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Abstract 21 

A carbapenem-resistant Klebsiella pneumoniae was recovered from human 22 

blood. Its whole genome sequence was obtained using both Illumina and 23 

long-read MinION sequencing. The strain belongs to ST273, which has been 24 

found recently and caused an outbreak in Southeast Asia. It has two 25 

carbapenemase genes blaNDM-1 (carried by an ST7 IncN self-transmissible 26 

plasmid) and blaIMP-4 (located on an self-transmissible IncHI5 plasmid). 27 

Non-KPC-producing ST237 may represent a lineage of carbapenem-resistant 28 

K. pneumoniae, which warrants further monitoring.     29 
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Klebsiella pneumoniae is one of the most common pathogens of human 30 

infections and carbapenem-resistant K. pneumoniae (CRKP) has emerged as 31 

a major challenge to clinical management and public health globally (1). The 32 

production of carbapenem-hydrolyzing enzymes (carbapenemases) is the 33 

major mechanism mediating resistance to carbapenems in K. pneumoniae. 34 

There are a few types of carbapenemases and in K. pneumoniae the most 35 

common carbapenemase is KPC (a group of serine β-lactamases), followed by 36 

NDM and IMP (both of which are metallo-β-lactamases). The global 37 

dissemination of CRKP is largely mediated by the high-risk clonal complex 258 38 

(CC258), which comprises ST11, ST258 and a number of closely related 39 

sequence types. However, other clones may also contribute to the 40 

international spread of CRKP. Recently, ST273 CRKP has been found in 41 

several countries (2-4), which warrants further investigations. We have 42 

identified a ST273 CRKP clinical strain carrying both blaNDM and blaIMP genes 43 

in our hospital and report its characterization here.   44 

 45 

Strain WCHKP020034 was recovered from the blood of a 72-year-old male 46 

patient with pancreatitis at West China hospital. The strain was identified as K. 47 

pneumoniae by MALDI-TOF (Bruker, Billerica, MA) and Vitek II (bioMérieux, 48 

Marcy-l'Étoile, France). MICs of amikacin, aztreonam, aztreonam-avibactam, 49 

ceftazidime, ciprofloxacin, colistin, imipenem, meropenem, 50 

piperacillin-tazobactam, tigecycline and trimethoprim-sulfamethoxazole 51 
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against the isolate were determined using the broth microdilution method of 52 

the Clinical Laboratory Standards Institute (CLSI) (5). As there are no 53 

breakpoints of colistin and tigecycline from CLSI, those defined by the 54 

European Committee on Antimicrobial Susceptibility Testing 55 

 (EUCAST; http://www.eucast.org/) were applied. The strain was resistant to 56 

aztreonam (MIC, 64 μg/ml), ceftazidime (>256 μg/ml), ciprofloxacin (256 57 

μg/ml), imipenem (32 μg/ml), meropenem (64 μg/ml), piperacillin-tazobactam 58 

(>512/4 μg/ml) and trimethoprim-sulfamethoxazole (128/2,432 μg/ml), but is 59 

susceptible to amikacin (2 μg/ml), aztreonam-avibactam (0.25/4 μg/ml), 60 

colistin (1 μg/ml) and tigecycline (1 μg/ml). Acquired carbapenemase genes 61 

blaGES, blaKPC, blaIMP, blaNDM, blaOXA-48 and blaVIM were screened as described 62 

previously (6-9) and the strain had blaNDM and blaIMP. blaNDM-1 and blaIMP-4 were 63 

identified by amplifying and sequencing the complete coding sequence of 64 

blaNDM and blaIMP.  65 

 66 

The strain was subjected to whole genome sequencing with 150 × coverage 67 

using the HiSeq X10 Sequencer (Illumina, San Diego, CA), which generated 68 

4,395,250 reads. Reads were trimmed using Trimmomatic (10) and were then 69 

assembled to 125 contigs (70 were ≥ 1,000 bp in length) with a 56.79% GC 70 

content using the SPAdes program (11). The wzi gene allele, which represents 71 

the capsular variation, of strain WCHKP020034 was 50, corresponding to 72 

several K types, i.e. K15, K17, K50, K51 and K52 with K15 being the best 73 
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match as predicted using Kaptive (12). None of the K types were K1, K2, and 74 

K5, which are proposed as the hypervirulent members of K. pneumoniae. With 75 

respect to virulence, strain WCHKP020034 had the mrk gene cluster 76 

(mrkA-B-C-D-F-H-I-J), which encodes type 3 fimbrial expression (13) and is 77 

seen in almost all K. pneumoniae isolates (1). Other known virulence genes 78 

such as those encoding yersiniabactin, colibactin, allantoinase and aerobactin 79 

were absent from strain WCHKP020034.  80 

 81 

Strain WCHKP020034 belonged to sequence type 273 (ST273) as determined 82 

using the de novo assembled genome sequence to query the multi-locus 83 

sequence typing database of K. pneumoniae 84 

(http://bigsdb.pasteur.fr/klebsiella/klebsiella.html). There were 10 additional 85 

ST273 strains with whole genome sequence available in GenBank (accessed 86 

by January 21, 2018; Table S1 in the Supplementary file). Genome sequences 87 

of ST273 strains were retrieved from GenBank and were aligned with that of 88 

strain WCHKP020034 using the Harvest Suite (14) with default settings. Single 89 

nucleotide polymorphisms (SNPs) on recombination sites were removed by 90 

Gubbins (15). The filtered SNPs were then used as input for inferring a 91 

phylogenetic tree using RAxML (16) with the GTRGAMMA model and 1,000 92 

bootstraps. Antimicrobial resistance genes in these genomes were identified 93 

using ABRicate (https://github.com/tseemann/abricate) to query the ResFinder 94 

database at the Center for Genomic Epidemiology 95 

 on A
pril 3, 2018 by F

U
D

A
N

 U
N

IV
E

R
S

IT
Y

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


 

(http://genomicepidemiology.org/) and the wzi gene allele was predicted using 96 

Kaptive (12). Five strains carrying blaNDM-7, a point mutant of blaNDM-1, were 97 

recovered in 2013 in the Philippines and belong to a single cluster. No wzi 98 

allele was identified in these five strains. By contrast, strain WCHKP020034 99 

was clustered with other ST273 strains (Figure 1) and was closest to strain 100 

COL-Kpn113 (carrying no blaNDM, recovered in 2004 in Colombia) and strain 101 

K45-67 (carrying no blaNDM but blaVIM-1, recovered in 2007 in Norway) with 116 102 

to 123 SNPs difference respectively (Table S2 in the Supplementary file). 103 

Strains COL-Kpn113 and K45-67 had a wzi allele174, which is different from 104 

the allele 50 of strain WCHKP020034. The assembled genomes of ST273 105 

strains were also typed using the cgMLST database 106 

(http://bigsdb.pasteur.fr/perl/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef_107 

public&page=sequenceQuery) and a total of 951 genes were identified in all 108 

ST273 genomes. The 951 genes were identical in sequence among all ST273 109 

strains other than WCHKP020034, while only 5 out of the 951 genes were 110 

different between strain WCHKP020034 and the other 10 ST273 strains (Table 111 

S3 in the Supplementary file). The relatively small number of SNPs and almost 112 

identical cgMLST results seen in strains from different geographic locations 113 

over such a long time frame suggests that ST273 might be highly clonal and 114 

merits further focused phylogenetic studies of this lineage. The wzi allele was 115 

different and even absent in ST273 strains but it is not uncommon to find more 116 

than one capsular types for strains of a single ST due to homologous 117 
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recombination of the capsular locus (17). Plasmids of the ST273 strains were 118 

predicted using PlasmidFinder but there is no plasmid replicon type present in 119 

all ST273 strains. 120 

In addition to the two carbapenemase genes, strain WCHKP020034 had 24 121 

intact antimicrobial resistance genes mediating resistance to aminoglycosides 122 

(aac(3)-IId, ant(3'')-Ih-aac(6')-IId, aacA4, aadA1, aadA16, aph(3')-Ia, strA and 123 

strB), β-lactams (blaCTX-M-3 and blaSHV-115), fosfomycin (fosA), macrolides 124 

(mph(A)), phenicol (floR), quinolones (oqxA, oqxB, qnrB and qnrS1), rifampicin 125 

(arr3), tetracycline (tet(A)), sulphonamides (sul1 and sul2) and trimethoprim 126 

(dfrA7, dfrA14 and dfrA27) (Table 1).  127 

 128 

Conjugation experiments were preformed using filter- and broth-based 129 

methods at both 25 and 37 °C with the azide-resistant Escherichia coli strain 130 

J53 as the recipient. Transconjugants were screened using 1 μg/ml 131 

meropenem plus 150 μg/ml sodium azide and the presence of blaNDM-1 or 132 

blaIMP-4 in transconjugants was screened by PCR. blaNDM-1 and blaIMP-4 were 133 

carried on two self-transmissible plasmids, designated pNDM1_LL34 and 134 

pIMP4_LL34, respectively. To obtain the complete sequence of the plasmids, 135 

strain WCHKP020034 was subjected to sequencing using the long-read 136 

MinION Sequencer (Nanopore, Oxford, UK). The de novo hybrid assembly of 137 

both short Illumina reads and long MinION reads was performed using 138 

Unicycler (18) under the conservative mode for increased accuracy. Complete 139 
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circular contigs generated were then corrected using Plion (19) with Illumina 140 

reads for several rounds until no change was detected. Plasmid replicon type 141 

and plasmid multi-locus sequence type were determined using the 142 

PlasmidFinder and pMLST tools at http://genomicepidemiology.org/. The 143 

hybrid assembly of Illumina and MinION reads revealed that strain 144 

WCHKP020034 has a 5,295,791-bp circular chromosome and three large 145 

plasmids, i.e., the 58,953-bp pNDM1_LL34 of IncN (ST7), a 260,974-bp 146 

pIMP4_LL34 carrying blaIMP-4 and blaCTX-M-3  with replicon types being 147 

unidentified by PlasmidFinder and a 130,688-bp plasmid carrying qnrB that 148 

contains an IncFII(K) and an IncQ1 replicon (designated pQnrB_LL34) (Table 149 

1).  150 

 151 

To understand the distribution of ST7 IncN plasmids, sequences of three 152 

alleles to define ST7 were concatenated and were then aligned against the 153 

nucleotide database using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 154 

Plasmids of the ST7 IncN type were found in various species of the 155 

Enterobacteriaceae including Citrobacter freundii, E. coli, Enterobacter 156 

cloacae, Enterobacter hormaechei, K. pneumoniae, Klebsiella oxytoca, 157 

Morganella morganii, Raoultella ornithinolytica and Raoultella planticola from 158 

different countries, suggesting that ST7 IncN plasmids are widely distributed. 159 

In addition, ST7 IncN plasmids have been found to mediate the dissemination 160 

of blaIMP-4 in Enterobacteriaceae in different regions of China (20). Sequences 161 
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of all available ST7 IncN plasmids (n=32) were retrieved from the GenBank. 162 

Genes present on all ST7 IncN plasmids were considered as backbone genes, 163 

which were identified using OrthoFinder (21). Sequences of backbone genes 164 

were concatenated and were then aligned to infer a phylogenetic tree using 165 

RAxML (16) with a 1,000-bootstrap test. pNDM1_LL34 is clustered with 166 

several plasmids from various species (Figure 2). Among which, pNDM1_LL34 167 

is closely related (99% coverage and 99% identity) to plasmid pNDM-BTR 168 

(GenBank accession number KF534788), which is also a ST7 IncN plasmid 169 

carrying blaNDM-1 that was recovered from an E. coli in Beijing, China, in 2013, 170 

as revealed by BLAST (blast.ncbi.nlm.nih.gov). The above findings suggest 171 

interspecies spread of a common IncN plasmid. On pNDM1_LL34 and 172 

pNDM-BTR, blaNDM-1, several genes that are commonly associated with 173 

blaNDM-1, and the quinolone-resistant gene qnrS1 were bracketed by IS26 174 

(Figure 3). There were no 8-bp direct target repeats, which are the 175 

characteristic of the insertion of IS26, flanking the two copies of IS26, 176 

suggesting that homologous recombination contributed to the formation of 177 

such a structure. Nonetheless, two copies of IS26 have the potential to form a 178 

composite transposon to mediate the mobilization of the intervening genetic 179 

components including blaNDM-1 and qnrS1. Outside of the two IS26, there was 180 

an interrupted Tn3 family transposon, in which the transposase gene tnpA and 181 

both inverted repeats remain intact but the resolvase gene tnpR was truncated. 182 

The fipA gene that encodes a conjugal transfer inhibition protein and belongs 183 
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to the plasmid backbone was interrupted into two parts by the Tn3 family 184 

transposon. The characteristic 5-bp direct target repeats flanked the Tn3 185 

family transposon, suggesting that the transposon inserted into fipA.       186 

 187 

blaIMP-4 was carried by a class I integron in the blaIMP-4-qacG2-aacA4 cassette 188 

array on pIMP4_LL34. Chloramphenicol resistance gene catB3 is usually seen 189 

together with blaIMP-4 in the blaIMP-4-qacG2-aacA4-catB3 cassette array but is 190 

absent from pIMP4_LL34. The integron is assigned In1498 by INTEGRALL 191 

(http://integrall.bio.ua.pt/). By BLAST, the closest match of pIMP4_LL34 was 192 

p13190-VIM (88% coverage and 99% identity; GenBank accession no. 193 

MF344563) from K. pneumoniae in Beijing China. pIMP4_LL34 has a replicon, 194 

which has been proposed as IncHI5 (22) but has not been included into the 195 

database of PlasmidFinder. By BLAST using the 885-bp replication 196 

protein-encoding gene of the IncHI5 replicon, we identified 15 additional 197 

IncHI5 plasmids in GenBank. These plasmids were found in K. pneumoniae, K. 198 

oxytoca, K. michiganensis, R. ornithinolytica, and R. planticola and all but one 199 

were found at various locations in China. These findings suggest that IncHI5 200 

plasmids have been circulated in China, which warrant further investigations. 201 

blaCTX-M-3 was located downstream of ISEcp1 and upstream of a truncated 202 

orf477 gene. The ISEcp1-blaCTX-M-3-orf477Δ unit was inserted in a gene 203 

encoding a protein of the Hok/Gef family with the presence of 5-bp direct target 204 

repeats, which is the characteristic of the transposition of ISEcp1. It became 205 
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evident that ISEcp1 misrecognized a sequence in orf477, which has 8 out of 206 

14 nucleotides matched with the right-hand inverted repeat (IRR), as it 207 

alternative IRR and then realized the mobilization of blaCTX-M-3 into the Hok/Gef 208 

family protein-encoding gene.  209 

 210 

In conclusion, we identified a ST273 CRKP carrying two carbapenemase 211 

genes blaNDM-1 and blaIMP-4. blaNDM-1 was carried by an ST7 IncN 212 

self-transmissible plasmid and blaIMP-4 was located on an IncHI5 213 

self-transmissible plasmid. This is yet another example of a clinical isolate 214 

containing multiple plasmids conferring resistance to carbapenems as we 215 

described before (23). The coexistence of plasmids may generate new 216 

platforms to mediate further spread of carbapenem-resistant genes and 217 

questions our knowledge of the extent to which plasmids conferring multi-drug 218 

resistance truly affect fitness of host bacteria. It creates a question as to why 219 

strains would possess multiple genes for the same resistance. The low 220 

diversity of ST273 isolates across continents and years suggests that the 221 

lineage merits further characterization.  222 

 223 

Nucleotide sequence accession numbers. Complete sequences of the 224 

chromosome of strain WCHKP020034, pIMP4_LL23 and pNDM1_LL23 have 225 

been deposited into GenBank under the accession numbers CP025963, 226 

CP025964 and CP025965. 227 
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Table 1. Antimicrobial resistance genes and their locations in strain 328 

WCHKP020034.  329 

 Size (bp) Replicon type, 

pMLST 

Antimicrobial resistance genes 

Chromosome 5,295,791 - blaSHV-115, fosA, oqxA, oqxB 

pNDM1_LL34 58,953 N (ST7) blaNDM-1, dfrA14, qnrS  

pIMP4_LL34 260,974 IncHI5 aacA4, blaCTX-M-3, blaIMP-4, sul1  

pQnrB_LL34 130,688 FII (K2:A-:B-), 

Q1 

aac(3)-IId, ant(3'')-Ih-aac(6')-IId, aadA1, 

aadA16, aph(3')-Ia, arr3, dfrA27, floR, 

mph(A), qnrB, sul1, sul2, tet(A)  

ND, undetermined.  330 

 331 

 on A
pril 3, 2018 by F

U
D

A
N

 U
N

IV
E

R
S

IT
Y

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


 

Figure legends 332 

Figure 1. Maximum likelihood phylogenetic tree of K. pneumoniae ST273 333 

strains with genome sequences available in the GenBank. The phylogeny 334 

is inferred from the recombination-filtered SNP alignment obtained by aligning 335 

either complete or draft genome of K. pneumoniae ST273 against the 336 

complete genome of WCHKP020034. The annotation denotes the presence of 337 

antimicrobial resistance genes as determined by Abricate. 338 

 339 

Figure 2. Phylogenetic tree of ST7 IncN plasmids. The name, host species 340 

and accession numbers of the plasmids are shown. The tree was inferred 341 

using concatenated sequences of 26 genes belonging to the ST7 IncN 342 

backbone. 343 

 344 

Figure 3. The genetic context of blaNDM-1 on pNDM1_LL34. Genes between 345 

blaNDM-1 and qnrS1 are ble (mediating bleomycin resistance), trpF (encoding a 346 

phosphoribosylanthranilate isomerase), dsbC (encoding an oxidoreductase), 347 

cutA1 (encoding an ion tolerant protein) and groES/groEL (encoding a 348 

chaperonin). The tnpA gene (encoding a transposase) and both inverted 349 

repeats (shown in blue poles) of a Tn3 family transposon are outside the 350 

region flanked by IS26. fipA (encoding a conjugal transfer inhibition protein) is 351 

interrupted by the insertion of the Tn3 family transposon with the characteristic 352 

the 5-bp direct target repeats (TATAT). Δ represents truncated genes or mobile 353 
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genetic elements. 354 
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pNDM1_LL34, IncN, this study 
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500 bp 

 

TATAT TATAT 

Figure 3. The genetic context of blaNDM-1 on pNDM1_LL34. Genes between blaNDM-1 and qnrS1 are ble (mediating bleomycin 

resistance), trpF (encoding a phosphoribosylanthranilate isomerase), dsbC (encoding an oxidoreductase), ctuA1 (encoding an ion 

tolerant protein) and groES/groEL (encoding a chaperonin). The tnpA gene (encoding a transposase) and both inverted repeats (shown 

in blue poles) of a Tn3 family transposon are outside the region flanked by IS26. fipA (encoding a conjugal transfer inhibition protein) is 

interrupted by the insertion of the Tn3 family transposon with the characteristic   the 5-bp direct target repeats (TATAT). Δ represents 

truncated genes or mobile genetic elements. 
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