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ARTICLE INFO ABSTRACT

Additive manufacture (AM) is receiving significant attention globally, reflected in the volume of research being
carried out to support the commercialisation of the technology for industrial applications and the interest shown
by government and policy makers in the technology. The lack of distinction between 3D printing and AM, as well
as the portrayal of some highly publicised applications, may imply that the technology is now firmly established.

Keywords:

3D printing

Case study research
Additive layer manufacture

:erOSpac'e However, this is not the case. The aim of this study is to identify the current barriers to the progression of AM for
B.umm;.t 1v1e end-use products from an industrial perspective and to understand the nature of those barriers. Case study
lomedica

research has been conducted with organisations in the UK aerospace, automotive, defence, heavy machinery and
medical device industries. Eighteen barriers are identified: education, cost, design, software, materials, trace-
ability, machine constraints, in-process monitoring, mechanical properties, repeatability, scalability, validation,
standards, quality, inspection, tolerances, finishing and sterilisation. Explanation building and logic models are
used to generalise the findings. The results are discussed in the context of current academic research on AM. The
outcomes of this study help to inform the frontiers of research in AM and how AM research agendas can be aligned

with the requirements for industrial applications.

1. Introduction

The progression of additive manufacture (AM) has received interna-
tional attention, with collaborative research, technology translation and
commercialisation initiatives existing across the globe; America Makes in
the USA (National Center for Defence Manufacturing and Machining,
2017), and High Value Manufacturing Catapults and the National Centre
for Net Shape and Additive Manufacturing in the UK (Innovate UK, 2017;
MTC Ltd, 2017). It is estimated that the UK has the potential to capture an
annual £3.5 billion of the global economic market by 2025 (AM-UK
Steering Group, 2017a). Although some technology leading companies
have progressed their applications of AM under the scrutiny of the media,
they do not form a true reflection of the technology readiness level of the
technique across all industries. The reality is that the maturity and in-
cidences of commercial AM products are highly specific to the industry,
application, and company. In the past 5 years, multiple reports have been
published by government and collaborative research and industrial ini-
tiatives to understand the economic importance, strategic and challenges
associated with progressing AM in the UK and Europe (AM-UK Steering
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E-mail address: 1.e.j.thomas-seale@bham.ac.uk (L.E.J. Thomas-Seale).
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Group, 2015; AM-UK Steering Group, 2016; AM-UK Steering Group,
2017a; European Commission, 2014; European Technology Sub-platform
in Additive Manufacturing, 2014; Innovate UK, 2015; Li et al., 2016a;
Technology Strategy Board: Special Interest Group, 2012).

Comparably the amount of academic literature which addresses the
challenges preventing the wider adoption of AM in industry, is extremely
low, these are summarised in section 2. Ford and Despeisse (2016),
present a case study analysis on the sustainability of AM in industry,
drawn from open access information: company websites, news sources
and academic publications. Niaki and Nonino (2017) and Dwivedi et al.
(2017) implement direct consultation with industry into case study
methodology to analyse the impact of AM on businesses in Italy and the
USA, and India, respectively. More specifically in the UK, the AM-UK
Steering Group (2017a) have recently presented the AM-UK National
Strategy. This strategy includes ranked and brief summaries of the
challenges facing industry, collected from workshops and online surveys
consulting 123 organisations (AM-UK Steering Group, 2017a; AM-UK
Steering Group, 2017c¢; AM-UK Steering Group, 2017d). To date, an ac-
ademic study has yet to present an in-depth explanation on why

Received 10 February 2017; Received in revised form 30 January 2018; Accepted 1 February 2018

Available online 6 February 2018

0925-5273/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:l.e.j.thomas-seale@bham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpe.2018.02.003&domain=pdf
www.sciencedirect.com/science/journal/09255273
http://www.elsevier.com/locate/ijpe
https://doi.org/10.1016/j.ijpe.2018.02.003
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ijpe.2018.02.003
https://doi.org/10.1016/j.ijpe.2018.02.003

L.E.J. Thomas-Seale et al.

industrial applications of AM have not progressed to more end-products
in the UK economy.

This research aims to identify, from the perspective of UK industry,
what the barriers to the progression of AM are, and why these barriers
exist. This study answers these research questions using a case study
approach and analytical generalisation of interviews with employees of
11 industrial organisations across the aerospace, automotive, defence
and medical device industries. In addition this paper presents the in-
dustrial case study findings in contrast to the current status of research
endeavours. The research satisfies a critical gap in the current knowledge
presented by roadmaps and research literature. It identifies why the
barriers exist, promotes a deeper understanding of the problems, and
frames the difference between what is required by industry and what is
currently active in research.

2. Additive manufacture
2.1. Overview of the technology

Additive manufacture is defined as the “process of joining material to
make parts from 3D model data, usually layer upon layer, as opposed to
subtractive manufacturing and formative manufacturing methodologies”
(ISO/ASTM International, 2015). Broadly, AM encompasses all additive
techniques applied to all materials. The term 3D printing can be inter-
changeable with AM, particularly in the media. Within the research and
industrial communities 3D printing tends to refer to polymer and
non-enterprise based printing whereas AM is the expression used in a
production-context. Rapid prototyping (RP) is often interchanged with
3D printing, however, it is generally applied to the manufacture of
geometrically accurate models suitable for demonstrative, i.e. prototyp-
ing purposes. The accelerated development of 3D printing is demon-
strated succinctly by the Gartner Hyper Cycle for Emerging Technologies
(Gartner, 2017), progressing swiftly from technology trigger through to
slope of enlightenment between 2010 and 2013, distinguishing between
consumer and enterprise printing in 2014 and 2015 and progressing onto
4D printing (the 3D printing of components which are responsive to
external stimuli over time (Khoo et al., 2015)) in 2017. The development
of metallic, ceramic, polymeric, composite and biocompatible AM ma-
terials which are geometrically and mechanically functional have taken
considerably longer to progress.

The industrial options for AM are constrained by the commercially
available technologies. Metal AM falls into four categories: powder bed
fusion, direct energy deposition, metal binder jetting and sheet lamina-
tion. The most promising technologies for the AM of structural parts are
powder bed fusion and direct energy deposition. Powder bed fusion
technologies selectively fuse feedstock on the build area using thermal
energy (ISO/ASTM International, 2015). This technique encompasses
selective laser sintering (SLS), selective laser melting (SLM) and electron
beam melting (EBM). The literature has investigated the application of
SLS, SLM and EBM to medical devices (Cox et al., 2016; Hayashi et al.,
2005; Shah et al., 2016; Traini et al., 2008; Wauthle et al., 2015) with
increasing applications foreseen in the aerospace industry (Olakanmi
et al.,, 2015; Uriondo et al., 2015). Direct energy deposition, uses a
focussed thermal energy source to fuse materials as they are being
deposited (ISO/ASTM International, 2015). This technique includes
direct metal deposition (DMD) where the material is deposited in blown
powder form and Wire and Arc AM (WAAM) where the feedstock is in
wire form. Although deposition methods are well regarded for the po-
tential impact they offer to industry (Frazier, 2014; Gu et al., 2012;
Williams et al., 2016), to date research literature remains more focused
on fundamental processing dependant parameters (Dinda et al., 2009;
Ding et al., 2015a; Szost et al., 2016; Wang et al., 2015). Research
literature reviews of AM predominately focus on a selected technology
(Ding et al., 2015b; Flynn et al., 2016; Gu et al., 2012), a parameter
within the process (Spears and Gold, 2016; Thompson et al., 2016; Yang
and Zhao, 2015), a material (Gorsse et al., 2017; Mertens et al., 2017) or
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a certain application (Femmer et al., 2016; Guo and Leu, 2013; Li et al.,
2015; Uriondo et al., 2015). An example of two broader reviews are those
of Gao et al. (2015) and Gardan (2016).

2.2. Industrial implications

There are few academic publications focussed on the industrial im-
plications of AM. Frazier (2014) presented a balanced review which
incorporated both process, business and environmental considerations
drawing on academic literature, industrial reports and conference pre-
sentations. Thomas (2016) discussed the economics of AM using a sys-
tematic break down of the supply chain and Huang et al. (2013) reviewed
the impact of AM on society. Baumers et al. (2016) contextualised the
economic implications resulting from an inter-process cost analysis be-
tween EBM and direct metal laser sintering. Schmidt et al. (2017)
broached the impact of laser based AM on various industrial sectors.
Gausemeier et al. (2011) conducted a selection of workshops with in-
dustrial and academic partners to identify current and potential appli-
cations of AM, and presented a matrix of success factors for the
application of AM throughout a selection of industries. Pinkerton (2016)
expanded on this data, with a brief explanation on the barriers to AM,
however, the supporting literature is predominately research based as
opposed to directly from consultation with industry.

Niaki and Nonino (2017) undertook a case study analysis of organi-
sations in Italy and the USA, to assess the impact of AM on business
competitiveness. Dwivedi et al. (2017) used an interview approach to
derive the relationships and hierarchy between the barriers to AM in the
Indian, automotive industry. Ford and Despeisse (2016) presented the
opportunities and challenges of AM from industrial case studies extracted
from company websites, news sources and academic publications. The
portrayal of AM in the media is focussed on pioneering companies with
high publicity products. Whilst the promotion of AM is crucial for in-
dustrial endorsement, encouraging collaboration, investment and public
engagement, it can misrepresent the uptake, maturity level and magni-
tude of the sustainability benefits (Ford and Despeisse, 2016) of the
technology across all industries and products. The reality is that the
uptake of AM varies between types of industry (Pinkerton, 2016). This
study confirms that a large amount of applications remain in the research
and development phase (Ford and Despeisse, 2016), an observation
which is supported by government initiatives aiding the translation of
AM into industry (Innovate UK, 2017; MTC Ltd, 2017; National Center
for Defence Manufacturing and Machining, 2017).

The most pertinent literature on the industrial implications of AM in
the UK is The Additive Manufacturing UK National Strategy 2018-2025,
which maps out strategies to overcome challenges in the following areas:
cost/investment/financing, design, IP, protection and security, materials
and processes, skills/education, standards and certification and test and
validation (AM-UK Steering Group, 2017a). The strategy was proposed
by the AM-UK Steering Group (2017b). The AM-UK Steering Group
initially published a positioning paper (AM-UK Steering Group, 2015)
and followed up by developing the National Strategy (AM-UK Steering
Group, 2017a) in conjunction with industrial consultation. The meth-
odology behind the industrial consultation is outlined in two update
reports: data was collected via three workshops and also an online sur-
vey, gathering perspectives from 123 organisations across 15 industries
(AM-UK Steering Group, 2017c), analysis of the data involved ranking
and summarising the barriers (AM-UK Steering Group, 2017a; AM-UK
Steering Group, 2017d).

3. Case study protocol

This research was designed as a multiple case study analysis. The unit
of analysis was defined as engineering organisations, represented by an
informed employee, and the geographical homogeneity was restricted to
the UK. The inclusion and exclusion criteria are outlined in Table 1.
These criteria allowed, informed participants to represent organisations
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Table 1
Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Organisation  An engineering company No involvement in design or
manufacture
Interacts with the UK Location of manufacturing and/or
economy design industry falls outside of the
UK.
Participant Employment in Not suitably qualified to give an

organisation informed opinion on design and

manufacture (threshold employment
status defined as graduate engineer)
During interview participant did not

follow the framework of the

Gave consent to undertake
study i.e. “willingness to

participate” interview

that design and/or manufacture, or facilitate manufacture of engineering
products, within the UK. The original sample size was 12 case studies,
based on the availability of resources. However during the course of the
study analysis, the sample size had to be reduced to 11, due to one
participant triggering the exclusion criteria.

Based on the author's interactions with and understanding of engi-
neering organisations in the UK, and AM, a purposive sampling strategy
was utilised, with a minimum quota of 2 organisations required to
represent the industries and contexts represented in Tables 2 and 3. In
addition, at least 2 organisations were required as case studies where AM
had not yet impacted their end products. This strategy ensured a mini-
mum number of case studies in each category which would yield rich,
generalizable, believable information (Curtis et al., 2000). Once the
minimum strategic sampling quota was met, a broader approach,
recruiting companies across the entire sample population was used.
Nevertheless the sample can-not be classed as a random representation of
design and manufacturing industry across the UK, since the participants
and organisations represent those “willing to participate” and must
therefore be defined as a convenience sample (Robinson, 2014). The
“willing to participate” criteria of the study, required by the ethical na-
ture of dealing with human subjects, implicates an unavoidable bias into
the study towards participants who, regardless of whether end-use AM is
yet integrated into their organisation, had an opinion to express on the
subject. As discussed in section 5, knowledge of AM is pocketed and
fragmented, thus the criteria of “willingness to participate” created a bias
towards participants who already had some experience of AM.

The organisations, referred to as the case studies, their involvement
with industry and the engineering context in which they had considered
AM within their businesses, are outlined in Tables 2 and 3 The
engineering context highlights whether the organisations were
manufacturing AM machines, end-use products, repairing parts,
designing for AM or prototyping. Ethical approval was sought from the
author's institution to conduct recruitment, interviews, analysis and
publication of this research. The participants and their association with
the case studies are identified in Table 2.

International Journal of Production Economics 198 (2018) 104-118

The case studies were assessed through interviews which took place
between February and June of 2016. The structure of the interview was
designed through an extensive literature review, the a-prior knowledge
of the authors and a pilot case study report generated in consultation with
an organisation interacting with the AM design framework across all
engineering industries. The interview was designed with a semi-
structured format, including open, probing and closed questions (Stan-
ton et al., 2013). The interview was structured around five overhead
themes: applications, design, Computer Aided Design (CAD), materials
and manufacturing and post-processing. The interview is displayed in
Appendix A, Table 5.

The interviews took place via telephone, Skype (Skype Communica-
tions SARL, Microsoft Corp., Luxembourg City, Luxembourg), or face to
face format. The interview lengths are displayed in Table 2. The lengths of
the interviews were constrained for two reasons. Firstly due to the avail-
ability of each participant, the interviews were scheduled with an hour
time slot. Secondly the knowledge of a participant; in defining a repre-
sentative sample across the industries and contexts listed in Tables 2 and 3,
not all participants were able to reflect in detail upon all aspects of the
interview. Since the interview was designed to identify the barriers to AM,
where the participants had no experience in a certain area or perceived no
issues in a certain area, the answers were shortened which, therefore,
reduced the duration of the interview. In the majority of cases the inter-
viewee had experience of one application aligned to one industry.

Coding of the case study interviews was undertaken using NVivo Plus
(QSR International, Doncaster, Victoria 3108, Australia). The transcribed
interview was coded against nodes in the following categories: industry
(Table 2), context (Table 3) and the barriers to the application of AM to
end-use parts (Table 4). Anonymous examples of the coding between the
sources and the nodes identifying the barriers to the application of AM to
end-use parts are given in Appendix B, Table 6.

Generalisation of the results was undertaken using analytical
methods. The participants were informed representatives of the organi-
sations, they were not indicative of all the knowledge and experience
held by the company. Not all participants were able to reflect upon the
entire spectrum of the interview, due to the specialised knowledge of the
interviewees in particular industries and contexts. The issue of frag-
mented knowledge was raised by multiple participants and is expanded
upon in section 5.1. Fig. 1, plots the percentage of organisations (of the
sample size) engaged in AM in different engineering contexts, for each
industry. Fig. 1 highlights both the imbalance between engineering
contexts associated with the industrial areas and the small sample sizes.
Of the 4 participants who were involved in the aerospace industry, all
were conducting both design and manufacture of end-use products, only
75% used AM for prototyping and 25% also manufactured AM machines.
In contrast, of the 2 participants who interacted with the heavy ma-
chinery industry, both were involved in the repair of existing parts and
one manufactured AM machines, neither organisations were involved in
design, prototyping or AM end-use products. The small sample sizes
invalidate the use of statistical generalisation in this study.

Table 2
The industrial association of the case studies, the interview lengths and participants.
Case Study Sources Industry Node Interview
Aerospace Automotive Defence Heavy Machinery Medical Devices Length (minutes) Participant
1 0 0 1 0 0 36:48 1
2 0 1 0 0 0 22:39/26:01 2
3 0 1 0 0 0 31:21 3
4 1 1 1 0 1 54:39 4 and 5
5 1 1 1 0 0 43:39 6
6 0 0 0 0 1 49:20 7
7 1 1 1 0 0 47:06 8
8 0 0 0 1 0 26:58 9
9 0 0 0 1 0 32:25 10 and 11
10 0 0 0 0 1 12:10 12
11 1 0 1 0 0 55:27 13 and 14
Total 4 5 5 2 3
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Table 3
Engineering context of the case study organisations.
Case Study Sources Engineering Context Node
Design Prototyping Manufacture of AM Repair of Manufacture of
AM Machines Existing Products AM End-Use Parts
1 1 1 0 0 1
2 1 0 0 0 0
3 1 1 0 0 0
4 1 1 1 0 1
5 1 1 0 0 1
6 1 1 0 0 1
7 1 1 0 0 1
8 0 0 0 1 0
9 0 0 1 1 0
10 1 1 0 0 0
11 1 0 0 0 1
Total 9 7 2 2 6
Table 4
Coding of the case study sources to the barrier nodes.
Barrier Nodes Case Study Sources Total
1 2 3 4 5 6 7 8 9 10 11
Education 1 0 0 1 1 0 1 0 1 1 1 7
Cost 1 0 1 0 1 1 0 1 0 1 0 6
Design 1 0 0 1 1 0 1 0 0 0 1 5
Software 1 0 0 1 1 1 1 0 1 0 1 7
Materials 0 0 1 1 1 1 1 1 0 1 1 8
Traceability 0 0 0 1 1 0 0 0 0 0 0 2
Machine Constraints 0 1 1 0 0 1 0 1 0 1 0 5
In-Process Monitoring 0 0 0 1 1 0 1 0 1 0 0 4
Mechanical Properties 1 1 0 0 1 1 1 0 0 1 0 6
Repeatability 1 0 1 1 0 0 1 0 0 0 0 4
Scalability 0 0 1 0 0 1 0 0 0 0 0 2
Validation 1 1 0 0 1 0 0 1 1 1 1 7
Standards 0 0 0 1 1 0 0 0 1 0 0 3
Quality 0 0 0 1 0 0 0 0 1 0 0 2
Inspection 0 1 0 1 0 1 1 0 0 0 1 5
Tolerances 0 1 0 1 0 1 1 0 0 0 0 4
Finishing 0 1 1 1 1 0 1 0 0 1 1 7
Sterilisation 0 0 0 0 0 0 0 0 0 1 0 1
Aerospace (4)
—_
£ Automotive (5)
w
@
—
="
£
< Defence (5)
wn
N’
)
=
>
5 Heavy Machinery (2)
=
Medical Devices (3)
0 10 20 30 40 50 60 70 80 90 100
Engineering Context of Organisations in Sample (%)
H Design u Prototyping
® Manufacture of Machines ® Repair of Exisiting Products

® Manufacture of End-Use Parts

Fig. 1. Distribution of the engineering context of AM within the industry samples.
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Analytical generalisation was undertaken using explanation building
and logic models. Explanation building requires analysing the case study
data to “explain” a phenomena (Yin, 2009). In section 5, the overhead
barriers are grouped into standalone and overhead sections that expand
upon the perceived barriers and contrast them to current academic
research. Logic models are used to express causal theories over a chain of
events (Yin, 2009, 2013). This research created logic models using the
functional analysis framework taken from the theory of inventive prob-
lem solving (TRIZ) toolkit. TRIZ is a framework which guides systematic
understanding and problem solving for engineering problems using past
engineering and scientific knowledge (Gadd, 2011). In recent years TRIZ
has seen an increase in its industrial and academic applications (Chang
et al., 2016; Ilevbare et al., 2013; Russo et al., 2014). Functional analysis
(Mindmanager, Mindjet, San Francisco, California, USA) taken from the
TRIZ toolkit was applied to qualitatively demonstrate the physical in-
teractions and knowledge propagation within powder bed fusion tech-
niques (Gadd, 2011; Haines-Gadd, 2016).

A TRIZ functional analysis identifies problems with the functions of a
system, by mapping the system into units of time (Gadd, 2011). Each
defined component is a subject and/or object and the arrows between
them represent an action from the subject onto the object (Fig. 2). The

(

Subject J

X

\ Subject % ———————

& i

\ Subject J

—

Useful

Harmful —ﬂ/ Object 7\
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action is the influence causing change to the object, and is depicted by the
aesthetics of the arrow, as depicted in Fig. 2, as either useful, useful yet
insufficient or harmful. The full methodology behind functional analysis is
fully outlined in Gadd (2011). The application of this methodology to re-
sults of the case study analysis is described through section 5.

4. Results

The coding of each case study source against the 18 nodes assigned to
the barriers to the progression of the technology are shown in Table 4.
Table 4, also includes the total number of sources (sample size of 11),
which coded against each barrier node. The total number of sources
coded to each barrier is displayed in Fig. 3. The most frequently identi-
fied barriers, above 50% of the total sample, were education, cost, soft-
ware, materials, mechanical properties, validation and finishing.

With respect to the 7 most frequently identified barriers across all
sources, Fig. 4 and Fig. 5 display the number of sources coded to these
barrier nodes, for different industries and contexts. Due to the sample sizes
and bias which exists across both the industries and contexts, statistical
analysis is not possible, however these results indicate that some barriers
may be aligned more strongly to certain industries and contexts. For

ﬂL Object ]

Useful/Insufficient -----—»{ Object |

\

Fig. 2. TRIZ functional analysis example of methodology.

=

~

=)

W

|8 w

—

Number of Sources which identified Barrier
=

Barrier

Fig. 3. Total number of sources coded to each barrier node.
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Fig. 4. Percentage of sources, associated with an industry, coded to a node barrier. Node barriers restricted to those who coded to above 50% of the total sample.

Design (9)

Prototyping (7)

Manufacture of Machines (2)

Repair of Exisiting Products (2)

Manufacture of End-Use Parts (6) ﬁ ‘

Engineering Contex (Sample Size)

0 10 20 30 40 50 60 70 80 90 100

(%) Sources, associated with an Engineering Context, coded to a Node

® Education m Cost

Barrier

Software ® Materials @ Mechanical Properties ® Validation ® Finishing

Fig. 5. Percentage of sources, associated with an engineering context, coded to a node barrier. Node barriers restricted to those who coded to above 50% of the

total sample.

example, Fig. 4 shows that of the 5 participants from organisations in the
automotive industry, 100% report finishing as a barrier, in contrast to the 2
participants involved in the heavy machinery industry who did not raise this
issue. Fig. 5 shows that of the 7 companies using AM for prototyping, 71%
viewed mechanical properties as a barrier, compared to the 2 organisations
undertaking repair of existing products who did not voice this concern.

5. Discussion
5.1. Education

As discussed in section 3, during the interviews the participants
focussed on their own knowledge and experiences of AM. Whilst the
participants were informed representatives of their organisation, they did
not represent the entire knowledge base held by the company. Knowl-
edge of AM in industry exists in pockets; a point which was raised directly

109

by some of the interviewees, very few people understand all the different
methodologies. “The application of AM can be limited to whether the
right people, with the right knowledge, are present in the appropriate
project meeting” (Participant 1).

Some generalised courses exist to provide an overview of AM, or to
teach compatible software techniques, however, these cannot deliver the
required in-depth understanding over the full spectrum of AM tech-
niques. Additive manufacture also has application dependent maturity
levels; for many applications it is still in the research and development
stage, consequently training cannot easily be outsourced. A barrier to
knowledge transfer is the automated style of AM itself; the ‘black-box’
nature of the technology. “An analogy can be drawn with computer
numeric control (CNC) machining” (Participant 1). Prior to CNC, a design
engineer and technician would consult on the feasibility of a part for
manufacture. With the paradigm shift towards automated manufacturing
methods, the knowledge previously held by the skilled technician has
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been lost. This knowledge gap is particularly noted in graduates, who
predominately only gain an overview of AM techniques, without an in-
depth understanding or hands-on experience. The removal of this bar-
rier requires paradigm shift in education.

Fig. 6 displays a logic model to represent the causal theory behind the
limitations that impact knowledge interactions throughout powder bed
fusion. It represents the fractured and inefficient propagation of knowl-
edge. Education is a useful yet insufficient, informative action on the
design engineer, software and manufacturing industries. Experience based
knowledge, which draws upon the entire physical framework of AM
including manufacture and testing, is feeding back useful informative
knowledge to the design engineer. Similarly, simulation based knowledge,
is gained from a multi-faceted interaction of software including CAD, finite
element analysis (FEA) and process simulation. The limitations associated
with software are discussed in section 5.4. Rather than a unified source of
knowledge propagating through AM industry, knowledge is instead being
propagated upwards fragmentally to engineers in design, software and
machine manufacturing through practical and simulation based experi-
ence. This process results in an incomplete knowledge base. Research into
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education and teaching strategies in AM is extremely sparse. Huang et al.
(2015) outline strategies for increasing AM knowledge in education, the
workforce and public initiatives. The ADMIRE project is a collaboration
between European universities and industry to develop a master's degree in
metal additive manufacture (ADMIRE: knowledge alliance for additive
manufacturing between industry and universities, 2017).

5.2. Cost

Fig. 7 displays a logic model to represent the causal theory behind the
limitations that impact the physical interactions during powder bed
fusion. The model describes how each physical component of the powder
bed AM framework impacts upon each other, these interactions are often
informative or constraining.

The aforementioned AM knowledge deficit is a cost consideration to
any business, whether it can be filled by in-house training or on-the-job
experience. All the physical process considerations shown in Fig. 7 also
require equipment, consumables and changes to the supply chain. For a
manufacturing technique with applications and processes still in the
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research and development stage, the outcome may be uncertain and,
therefore, these cost implications become a business risk. The decision to
pursue AM for a new part or redesign is generally approached using a
business cost-benefit analysis. Do the savings associated with the
different design and manufacturing method outweigh the upfront in-
vestment required in development, training and equipment?

During the interviews, the topic of cost was discussed in the context of
the application. In industries where the product is high volume and low cost,
the cost savings associated with changing the design and manufacture of a
part do not warrant the expenditure required to facilitate this. In low volume
and high cost parts, the long-term benefits seen by AM can more easily
justify the initial expenditure. For example “the lower ‘buy-to-fly’ ratio
offered by AM to the aerospace industry” (Participant 13). Cost-benefit
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cal interactions during powder bed fusion.

analysis for AM is highly specific to the industry, in terms of the both
application and production volume. Similarly to industry, universities also
have to consider the costs and risks of implementing a relatively immature
manufacturing techniques into the curriculum. However, with respect to
section 5.1, as the industrial demand for graduates with experience in AM
grows, so does the benefit of increased graduate employability.

In academic literature the cost implications of integrating AM into a
business can be split broadly into either quantitative analysis of direct
and indirect costs with respect to a case study part (Atzeni and Salmi,
2012; Baumers et al., 2016; Franchetti and Kress, 2017; Laureijs et al.,
2017; Lei etal., 2016; Manogharan et al., 2016) or qualitatively including
the wide-reaching implications of AM implementation on a company
(Mellor et al., 2014). Ruffo et al. (2006) present a significant study in this
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field identifying the threshold number of parts to breakeven using SLS,
for a given case study. An alternative perspective is offered by Piller et al.
(2015) who discuss the impact of implementing AM beyond production
cost and other firm level aspects, exploring the economic effects of AM as
an “ecosystem” as opposed to at a single user level. Furthermore, Jiang
et al. (2017) recently implemented the Delphi survey to predict future
societal and economic implications of AM.

5.3. Design

Focussing on the design component of Fig. 7, the design engineer
envisages the design, which is highly constrained by implications re-
flected from the manufacturing, materials and finishing. Therefore the
interaction between design engineer and design is described as useful yet
insufficient. The CAD software, discussed in depth in section 5.4, is
simply a constraint to the design engineer. “The majority of the problems
associated with AM can be removed or greatly alleviated by informed
design for AM” (Participant 4). Yet, Design for AM (DfAM) is not
routinely taught at undergraduate level. DfAM is a niche attribute, and an
informed perspective can only be gained from in situ training, hands-on
experience and a trial and error approach encompassing the entire
design and manufacturing framework, i.e. all of the components in Fig. 7.
Since this knowledge is not widespread, compared to conventional
manufacture, it has effectively become a company's intellectual property
and in many cases it is a highly protected asset. In addition to knowledge,
DfAM requires creativity. “AM allows expanded geometric freedom, and
rather than a manufacturing solution led design, you can approach the
design from the point of view of the problem” (Participant 5).

DfAM is material, manufacture and manufacturing parameter spe-
cific; examples of these technique specific constraints on geometry can be
found in the academic literature (Kranz et al., 2015). However, DfAM is a
balance between understanding of the capabilities and constraints of the
technique and the creativity required to problem solve with increased
topology freedom. Very few studies have broached the concept of
increasing creativity in the design framework (Doubrovski et al., 2012;
Rosen, 2007). Topology optimisation software can idealise geometry for
prescribed loads and boundary conditions and the resulting organic
structures are often analogous with light weight structures that may be
manufactured using AM. Research literature in this area has focussed on
optimisation of certain aspects such as support and internal structures
with reference to manufacturing constraints (Gardan and Schneider,
2015; Gaynor and Guest, 2016; Li et al., 2016c; Mirzendehdel and
Suresh, 2016; Morgan et al., 2016). Ponche et al. (2014) demonstrate
interesting work that begins to incorporate both design requirements and
manufacturing specificities into an optimisation technique. However,
these studies into automated design techniques are still heavily focussed
on the constraints of manufacture rather than exploring the possibilities.
The challenge for research is not to adapt for the constraints of AM but to
formulate and explore new design spaces (Rosen, 2014).

5.4. Software

CAD is currently creating a bottleneck for expanding design and
materials for AM. It revolves around the concept of extruding blocks and
generating shapes through subtraction. Although for more traditional
manufacturing methods, this methodology mirrors their subtractive na-
ture, it opposes the additive nature of AM. In addition to the non-
specialised nature of CAD for AM, current software is unable to effi-
ciently exploit certain features that may be manufactured: graded ma-
terials using multi-jet printers or DMD, lattice generation and modelling
porosity. Combining multiple software or add on packages can alleviate
this limitation to a degree, for example, “regions of solid and porous
structures may be integrated into the same component by merging a solid
CAD model with point cloud data” (Participant 7).

Fig. 7 show the sheer number of interactions between CAD and other
software: FEA, process simulation, image processing, STL editing, topology
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optimisation and build preparation software. “Software is fragmented;
multiple tools, skills-sets and options with no standardisation” (Participant
6). Prior to build preparation, CAD geometry is converted into an STL
format, after which it may be edited using an STL editor. Although it is a
widely accepted file format for AM, “the STL format places a limit on the
complexity of the geometry” (Participant 6). The STL neglects parametric
data, represented as a useful but insufficient interaction in Fig. 7; therefore,
if a build fails due to design features, the process must restart at the initial
CAD model. In environments where the design and manufacture teams are
remote from each other, this compounds the inefficiency. The need to
incorporate design constraints into CAD and CAM software was discussed
repeatedly during the interviews; “mitigating the ‘black art of design’ on a
platform and software vendor level” (Participant 13).

Mirroring the situation in industry, the progression of software sup-
porting DfAM in research literature is fragmented and targeted at isolated
requirements. The software described by Vidimce et al. (2016) and Dou-
brovski et al. (2015) are significant developments in terms of compatibility
for multi-material AM. Other recent advances in research include AM
specific optimisation of topology (Gardan and Schneider, 2015; Mirzen-
dehdel and Suresh, 2016), cellular structures (Sa et al., 2015) and
manufacturing parameters (Morgan et al., 2016). However, these successes
do not solve the overarching problem. To overcome the fragmented nature
of software, a different perspective is required; a top-level approach must
be taken drawing together the requirements of research and industry to
create a streamlined design process across all software independent of
application and platform. To this end, there is an industrially driven con-
version from STL to the 3D Manufacturing Format (3MF) to ensure inter-
operability between software and retention of material and manufacturing
specific parameters (3MF Consortium, 2017).

5.5. Materials

“The vast majority of the polymer components currently incorporated
into our products are manufactured using materials which are not
currently 3D printable” (Participant 3). The difference in the number of
materials that are available for AM and those that may be conventionally
manufactured is a huge barrier to its progression in end-use parts. This is
represented in Fig. 7, by the constraints imposed on design by materials
and on materials by machine parameters. If the material is not standardly
available, then either a best match must be chosen, the part needs to be
redesigned for an available material, or the material itself needs to be
developed. “Along with the costs associated with DfAM, design consid-
erations and techniques parameters vary between materials and impact
performance” (Participant 4). Developing a new material for AM is
costly, involving powder development, the quality control associated
with the powder, and its compatibility with various AM techniques.

In an industrial context, constraining research to one material has been
very successful. The development of titanium within the aerospace in-
dustry is a prime example, for which there is also a large body of academic
literature to support (Akerfeldt et al., 2016; Promoppatum et al., 2017; Qiu
et al.,, 2015b). “There is a focus on taking AM of Ti-6Al-4V through the
technology readiness levels, systematically mapping out the control of the
process. This includes informing supplier and internal engineers using
powder specifications, to control the physical and chemical properties and
technical specifications, to control the machine parameters, detection of
defects and mechanical characterisation. Understanding the operational
window for additively manufactured parts, speeds up the process of
developing a concept through to an end-product” (Participant 13).

5.6. Machine constraints

All AM build chambers pose a limitation to manufacturability by the
finite size of the bed platform and envelope. This constraint is accompa-
nied by scalability issues, where sets of parts that vary in size can-not
simply be scaled-up, the whole build platform must be redesigned. Size
constraints are directly related to machine design and cost; as applications
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of AM become more widespread, manufacturers will naturally ramp up
their scale to accommodate demand. Recent initiatives such as Big Area
Additive Manufacture, demonstrates the manufacture of high performance
thermoplastics which are unbounded in size (Li et al., 2016b). Another
consideration of AM compared with other manufacturing techniques, is the
relatively slow speed of the build cycle. This combined with cost consid-
erations is a constraint when considering the progression of AM through to
production of high volume, low cost products. A method to alleviate these
issues is proposed by Wen et al. (2014) who detail the investigation of large
scale and multi-laser beam SLS.

The automated nature of AM imposes constraints, not just in terms of
knowledge transfer (section 5.1), but the finite build time, during which
the geometry cannot be adjusted. This highlights the value of informed
and accurate DfAM and validation. Comprehensive design knowledge,
manufacturing and material constrains integrated into CAD, and process
simulation could detect and avoid a build failure prior to manufacture.
Whilst in-process monitoring can detect build failure and alert the
operator, identifying an error in the design during the build is still hugely
inefficient in terms of time and cost.

5.7. Quality

Quality control encompasses in-process monitoring, traceability and
standards; it is the overarching term to ensure that the parameters within
the process statistically fall within a confidence interval. Fig. 6 shows that
quality is currently informed by useful but insufficient data from in-
process monitoring and inspection. At this moment in time, quality
control is predominately dictated by in-house documentation specific to
the industry, application, manufacturer, material and manufacturing
method. There is a well acknowledged deficit in the number of standards
governing AM processes. Fig. 6 shows how insufficient standards infor-
mation impacts design, operating systems and quality statistics. The
deficit in AM standards has only recently begun to be rectified (ASTM
International, 2017; Seifi et al., 2017).

“The uniqueness of AM lies in the fact that material is being made as
opposed to just manufacturing a shape” (Participant 4). This makes quality
control and traceability difficult. Parameter variation within the build has
a direct effect on the quality of the material; laser power and layer thick-
ness in SLM have been shown to change the stability of the melt flow and
hence the material porosity and surface roughness (Qiu et al., 2015a). The
current aim of in-process monitoring, applied to metal powder techniques,
is to feedback on the quality of the melt pool and part geometry. “For the
DMD process, additional processes require monitoring, for example, bead
height and powder flow” (Participant 10). Processing parameters have
been shown to influence the microstructure, geometric structure and me-
chanical properties of direct laser deposition structures (Qiu et al., 2015b).
“Machine manufacturers recognise that in-process monitoring is a key area
for development” (Participant 10). “In simple terms, a layer by layer
green-red light system is required indicating, good powder, good spread
and good fusion with no defects” (Participant 8). In turn, informative and
accurate in-process monitoring, will lead to robust quality statistics.

The PrintRite3D® technology (Sigma Labs Inc., Santa Fe, New
Mexico, USA) gives an example of the current industrial standard. Optical
monitoring detects deviations of the geometry of the build from a
reference ‘gold standard’ image, up to a resolution of 100 pm in-plane
(Sigma Labs, 2017). Changes in the temperature of the melt pool are
detected from a change in the emissivity. Advances in research have
explored alternative imaging techniques including optical coherence
tomography for surface characterisation (Guan et al, 2016) and
low-coherence interferometric imaging for melt pool morphology (Kanko
et al., 2016). Zhao et al. (2017) present in situ monitoring of the physical
processes during powder bed fusion using high-speed x-ray imaging. The
long-term requirements of industry and aims of research are to create a
closed-loop system (Spears and Gold, 2016), where the process param-
eters are controlled by the feedback, thus allowing for in-build
compensation of fluctuations as they occur.

113

International Journal of Production Economics 198 (2018) 104-118

Quality control of powder requires quantification of the properties,
across suppliers and batches. Whilst recyclability, is “a fundamental
component of the economic argument for AM” (Participant 8), the reuse
of used metal powder in AM has an impact on traceability. The
requirement for robust quality statistics is undermined by difficulties in
traceability of powder, insufficient in-process monitoring, fractured
design and software frameworks, and repeatability issues in terms of
mechanical properties (discussed in section 5.8). Using Ti-6Al-4V in
aerospace again as an example, by narrowing the material, platforms and
application window, issues with quality can begin to be resolved through
statistically defining operational windows for each design variable.
Essentially a controlled route to production enables reproducibility.

5.8. Validation

AM processing conditions have a huge effect on material micro-
structure and the mechanical properties (Qiu et al., 2015b, 2015c).
Where mechanical properties are quantified, they are repeatable for a
fixed machine, material, geometry and a series of build parameters. Even
where build parameters are fixed, there are still uncertainties within the
build that create variations in the formation of the material, hence, the
requirement for in-process monitoring and repeatability quantification.
Thermal stresses in powder bed fusion and direct energy deposition
techniques are a significant issue that can lead to distortion of the part,
fixture supports peeling off the part and in extreme cases the substrate
platform bending. Methods required to alleviate part distortion vary
between design, material and AM platforms, due to the variation in
thermal interactions with the material, volume and fusion method.
“Reducing volume in geometry at the design stage can reduce distortion
by minimising heat input into the part” (Participant 4). “Where residual
stresses cannot be mitigated in the design process, they can be alleviated
using support structures followed by heat treatment” (Participant 6).

Thermal stresses can also be mitigated at the design stage by an
awareness of potential deformation using simulations of the thermo-
mechanical build process. Simulation software such as Netfabb® (Auto-
desk, San Rafael, California, USA) can thermomechanically simulate
metal AM builds to predict the build-up of thermal stresses. Process
simulation is a powerful tool as it can allow a designer to redesign to
remove residual stress or compensate for deformation within the design.
Thermomechanical simulations are computationally intensive and time
consuming. “They are currently so complicated that it will be a while
before it can be integrated with FEA” (Participant 5). However, long
build times that may fail through distortion are also inefficient in terms of
time and cost. “Alternatively, in-process thermal monitoring has the
potential to avoid the build-up of thermal stresses by closed loop control
of contributing build parameters; toolpath, laser power and substrate
temperature” (Participant 10).

In the context of DfAM, ideally, process simulation would allow for
optimisation of a fixed or adaptable process parameter for a given me-
chanical variable. Whilst research has made significant strides in simu-
lating factors such as the effect of processing parameters on the thermal
and phase change behaviour of the melt pool (Shi et al., 2016), thermal
stress and distortion (Cao et al., 2016) and grain growth (Lopez-Botello
et al., 2017), these advances have yet to be integrated parametrically
with a DfAM interface.

The complications surrounding variable parameters during AM process
and the impact on the material directly influences the ability to validate
AM using FEA. In industry, the most common method of statistically
quantifying the mechanical properties is via material equivalence or ex-
tracts from the part and destructive testing. The participants gave a variety
of responses to the issue of mechanical characterisation. Essentially test
bars “may not capture variation in grain growth across the build”
(Participant 6) and also “add cost to the process” (Participant 1), providing
both a limited representation and additional costs considerations. How-
ever, alternative positive views were also given; “focussing on the robust
mechanical characterisation of a material, gives a statistical distribution
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insensitive to the AM machine” (Participant 13), allowing repeatability for
process parameters through an operational window. The summary of the
relationships between these factors is shown in Fig. 7, via a series of useful
yet insufficient interactions with the validation component.

5.9. Finishing

Resolution between AM machines vary, and as a stand-alone tech-
nique it generally requires some form of surface post-processing. “Pow-
der bed metal AM does not create defined edges; variation between 100%
density and 100% air results in partial fusion with adherence of half
formed particles” (Participant 8). The interviews raised two major aims
for surface finishing techniques, either to achieve a dimensional toler-
ance or a surface texture. For automotive applications; “surface cleanli-
ness and submicron tolerances are a key concern” (Participant 2).
Medical applications require cleanliness and must be sterile; “porous
fixation on surfaces are particularly challenging where interconnectivity
exists” (Participant 12). Surface finishing difficulties are represented in
Fig. 7 through a series of insufficient and harmful interactions between
the part, finishing, inspection and tolerances. These issues, also follow
through to impact the design and validation components.

Design and manufacturing parameters affect surface finish: laser
power, exposure time and orientation (Krol and Tanski, 2016; Qiu et al.,
2015a) and in turn surface finish can affect the mechanical properties
(Everhart et al., 2016). The impact of processing parameters on surface
finish has also begun to be investigated using thermomechanical simu-
lation (Lee and Farson, 2016). Options for surface finishing of AM parts
described in research literature include mechanical blasting, chemical
etching, electro polishing, laser ablation, micro-machining and vibratory
grinding (Bagehorn et al., 2017; Lhuissier et al., 2016; Longhitano et al.,
2015; Mohammad et al., 2016; Wang et al., 2016). For internal features,
such as lattices, the inability to finish the surfaces is a huge barrier to
their progressive use. At present, options for internal surface finishing in
industry are in the research phase and hence are commercially sensitive.

As a technique in isolation, the phased nature of the surfaces achieved
by AM makes achieving a dimensional tolerance difficult. Machining
techniques can remove half formed particles, and tolerances can be
achieved, but only in reference to a known datum. Post build the only
certain datum surface is adjacent to the build platform. In addition, the
often organic and thin walled nature of AM parts can make them flexible
and the thermal nature of the techniques can cause deformation through
residual stress. Of course, for non-machine based surface finishing
techniques, which are often used for internal surfaces, it is even more
difficult to achieve a uniform, quantifiable tolerance.

The line-of-sight difficulties faced by surface finishing of internal fea-
tures are similar to those for inspection methods. In addition, inspection
needs to be able to quantify internal porosity and the presence of loose
powder. A recent study has highlighted that no single measurement tech-
nique can reliably replicate topographic features (Senin et al., 2017).
Similarly to the quantification of mechanical properties, internal surface
dimensions, texture and porosity can be measured using destructive tech-
niques to develop a statistical operating window (Romano et al., 2017).

5.10. Summary

Eighteen barriers were extracted through case study interviews with
representatives of 11 industrial companies across the aerospace, automo-
tive, defence, heavy machinery and biomedical industries. Analytical
generalisation was utilised to summarise the issues faced by the partici-
pants, of which education, cost, software, materials, mechanical properties,
validation and finishing occurred in 7 or more interviews demonstrated by
Fig. 3. The findings of this study align well with the UK National Strategy
(AM-UK Steering Group, 2017a). Although the methodology and analysis
of results in this study are inherently different, of the 7 thematic work-
groups on which the UK National Strategy is based, 6 are mirrored in this
research. This strengthens the external validity of the study.
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The results displayed in this research are not a statistical represen-
tation of the limitations of AM across all UK industries. They are highly
reflective of the participants “willingness to participate” creating a bias,
in terms of the engineering context (Fig. 1). In addition, the participants
themselves represent a proportion of the knowledge held by the orga-
nisation they represented. Though applications in this study were not
explicitly discussed, there was an also notable omissions in terms of
discussion of WAAM techniques. This created a bias in the study towards
metal powder AM.

To gain a detailed, informative perspective, an interview approach
was required, which in turn required time commitment and associated
staff costs from the companies involved, hence restricting the repre-
sentation of the analysis. However, as discussed in section 5.2
knowledge of AM in industry is not only held by specific people but
tends to be highly specialised in terms of techniques and applications.
Figs. 4 and 5 show a higher frequency of coding between certain
barriers and different industries and engineering contexts. Due to the
sample size and inherent bias created by the “willingness to partici-
pate” it is not known whether this is true reflection between perceived
barriers and industries and context. However, the AM-UK Steering
Group (2017a; 2017d), raise similar observations in their analysis.
This interpretation creates an opportunity for further research to
establish whether certain barriers are more strongly aligned with
different industries and engineering contexts. In doing so, there is the
potential to economically target industrial and engineering context
specific development strategies.

The quality of case study research design can be judged against four
tests; construct validity, internal validity, external validity and reliability
(Yin, 2009). Construct validity in this study was ensured by multiple
units of analysis and a chain of evidence, described in section 3, incor-
porating the sampling strategy, interview development and structure
(Appendix A), utilisation of qualitative software, coding examples (Ap-
pendix B) and analytical generalisation methodology. The internal val-
idity of case study research involves assessing the accuracy of the
inference (Yin, 2009). The internal validity, based on the parameters of
the case study protocol, was demonstrated between explanation building
and logic models. The external validity has been established against the
recently published UK National Strategy for AM (AM-UK Steering Group,
2017a). The reliability of the study can be confirmed by the case study
protocol, outlined in section 3.

6. Conclusions

This study presents an in-depth assessment of the barriers to the
progression of AM as perceived by industry. It also highlights where there
is a mismatch between the aims of recent strives in research compared to
the limitations faced in industry. In doing so, it offers a roadmap to the
future where the endeavours of research are drawn more closely in line
with the requirements of industry. “AM is a tremendous opportunity, but
it requires engineers to develop a set of skills to support it, processes are
required before and after; that is the biggest hurdle for the adoption of
AM” (Participant 8).

This research has drawn the following conclusions:

Knowledge of AM held by current engineering graduates is insuffi-
cient. In industry, this problem is exacerbated because knowledge is
rarely unified and comprehensive, instead it exists in pockets which is
highly dependent on personal experience. This barrier requires a
paradigm shift in education to satisfy the need for graduates with
deeper understanding and experience of AM.

Cost-benefit analysis is highly application specific and incorporates
an element of uncertainty, compounded by the lack of well-rounded
AM knowledge filtering into industry.

DfAM necessitates that designers have a new perspective, requiring
increased creativity, underpinned by AM specific knowledge and
experience.
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Software for AM is currently severely fragmented in industry and
research. The process requires streamlining through the design,
optimisation and build preparation processes to create software that
is tailored to DfAM yet platform independent.

The lack of materials available for AM either inhibits the manufacture
of certain parts or requires them to be redesigned for different ma-
terials. Industrial application requires a parameter dependent oper-
ational window for materials to speed up the translation of concept
through the end product.

Bed size and the speed of AM are limitations for mass manufacture.

In-process monitoring systems are crucial to ensuring good quality
statistics. In the long-term, industry requires closed loop systems
which compensate for in-build fluctuations.

Quality control is predominately dictated by in-house specifications
and requires more guidance from overarching standards. FEA can no
longer support the validation of designs for AM, where the mechan-
ical properties are highly dependent on the processing parameters.
Thermomechanical modelling can aid design, but it is time and
computationally intensive. Currently the most robust method of
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statistically quantifying the mechanical properties, in the presence of
uncertainties in the build process, is material equivalence.

e Line of sight difficulties for inspection and finishing are a key focus in
both research and industry. Where internal features can be finished by
mechanical, magnetic, electrical or chemical techniques, surface qual-
ity quantification is still limited by deficiencies in imaging resolution.
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Appendix A

Table 5
Interview questions.

Area Open Probe Closed
Applications How is additive manufacturing (AM) What applications has AM been Were these applications for prototyping or end product
utilised in your company or by your applied to within your company? manufacture or both?
customers?
Do you design for and or/manufacture ~ What type of AM has been utilised by What benefits does AM bring to your products, customers
AM parts? your company or customers? and company?
What limitations are preventing the various methods of AM being
applied to more applications in your field?
What standards or certification is required for Are these compatible with AM? If not why not?
design and manufacture in your field?
Do you have IP issues relating to the Do you foresee any future problems with IP?
customisation of AM parts?
What are your personal experiences What applications have you applied it to? What do you feel were the main advantages of using AM in these
with AM? instances?
Did you encounter any problems applying AM?
Design Do your design methods differ between  If so, what design techniques do Do you feel that you are able to optimise a design for AM using
AM fabricated parts and traditional you use for AM fabricated parts? these methods?
manufacturing methods?
If not, why not? Do you feel that AM is fully optimised using traditional design
methods?
Do you factor build orientation and surface Can you obtain tolerances sufficient for your application?
finish considerations into your design?
Does your background knowledge of Do you and your designers have a good If so, how do you keep your design team up to date with current
AM working knowledge of AM and all the different ~ developments in the area?
and materials influence how you techniques available?
design products?
If not, do you feel that this could enhance how you design AM
products?
Do you feel that alternative design techniques Do you think that the time and cost associated with retraining
would alleviate any of these issues? designers in the short term, would be worth the longer term goal
of exploiting AM more effectively?
CAD What experience do you have of using Do your design techniques combine your CAD Do you think that there is scope to improve design and CAD

CAD
to create models for direct AM
fabrication?

Do you notice a difference in how well
CAD deals with AM parts as opposed to
traditionally manufacture parts?

software and AM efficiently?

Do you encounter any problems using current
CAD software, when designing
AM parts?

How do you feel CAD could be improved
to ease design of AM parts?
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methodology to utilise AM fabrication more efficiently?

What CAD/CAM software do you use?
Have you encountered memory usage limitations?

Do you use any additional packages with your software,
specifically for AM?

Do you experience problems converting your CAD files to AM
compatible STL files?

Do you experience trouble editing AM parts?

Would additional functionality to the current software be
acceptable? Or would an entirely new approach to CAD
modelling be preferred?

(continued on next page)
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Table 5 (continued)
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Area

Open

Probe

Closed

Materials and
Manufacturing

Post-processing

Miscellaneous

What materials do you use or design
with for AM manufacture?

What end products have you designed
for or manufactured using AM?

What post-processing methods to you
apply
to your AM parts?

Do you use AM for parts that require
regular inspection?

Do you foresee an increased use of AM
for end product manufacture?

Are the any further observations that
you would to add on this subject that
has not be covered by this interview?

Are there limitations in the choice of materials
for AM?

Are these materials recyclable?

What quality control steps do you have

for AM materials?

What benefits and problems have you seen

in the use of AM for end products?

What quality control steps do you have during
the AM process?

Do you do additional mechanical

testing on AM fabricated parts?

How do you finish surfaces?

Do you have any problems with

thermal stresses?

Do you have any issues with AM and
parts that require regular inspection?
If so, why?

If not, why not?

Do suppliers give a good range of mechanical properties for AM
materials?

Do materials vary between batches or suppliers?

Does this create any issues in the lifecycle of the product?

Do you conduct your own quality tests on supplied AM materials?

What developments to the technique would overcome the issues?

What issues do you have with repeatability? Are these influenced
by platform position, material, machine, build style orientation?
If so what? Strength, fatigue, wear?

Do you have any issues with powder fixation? Can you overcome
these?

How do you relieve these?

Do you foresee scalability problems with thermal stresses in
larger metal parts?

Do you conduct additional heat treatments to tailor the
mechanical properties?

Do you conduct non-destructive testing on the parts?

Would development of the technique and hence increased use of
AM for end stage products have a positive effect on your business?
How?

What do you see as the major limitations of AM preventing its
widespread usage in end-stage product manufacture?

Appendix B

Table 6

Examples of coding between case study sources and nodes representing the barriers to the application of AM to end-use parts.

Barrier Nodes Example of the Coding between Case Study Sources and Barrier Nodes Case Participant
Study
Education “The informed decision is in people's heads, so you are having to invest the knowledge in people's heads about the different 1 1
approaches, before you can make a decision about what you are going to do.”
Cost “The big one is probably cost, at the minute, I think as time goes by that will go down.” 8 9
Design “Those design rules don't exist yet, now they are one of the blockers, because effectively what you want to be able to say 1 1
is, this is how we design it, this is how we certify it, but if it requires you to go all the way through the design process, in
order to validate the performance, and we know the repeatability is a problem, because properties changes across batches,
then that presents as a business problem.”
Software “Current CAD packages are prohibitive for designing things for additive, you know, the embedded function within the CAD 4 4
packages are built on cutting methods, you extrude, you chamfer, you fillet.”
Materials “Materials are expensive and materials are limited.” 3 3
Traceability “Traceability is a problem.” “Even if we produce the report that says: the powder does not degrade, you can use it forever. Are 4 4
aerospace going to accept that? It just doesn't look, smell or feel right to have multiple powders going on forever and a day.”
Machine “Generally, printer to point, what I mean is, there is a laser or extrusion head, or maybe a more conventional print head, but 3 3
Constraints generally I am curing material or laying down material, in a small amount per unit time, this means the processes are
relatively slow.”
In-Process “Certainly in-process monitoring is a key area that all AM manufacturers recognise as a need.” 9 10
Monitoring
Mechanical “ALM (additive layer manufacture) would not have the fatigue strength” 6 7
Properties
Repeatability “The confidence isn't there, in the repeatability of powder, between batches and suppliers.” 4 4
Scalability “You can't scale the whole build, you have to go back to native file and scale that first.” 6 7
Validation “The thermal analysis, from a layer by layer, brick by brick, element by element model in terms of looking at the formation 11 13
of thermal stress, they are incredibly computational dense, they take vast amounts of processing power in order to simulate
these things.”
Standards “The standards for additive manufacturing are currently being generated, they just don't exist.” 9 10
Quality “I don't want to be alarmist, and it is hard to put numbers on it but yes, the confidence is not there, in the repeatability of 4 4
powder from batches and suppliers. And their supply, how are they atomised in the first place? The methods used are different,
or can be different, should I say.”
Inspection “The concern would be having to add additional inspection, because of any additional lattices and cavities you are creating 2 2
because of 3D printing.”
Tolerances “You take a component like that (indicates example of component), because it is very organic, it is difficult to hold, so getting it 7 8

into the machine to hold it is hard, once you have got it into the machine it is very flexible, so, you know as you start to machine it
moves around and it's flexible because it is made of AM and because we have made it very lightweight, so suddenly it gets quite
difficult to machine it. It also turns out that, we perhaps only need to do machining in these areas and these areas, but because of the
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Barrier Nodes Example of the Coding between Case Study Sources and Barrier Nodes Case Participant
Study
way AM builds because of the distortion that goes on, you don't know precisely where those features are, so it is actually
quite difficult to find them on a conventional machine tool.”
Finishing “Well I guess it is the manual pro-processing of metal parts, it is non-automatable, the removal of supports and fettaling.” 5 6
Sterilisation “Limitations on ALM really, for medical companies, are cleaning, that is in essence getting out the powder, the unfused powder, 10 12
and secondly making sure it is sterile.”
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