR technique allowed the development of calibration models for quantification of TTP. The 

327 cross-validated PLSR models were developed to determine the textural properties in various tuber 
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328 products based on the chemical information from their spectra. To evaluate the applicability of the 

329 proposed PLSR for the measurement of TTP, an independent set of samples was then assessed using a 

330 predicted PLSR model. All kinds of spectral pre-treatment algorithms were adopted to remove both 

331 additive and multiplicative noise effects in the spectra and improve the accuracy of the developed 

332 models. The detailed statistical parameters when constructed using the FT-IR raw spectra and various 

333 pre-treatment approaches are described in Table 4. The effects of spectral pre-processing algorithms 

334 on performances of PLSR models were inspected. It was found that the generated models using the 

335 OSC plus MC-corrected spectral data with MC in Y-block presented the best performance for 

336 prediction of hardness, resilience, springiness and gumminess, with RP of 0.846, 0.893, 0.563 and 

337 0.798, respectively. Although the spectra processed only by the OSC plus MC without Y-block MC 

338 provided similar R statistics in PLSR, the RMSEC, RMSECV and RMSEP were almost doubled. 

339 Besides, the PLSR with 2nd Der provided the best prediction model to determine the tuber 

340 cohesiveness. However, it was realized that the 2nd Der of the MIR spectra lowered the accuracy of 

341 PLSR model for the detection of resilience, probably because the spectra contained the interfering 

342 variance which was increased using this data pre-processing. In addition, the highest accuracy (RP = 

343 0.797, RMSEP=34.598) for measuring chewiness was existed in the PLSR model developed using the 

344 OSC, followed by the spectral pre-processing method of OSC plus MC (in X-block) with another MC 

345 in Y-block. Overall, the model performance can be fully improved based on optimal pre-treatment 

346 algorithms (Fig. 5). Moreover, the most optimal pre-processing methods were acquired by the OSC 

347 plus MC-corrected spectra with MC in Y-block, providing more precise predictions when compared 

348 to other pre-processing approaches.

349

350 3.5 Improving the measuring accuracy of TTP using LWPLSR

351 Although a good correlation between the IR spectral features and the TTP reference values has been 

352 presented in the PLSR, the detection accuracy still needs to be improved to meet the requirement of 

353 the advanced food processing. Based on the optimal pre-processing method, the LWPLSR model was 

354 then constructed to study the correlation between the FTMIR-ATR spectra and textural property 

355 reference values acquired at five different time points. The parameters of LWPLSR models using raw 
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356 spectra and the OSC plus MC-corrected spectra with MC in Y-block are shown in Table 5. For 

357 determination of tuber springiness using LWPLSR model, the better performance (RP = 0.520, 

358 RMSEP = 0.114) was obtained based on the spectral data without pre-processing, which was lower 

359 than the capacity of PLSR model using the OSC plus MC-corrected spectra with MC in Y-block. 

360 Nevertheless, it was found that the best calibration models for prediction of other five textural 

361 properties were acquired by employing the pre-processing method, and the RP values were 0.878 for 

362 hardness, 0.911 for resilience, 0.666 for cohesiveness, 0.815 for gumminess and 0.817 for chewiness, 

363 respectively. Based on the LWPLSR model, these five coefficients being used to predict tuber textural 

364 properties were comparatively higher than the RP values collected from PLSR models with the 

365 exception of the RP for cohesiveness. This indicated that the PLSR model could obtain higher 

366 efficiency for evaluating tuber cohesiveness and springiness, although better detection accuracy of 

367 other four textural parameters were acquired in the LWPLSR model. Therefore, the accuracy of 

368 quantitative detection of TTP can be further optimized by combining the full-wavenumber PLSR with 

369 LWPLSR model (Fig. 6).

370

371 3.6 Analysis of TTP using the fingerprint region

372 Based on the analysis of optimal models in the full wavenumber range (4000–600 cm−1), the results of 

373 PLSR and LWPLSR for measuring TTP using the confining spectra in the fingerprint region of 1500–

374 900 cm-1 are described in Table 6. Coincidentally, the optimal prediction ability for measuring 

375 hardness, resilience, gumminess and chewiness was achieved using the fingerprint-wavenumber 

376 LWPLSR model, and other two parameters including cohesiveness and springiness were inspected 

377 with better accuracy in the fingerprint-wavenumber PLSR model. Compared with the performance of 

378 full-wavenumber models, the models using spectra in the narrow wavenumber range showed similar 

379 or even better capacity. This demonstrated that the calibration models developed in this study were 

380 robust and stabilized. Moreover, it was evident that the spectra without pre-processing offered an 

381 enhancement in the model accuracy of LWPLSR for detection of tuber hardness (RP = 0.845), 

382 resilience (RP = 0.909) and cohesiveness (RP = 0.787). Although there was a deteriorative impact on 

383 the model predictability for assessing tuber springiness, gumminess and chewiness without spectral 
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384 pre-treatment, the optimized models were found by using OSC plus MC in X-block with another MC 

385 in Y-block, with the RP of 0.748, 0.814 and 0.742, respectively. Furthermore, the OSC plus MC 

386 spectral pre-treatment method provided the highest accuracy for inspection of tuber springiness. Using 

387 only 4 LVs, this fingerprint-wavenumber PLSR model yielded the highest RP of 0.748 and similar 

388 RMSEP of 0.112 in comparison with other models. It was seen that none of other models showed the 

389 RP higher than 0.600, which meant the simplified fingerprint-wavenumber models were more 

390 convenient.

391

392 3.7 Modelling with feature wavenumbers for determination of TTP

393 Even though the wavenumber quantity in the spectral region of 1500-900 cm-1 accounted for about 

394 17.756% of the total spectra (1667), these almost 300 wavenumbers were still very redundant and 

395 affected the rapid measurement of TTP. To improve the TTP detection efficiency, a dozen of feature 

396 wavenumbers (1468, 1350, 1333, 1315, 1221, 1185, 1160, 1130, 1083, 1026, 985 and 924 cm-1) were 

397 selected using FMCIA as described in Fig. 7a. On basis of chosen characteristic wavenumbers, the 

398 performances of simplified PLSR and LWPLSR calibration models were summarized in Table 7. As 

399 can be seen, the feature-wavenumber LWPLSR model provided the best results for all tuber textural 

400 parameters including hardness, resilience, cohesiveness, springiness, gumminess and chewiness 

401 compared to the PLSR. It was realized that the accuracy of the FMCIA-LWPLSR models (mean RP = 

402 0.760) performed slightly less superior than those optimal models (mean RP = 0.808) established in the 

403 fingerprint region (1500–900 cm-1). However, it was worth mentioning that FMCIA-LWPLSR models 

404 performed an acceptable result considering the largely reduced number of variables (95.946%). To 

405 explore the effectiveness of the most useful spectra in these twelve spectral wavebands, the number of 

406 characteristic wavenumber was further reduced and optimized based on the SPA. As shown in Fig. 

407 7(b, c and d), three combinations of most important wavenumbers including (1350, 1221, 1083, 1026, 

408 985, 924), (1468, 1333, 1221, 1026, 985, 924) and (1468, 1333, 1083, 1026, 985, 924) are indicated 

409 by square marker based on the combined FMCIA-SPA to predict these six textural parameters of 

410 tested samples. Finally, the FMCIA-SPA-LWPLSR models were established for TTP detection with 

411 the mean RP of 0.709. The results presented in Fig. 8 revealed that performances of the evolutionary 
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412 LWPLSR models using six selected wavenumbers were comparable to those models developed using 

413 twelve wavenumbers, indicating that the method for wavelength selection using the FMCIA-SPA 

414 method was efficient.

415

416 3.8 Discussion

417 To develop a more robust calibration model for TTP determination, representative samples from 

418 various tuber varieties and different microwave baking degrees were acquired to generate large 

419 variability of tuber textural parameters. Based on 1667 wavenumbers in the full spectral range (4000–

420 600 cm−1), textural parameters of tuber samples including hardness, resilience, springiness, 

421 cohesiveness, gumminess and chewiness were respectively evaluated, with the highest mean RP of 

422 0.786. Many researches have emphasized the similar detection results of MIR spectroscopy using the 

423 spectra in both the full wavenumber region and the fingerprint region for assessing food quality 

424 (Karoui et al., 2010). Specifically, based on FTMIR spectroscopy and PLSR model to evaluate onion 

425 powder adulterant, the determination coefficients for prediction (Rp
2) of 0.90 and 0.89 were obtained 

426 for the full spectral and fingerprint regions, respectively (Lohumi et al., 2014). It was realized that 

427 food texture was closely bound up with its structure that was the characterization of spectra in the 

428 fingerprint region (Ricci et al., 2015). When 3 combinations of 6 feature wavenumbers in the 

429 fingerprint region (1500-900 cm-1) were utilized in our research, the optimal mean RP of 0.709 was 

430 achieved. Although the model accuracy had a slight reduction of 9.796%, the total amount of 

431 wavenumber reduced by 99.640% using the new wavenumber selection approach of FMCIA-SPA. 

432 The prediction results based on the FMCIA-SPA found in this research were better than those 

433 mentioned by Wu et al. (2014) and Pan et al. (2016) for measuring texture properties of other food 

434 products using wavelength selection methods such as RC and uninformative variable elimination 

435 (UVE) although more feature spectral data were employed in their studies. In a recent study of Li et al. 

436 (2016), 18 characteristic wavenumbers were eventually selected from the MIR spectral region to 

437 develop linear and nonlinear determination models. Fortunately, there were 12 feature wavenumbers 

438 chosen in our study based on the FMCIA, and just 6 characteristic wavenumbers left using the 

439 FMCIA-SPA. Accordingly, the FTMIR has a great potential in the near future as a high-efficiency 
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440 technique for real-time determination of the integrated quality of complex food systems along with 

441 the development of sensors and chemometric algorithms.

442

443 4. Conclusions

444 In this study, the feasibility of MIR spectroscopy for the evaluation of TTP was investigated. The 

445 FTMIR-ATR spectroscopy provided characteristic information allowing a better understanding of the 

446 change of tuber texture under various microwave baking time. The FMCIA-SPA was first used to 

447 choose optimal feature wavenumbers based on spectroscopic technique. With only 6 most important 

448 wavenumbers selected from 1667 wavenumbers in the MIR region (4000–600 cm−1), the performance 

449 of FMCIA-SPA-LWPLSR model was comparable to the optimal full-wavenumber models. The result 

450 of this study revealed that FTMIR-ATR spectroscopy can be considered as an effective technique for 

451 non-invasive and rapid measurement of textural property of tuber products. In the future research, 

452 more tuber samples from different varieties and origins will be investigated based on various 

453 spectroscopic techniques to verify the effectiveness of developed new chemometric algorithms.

454
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590 Table 1. Reference values of textural property of all tuber samples during microwave baking.

Textural
parameter Max Min Range Mean ± SD Variability

Hardness (N) 368.219 6.926 361.293 108.963± 105.352 0.967
Resilience 0.726 0.101 0.625 0.285±0.128 0.449
Cohesiveness 0.894 0.035 0.859 0.410±0.175 0.427
Springiness 0.867 0.120 0.747 0.562±0.127 0.226
Gumminess (N) 311.486 2.683 308.803 48.524±62.406 1.287
Chewiness (N) 223.363 1.320 222.043 31.157±44.798 1.438

591 SD: Standard Deviation, Variability = SD value/Mean value.
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616  Table 2. Summary statistics of estimated models for textural analysis of tuber samples during microwave baking a.

Coefficients        Equation 　 ANOVA Type Y
t2 t (1/T) Constant 　 (0 ≤ t ≤ 35 s) Mean Square F statistic p-value R 
0.238 -15.069 266.333 1.000Hardness (0.008) (0.282) (2.046)

Y = 0.238 t2 – 15.069t + 
266.333 20266.558 4459.238 0.000 (2.132)

0.000 -0.005 0.37Resilience (0.000) (0.001) (0.029) Y = -0.005t + 0.37 0.018 13.884 0.034 0.907 
(0.036)

0.003 -0.057 0.678 Y = 0.003t2 –  0.057t + 0.678 1.000
(0.000) (0.000) (0.000) (0 ≤ t ≤ 20 s) 0.032 - - (0.000)
0.010 -0.057 1.602 Y = 0.010t2 –  0.057t + 1.602 1.000

Cohesiveness

(0.000) (0.000) (0.000) (20 < t ≤ 35 s) 0.018 - - (0.000)
0.000 -0.006 0.656 0.927Springiness (0.000) (0.001) (0.033) Y = -0.006t + 0.656 0.030 18.250 0.024 (0.041)
0.000 622.787 -3.83 1.000Gumminess (0.000) (5.495) (0.330) Y = 622.787/t – 3.830 1241.757 12844.988 0.000 (0.311)
0.179 -9.427 123.03 0.986
(0.044) (1.615) (11.722) Y = 0.179t2 – 9.427t + 123.030 5140.348 34.455 0.028 (12.214)
0.000 395.631 -5.354 0.996

Sweet 
potato 
tubers

Chewiness

(0.008) (24.757) (1.487) Y = 395.631/t + 5.354 501.115 255.376 0.004 (1.401)
0.321 -19.646 319.428 0.996Hardness (0.055) (2.029) (14.728) Y = 0.321t2 – 19.646t + 319.428 32150.036 136.528 0.007 (15.345)
0.0005 -0.009 0.327 Y = 0.0005t2 – 0.009t + 0.327 1.000
(0.000) (0.000) (0.000) (0 ≤ t ≤ 20 s) 0.001 - - (0.000)
0.003 -0.155 2.354 Y = 0.003t2 – 0.155t + 2.354 1.000Resilience

(0.000) (0.000) (0.000) (20 < t ≤ 35 s) 0.008 - - (0.000)
0.0004 -0.013 0.302 0.982Cohesiveness (0.000) (0.002) (0.016) Y = 0.0004t2 – 0.013t + 0.302 0.007 27.159 0.036 (0.016)
0.000 -0.005 0.683Springiness (0.000) (0.282) (0.055) Y = -0.005t + 0.683 0.019 4.119 0.135 0.761 

(0.069)
0.135 -7.176 96.78 0.995Gumminess (0.020) (0.282) (5.425) Y = 0.135t2 – 7.176t + 96.780 3053.539 95.573 0.010 (2.132)
0.088 -4.625 60.617

Red 
potato 
tubers

Chewiness (0.010) (0.354) (2.811)

　

Y = -0.088t2 – 4.625t + 60.617 1625.673 144.643 0.007 0.997 
(3.352)

617 a Standard errors in parentheses below coefficient estimates.

618
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624

625
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627

628

629

630

631

632

633

634

635

636

637

638

639

Mode
Targeted 
class 
detection

X-block 
Pre-
processing

Y-block 
Pre-
processing

No. 
LV

Calibration
　

Cross-validation
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640 Table 3. Performance of PLSDA model for evaluation of TT

641 OSC: Orthogonal signal correction, MC: Mean centering, LV: Latent variable, RC: Correlation coefficient of calibration, RMSEC: Root mean square error of 
642 calibration, RCV: Correlation coefficient of cross-validation, RMSECV: Root mean square error of cross-validation.

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668 Table 4. Performance of full-wavenumber PLSR model for determination of TTP.

Sensitivity Specificity Class. 
Error RC RMSEC Sensitivity Specificity Class. 

Error RCV RMSECV

None None 10 0.960 0.920 0.065 0.831 0.224 0.940 0.880 0.090 0.729 0.285T1 OSC+MC MC 10 1.000 1.000 0.000 0.941 0.136 0.980 0.960 0.030 0.857 0.221
None None 8 0.800 0.880 0.160 0.703 0.284 0.680 0.890 0.215 0.620 0.317T2 OSC+MC MC 8 0.920 0.960 0.060 0.825 0.226 0.760 0.890 0.175 0.643 0.322
None None 8 0.720 0.770 0.230 0.506 0.354 0.560 0.770 0.335 0.333 0.385T3 OSC+MC MC 10 0.880 0.900 0.110 0.707 0.283 0.720 0.770 0.255 0.329 0.435
None None 9 0.760 0.680 0.280 0.474 0.352 0.680 0.670 0.325 0.263 0.401T4 OSC+MC MC 7 0.920 0.900 0.090 0.713 0.28 0.680 0.770 0.275 0.321 0.430
None None 10 0.720 0.850 0.215 0.620 0.314 0.600 0.790 0.305 0.438 0.374

F

T5 OSC+MC MC 5 0.920 0.950 0.066 0.786 0.247 0.760 0.790 0.225 0.522 0.364
None None 9 0.940 0.880 0.090 0.863 0.239 0.860 0.880 0.130 0.716 0.352T1 OSC+MC MC 9 1.000 1.000 0.000 0.965 0.123 0.920 0.960 0.060 0.851 0.258
None None 7 0.840 0.920 0.120 0.747 0.313 0.920 0.840 0.180 0.649 0.365T2 OSC+MC MC 5 0.960 0.940 0.050 0.884 0.22 0.800 0.860 0.170 0.682 0.370
None None 9 0.800 0.860 0.170 0.681 0.346 0.720 0.680 0.300 0.446 0.444

G

T3 OSC+MC MC 8 1.000 0.960 0.020 0.890 0.215 0.800 0.820 0.190 0.684 0.361
None None 7 0.880 0.600 0.260 0.560 0.393 0.840 0.480 0.340 0.420 0.451T3 OSC+MC MC 2 0.900 0.960 0.070 0.754 0.309 0.840 0.680 0.240 0.519 0.423
None None 11 0.680 0.840 0.240 0.587 0.382 0.560 0.720 0.360 0.130 0.575T4 OSC+MC MC 9 0.880 0.920 0.100 0.773 0.299 0.600 0.720 0.340 0.226 0.584
None None 7 0.760 0.780 0.230 0.609 0.374 0.720 0.720 0.280 0.422 0.438

H

T5 OSC+MC MC 4 0.880 0.900 0.110 0.771 0.300 　 0.640 0.780 0.290 0.490 0.444
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Calibration  Cross-validation PredictionTextural 
parameter

X-block Pre-
processing

Y-block 
Pre-
processing

No. 
LV RC RMSEC RCV RMSECV RP RMSEP

None None 9 0.860 51.832 0.759 66.855 0.766 77.221
2nd Der None 13 0.944 33.614 0.771 67.750 0.811 77.688
OSC None 8 0.912 41.807 0.791 63.930 0.831 69.713
MC None 9 0.869 117.640 0.779 127.158 0.802 142.704
1st Der+MC None 9 0.901 115.115 0.796 125.046 0.822 141.592
OSC+MC None 8 0.912 114.240 0.794 125.183 0.837 114.470
MC MC 9 0.869 50.269 0.771 65.779 0.802 73.593
1st Der+MC MC 9 0.901 44.140 0.791 63.670 0.822 69.804

Hardness

OSC+MC MC 8 0.917 40.677 0.796 63.407 0.846 68.029
None None 10 0.864 0.066 0.746 0.091 0.871 0.077
2nd Der None 10 0.867 0.065 0.678 0.103 0.754 0.090
OSC None 8 0.897 0.058 0.742 0.093 0.873 0.069
MC None 9 0.851 0.302 0.752 0.309 0.885 0.251
1st Der+MC None 7 0.896 0.300 0.818 0.306 0.876 0.257
OSC+MC None 8 0.898 0.300 0.742 0.311 0.871 0.259
MC MC 9 0.851 0.069 0.738 0.091 0.885 0.071
1st Der+MC MC 7 0.896 0.058 0.809 0.078 0.876 0.072

Resilience

OSC+MC MC 4 0.917 0.052 0.722 0.098 0.893 0.063
None None 8 0.696 0.129 0.545 0.157 0.616 0.133
2nd Der None 9 0.814 0.105 0.638 0.148 0.734 0.117
OSC None 8 0.670 0.134 0.486 0.166 0.679 0.120
MC None 9 0.823 0.424 0.702 0.434 0.643 0.403
1st Der+MC None 6 0.825 0.424 0.671 0.437 0.691 0.402
OSC+MC None 7 0.812 0.425 0.653 0.432 0.621 0.400
MC MC 9 0.823 0.100 0.701 0.127 0.643 0.131
1st Der+MC MC 6 0.825 0.097 0.669 0.133 0.691 0.124

Cohesiveness

OSC+MC MC 6 0.891 0.080 0.711 0.129 0.673 0.124
None None 9 0.674 0.096 0.523 0.115 0.489 0.108
2nd Der None 9 0.722 0.089 0.336 0.136 0.422 0.110
OSC None 8 0.669 0.096 0.523 0.115 0.527 0.104
MC None 9 0.679 0.566 0.493 0.568 0.457 0.587
1st Der+MC None 9 0.738 0.564 0.490 0.570 0.548 0.593
OSC+MC None 10 0.699 0.565 0.489 0.566 0.561 0.588
MC MC 9 0.679 0.095 0.481 0.117 0.457 0.107
1st Der+MC MC 9 0.738 0.087 0.480 0.119 0.548 0.101

Springiness

OSC+MC MC 9 0.740 0.087 0.468 0.126 0.563 0.101
None None 9 0.840 32.587 0.746 40.184 0.729 48.715
2nd Der None 10 0.876 28.950 0.669 47.053 0.717 50.184
OSC None 9 0.897 26.524 0.793 37.353 0.796 44.964
MC None 9 0.846 56.944 0.755 62.595 0.766 71.674
1st Der+MC None 8 0.873 55.434 0.754 63.151 0.742 74.706
OSC+MC None 9 0.902 53.778 0.797 61.078 0.784 73.478
MC MC 9 0.846 31.989 0.750 40.111 0.766 46.638
1st Der+MC MC 8 0.873 29.217 0.750 40.541 0.742 48.608

Gumminess

OSC+MC MC 7 0.903 25.823  0.797 37.086 0.798 44.571
None None 9 0.850 22.211 0.760 27.602 0.711 38.040
2nd Der None 10 0.880 20.097 0.677 32.789 0.717 38.096
OSC None 9 0.909 17.583 0.822 24.409 0.797 34.598
MC None 9 0.857 37.062 0.771 41.093 0.751 51.205
1st Der+MC None 8 0.885 35.839 0.779 41.103 0.731 52.848
OSC+MC None 8 0.910 34.686 0.824 38.917 0.785 51.819
MC MC 9 0.857 21.785  0.766 27.377 0.751 36.589
1st Der+MC MC 8 0.885 19.633 0.776 27.154 0.731 37.603

Chewiness

OSC+MC MC 9 0.912 17.358 0.819 24.542 0.791 34.871
669 2nd Der: Second derivative, OSC: Orthogonal signal correction, MC: Mean centering, 1nd Der: Frist derivative, LV: Latent variable, RC: Correlation coefficient of 
670 calibration, RMSEC: Root mean square error of calibration, RCV: Correlation coefficient of cross-validation, RMSECV: Root mean square error of cross-validation, 
671 RP: Correlation coefficient of prediction, RMSEP: Root mean square error of prediction.
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672  Table 5. Performance of full-wavenumber LWPLSR model for measurement of TTP.

Calibration PredictionTextural 
parameter

X-block 
Pre-
processing

Y-block 
Pre-
processing

No. 
LV

RC RMSEC RP RMSEP

None None 9 0.949 32.306 0.843 72.607
Hardness

OSC+MC MC 9 0.970 24.918 0.878 67.844
None None 9 0.962 0.036 0.855 0.058

Resilience
OSC+MC MC 9 0.970 0.032 0.911 0.049
None None 9 0.949 0.056 0.615 0.149

Cohesiveness
OSC+MC MC 9 0.969 0.044 0.666 0.133
None None 9 0.868 0.065 0.520 0.114

Springiness
OSC+MC MC 9 0.920 0.052 0.479 0.124
None None 9 0.953 18.163 0.766 46.613

Gumminess
OSC+MC MC 9 0.970 14.741 0.815 44.972
None None 9 0.957 12.300

　

0.756 36.549
Chewiness

OSC+MC MC 9 0.975 9.411 　 0.817 34.883
673 OSC: Orthogonal signal correction, MC: Mean centering, LV: Latent variable, RC: Correlation 
674 coefficient of calibration, RMSEC: Root mean square error of calibration, RP: Correlation coefficient 
675 of prediction, RMSEP: Root mean square error of prediction.
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691  Table 6. Performance of fingerprint-wavenumber models for determination of TTP.

Calibration PredictionTextural 
parameter Model

X-block 
Pre-
processing

Y-block 
Pre-
processing

No. 
LV RC RMSEC RP RMSEP

None None 8 0.791 62.127 0.740 80.632PLSR OSC+MC MC 9 0.899 44.434 0.791 74.098
None None 10 0.962 27.971 0.845 63.701Hardness

LWPLSR OSC+MC MC 7 0.937 31.51 0.799 72.625
None None 10 0.789 0.081 0.804 0.083PLSR OSC+MC MC 10 0.873 0.064 0.856 0.082
None None 9 0.960 0.037 0.909 0.069Resilience

LWPLSR OSC+MC MC 8 0.956 0.039 0.872 0.076
None None 9 0.741 0.121 0.787 0.101PLSR 2nd Der MC 9 0.733 0.124 0.781 0.109
None None 9 0.939 0.061 0.674 0.137Cohesiveness

LWPLSR OSC+MC MC 9 0.959 0.051 0.609 0.148
None None 9 0.547 0.109 0.488 0.11PLSR OSC+MC MC 4 0.828 0.099 0.748 0.112
None None 9 0.832 0.072 0.509 0.106Springiness

LWPLSR OSC+MC MC 4 0.732 0.088 0.562 0.099
None None 8 0.785 37.171 0.736 47.577PLSR OSC+MC MC 11 0.901 26.062 0.738 47.761
None None 9 0.939 20.695 0.792 42.776Gumminess

LWPLSR OSC+MC MC 13 0.989 8.734 0.814 41.024
None None 8 0.796 25.54

　

0.723 36.793PLSR OSC MC 9 0.893 19.044 0.695 38.546
None None 9 0.946 13.725 0.741 35.748Chewiness

LWPLSR OSC+MC MC 8 0.963 11.504 　 0.742 35.668
692 PLSR: Partial least square regression, LWPLSR: Locally weighted partial least squares regression, 
693 OSC: Orthogonal signal correction, MC: Mean centering, LV: Latent variable, RC: Correlation 
694 coefficient of calibration, RMSEC: Root mean square error of calibration, RP: Correlation coefficient 
695 of prediction, RMSEP: Root mean square error of prediction.
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705  Table 7. Performance of feature-wavenumber models using FMCIA for determination of TTP.

Calibration PredictionTextural 
parameter Model No. 

LV RC RMSEC RP RMSEP
PLSR 7 0.734 69.071 0.640 92.054

Hardness
LWPLSR 8 0.937 46.481 0.890 73.645
PLSR 9 0.615 0.107 0.581 0.101Resilience
LWPLSR 5 0.891 0.061 0.877 0.060
PLSR 10 0.629 0.14 0.546 0.138Cohesiveness
LWPLSR 5 0.787 0.111 0.641 0.128
PLSR 9 0.482 0.123 0.356 0.132Springiness LWPLSR 6 0.686 0.094 0.621 0.092
PLSR 7 0.716 41.875 0.691 51.095Gumminess LWPLSR 8 0.865 30.275 0.743 47.244
PLSR 7 0.736 28.581

 

0.704 38.233Chewiness LWPLSR 8 0.890 46.481  0.789 73.645
706 PLSR: Partial least square regression, LWPLSR: Locally weighted partial least squares regression, 
707 LV: Latent variable, RC: Correlation coefficient of calibration, RMSEC: Root mean square error of 
708 calibration, RP: Correlation coefficient of prediction, RMSEP: Root mean square error of prediction.
709
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726 Figure captions

727 Fig. 1. The microscopic images of Rooster tuber samples collected by FT-IR imaging system in 5 

728 time periods from (a) 0s to (e) 35s.

729 Fig. 2. Reference values of textural property of sweet potato Fig. 2(a-f) and red potato Fig. 2(g-l). 

730 Error bars represented the standard deviation among five replicates at each time point.

731 Fig. 3. Raw FT-IR absorption spectra of tuber samples in (a) the full-wavelength range (4000–600 

732 cm-1) and (b) the limited spectral region (1800–900 cm-1).

733 Fig. 4. The optimal results of PLSDA models for evaluation of spectral property. 

734 Fig. 5. The comparison of original and optimal full wavenumber models for measurement of TTP.

735 Fig. 6 The performance of the optimal PLSR model (c and d) and LWPLSR model (a, b, e and f) for 

736 prediction of TTP.

737 Fig. 7 (a) Textural property related feature wavenumbers (1468, 1350, 1333, 1315, 1221, 1185, 1160, 

738 1130, 1083, 1026, 985 and 924 cm-1) are indicated by circles using the FMCIA. The variable indexes 

739 from 1 to 12 in (b, c and d) represent these feature wavenumbers from 1468 to 924 cm-1. (b) 

740 Optimized feature wavenumbers for predicting hardness, gumminess and chewiness are indicated by 

741 square marker based on FMCIA-SPA, (c) optimized feature wavenumbers for assessment of resilience 

742 and springiness are indicated by square marker based on FMCIA-SPA, (d) optimized feature 

743 wavenumbers for measurement of cohesiveness are indicated by square marker based on FMCIA-

744 SPA.

745 Fig. 8 Performance of FMCIA-SPA-LWPLSR models for determination of TTP.
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754

755 Fig. 1. The microscopic images of Rooster tuber samples collected by FTMIR imaging system in 5 
756 time periods from (a) 0s to (e) 35s.
757
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758

759 Fig. 2. Reference values of textural property of sweet potato Fig. 2(a-f) and red potato Fig. 2(g-l). 

760 Error bars represented the standard deviation among five replicates at each time point.
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761

762 Fig. 3. Raw FT-IR absorption spectra of tuber samples in (a) the full-wavelength range (4000–600 
763 cm-1) and (b) the limited spectral region (1800–900 cm-1).
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764

765 Fig. 4. The optimal results of PLSDA models for evaluation of spectral property. 

766
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773

774 Fig. 5. The comparison of original and optimal full wavenumber models for measurement of TTP.
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775

776 Fig. 6 The performance of the optimal PLSR model (c and d) and LWPLSR model (a, b, e and f) for 
777 prediction of TTP.
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778

779 Fig. 7 (a) Textural property related feature wavenumbers (1468, 1350, 1333, 1315, 1221, 1185, 1160, 
780 1130, 1083, 1026, 985 and 924 cm-1) are indicated by circles using the FMCIA. The variable indexes 
781 from 1 to 12 in (b, c and d) represent these feature wavenumbers from 1468 to 924 cm-1. (b) 
782 Optimized feature wavenumbers for predicting hardness, gumminess and chewiness are indicated by 
783 square marker based on FMCIA-SPA, (c) optimized feature wavenumbers for assessment of resilience 
784 and springiness are indicated by square marker based on FMCIA-SPA, (d) optimized feature 
785 wavenumbers for measurement of cohesiveness are indicated by square marker based on FMCIA-
786 SPA.
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787

788 Fig. 8 Performance of FMCIA-SPA-LWPLSR models for determination of TTP.
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Highlights
• The mid-infrared spectral property was analyzed based on PLSDA. 
• PLSR and LWPLSR models were developed to measure tuber textural property.
• The fingerprint spectra showed better modelling ability for texture detection.  
• The FMCIA-SPA is verified as a new approach for feature wavenumber selection.
• Tuber textural property could be detected using mid-infrared spectroscopy.

 


