Somatic POLE exonuclease domain mutations are early events in sporadic endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal neoantigen burden and immune response

Temko, Daniel; Van Gool, Inge C; Rayner, Emily; Glaire, Mark; Makino, Seiko; Brown, Matthew; Chegwidden, Laura; Palles, Claire; Depreeuw, Jeroen; Beggs, Andrew; Stathopoulou, Chaido; Mason, John; Baker, Ann-Marie; Williams, Marc; Cerundolo, Vincenzo; Rei, Margarida; Taylor, Jenny C; Schuh, Anna; Ahmed, Ahmed; Amant, Frédéric

DOI: 10.1002/path.5081

License: Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is the peer reviewed version of the following article: Temko, D., Van Gool, I. C., Rayner, E., Glaire, M., Makino, S., Brown, M., Chegwidden, L., Palles, C., Depreeuw, J., Beggs, A., Stathopoulou, C., Mason, J., Baker, A.-M., Williams, M., Cerundolo, V., Rei, M., Taylor, J. C., Schuh, A., Ahmed, A., Amant, F., Lambrechts, D., Smit, V. T., Bosse, T., Graham, T. A., Church, D. N. and Tomlinson, I. (2018), Somatic POLE exonuclease domain mutations are early events in sporadic endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal neoantigen burden and immune response. J. Pathol.. Accepted Author Manuscript. doi:10.1002/path.5081, which has been published in final form at 10.1002/path.5081. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?).
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 30. Sep. 2021
Somatic POLE exonuclease domain mutations are early events in sporadic endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal neoantigen burden and immune response

Daniel Temko1,2,3, Inge C Van Gool4, Emily Rayner5, Mark Glaire5, Seiko Makino5, Matthew Brown5, Laura Chegwidden5, Claire Palles5, Jeroen Depreeuw6,7,8, Andrew Beggs9, Chaido Stathopoulou2, John Mason5, Ann-Marie Baker1, Marc Williams1,10, Vincenzo Cerundolo11, Margarida Rei11, Jenny C Taylor5, Anna Schuh12, Ahmed Ahmed13, Frédéric Amant14, Diether Lambrechts7,8, Vincent THBM Smit4, Tjalling Bosse4, Trevor A Graham1, David N Church5*, Ian Tomlinson9*

AFFILIATIONS

1 Evolution and Cancer Laboratory, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
2 Centre for Maths and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK
3 Department of Computer Science, University College London, London, UK
4 Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.
5 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
6 KU Leuven (University of Leuven), University Hospitals Leuven, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Leuven, Belgium
7 KU Leuven, Department of Human Genetics, Laboratory for Translational Genetics, Leuven, Belgium
8 VIB Center for Cancer Biology, Laboratory for Translational Genetics, Leuven, Belgium

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/path.5081

This article is protected by copyright. All rights reserved.
9 Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
10 Department of Cell and Developmental Biology, University College London, London, UK
11 MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
12 Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
13 Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, UK
14 Center for Gynaecologic Oncology Amsterdam, Netherlands Cancer Institute, Amsterdam, The Netherlands.

* Correspondence to David Church, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. E-mail: dchurch@well.ox.ac.uk; Or Prof. Ian Tomlinson, Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. E-mail: i.tomlinson@bham.ac.uk

Conflicts of interest statement: All – none to declare.

Running title: Somatic POLE mutations are early events in sporadic cancers

Word count: Abstract: 223 words Manuscript (including Methods): 3966 words
ABSTRACT

Genomic instability, a hallmark of cancer, is generally thought to occur in the mid to late stages of tumorigenesis, following the acquisition of permissive molecular aberrations such as TP53 mutation or whole genome doubling. Tumours with somatic POLE exonuclease domain mutations are notable for their extreme genomic instability (their mutation burden is among the highest in human cancer), distinct mutational signature, lymphocytic infiltrate and excellent prognosis. To what extent these characteristics are determined by the timing of POLE mutations in oncogenesis is unknown. Here, we have shown that pathogenic POLE mutations are detectable in non-malignant precursors of endometrial and colorectal cancer. Using genome and exome sequencing, we found that multiple driver mutations in POLE-mutant cancers display the characteristic POLE mutational signature, including those in genes conventionally regarded as initiators of tumorigenesis. In POLE-mutant cancers, the proportion of monoclonal predicted neoantigens was similar to other cancers, but the absolute number was much greater. We also found that the prominent CD8⁺T cell infiltrate present in POLE-mutant cancers was evident in their precursor lesions. Collectively, these data indicate that somatic POLE mutations are an early, quite possibly initiating, event in the endometrial and colorectal cancers in which they occur. The resulting early onset of genomic instability may account for the striking immune response and excellent prognosis of these tumours, as well as their early presentation.

Keywords

POLE, polymerase proofreading, mutation, endometrial cancer, colorectal cancer, precursor lesion
INTRODUCTION

Next generation sequencing (NGS) technologies have, hugely, advanced our understanding of the mechanisms of tumorigenesis. The ability to analyse the entire genome or exome at depth in large numbers of tumours has substantially increased the list of driver genes – that is those which, when mutated, promote tumour growth. It has also revealed that such driver mutations are not always present in the dominant tumour clone [1,2]. This is clinically relevant, because targeting subclonal drivers is likely to kill only a subpopulation of tumour cells, while successful targeting of clonal variants may lead to tumour eradication. Thus, differentiating early, clonal mutations from late, subclonal ones may not only increase our understanding of the mechanisms of oncogenesis, but also inform the clinical management of patients [2].

Fundamentally, all mutations are caused in part by a failure to recognise or repair defects in DNA sequence or chromosome structure. In many cancers, this is a consequence of specific defects in the cellular processes responsible for maintaining genomic integrity [3]. One recently described example is the genomic instability caused by missense mutations in the exonuclease (proofreading) domains of the major replicative DNA polymerases POLE and POLD1 [4]. Polymerase proofreading recognises and corrects mispaired bases incorporated during DNA replication; its perturbation as a result of these mutations is associated with an exceptional number of SNVs (though not indels), and a distinct mutational signature typified by C:G→A:T transversions where the mutated cytosine is in the context TCT, and C:G→T:A transitions where the mutated cytosine is in the context TCG [4-6]. POLE and POLD1 exonuclease domain mutations may occur in the germline, where they cause polymerase proofreading-associated polyposis (PPAP) – a condition characterised by intestinal polyposis and tumours of the colorectum and uterus, among other organs [7]. Somatic POLE
exonuclease domain mutations (hereafter simply referred to as POLE mutations) occur in sporadic tumours of the endometrium (7-15% cases) [8,9], colorectum (1-2%) [10,11], and less commonly in other cancers (although for reasons that are unclear, somatic POLD1 exonuclease domain mutations are very uncommon). POLE-mutant colorectal and endometrial cancers have an excellent prognosis [8,11-13], probably owing to a robust anti-tumour immune response against the multitude of immunogenic neoantigens they are predicted to harbour [11,14,15]. Very recent reports also suggest that these tumours may be highly responsive to immune checkpoint inhibition [16].

While it is clear that somatic POLE mutation causes a mutator phenotype [17] and acts as a cancer driver [4,5], several questions about its contribution to tumorigenesis remain unanswered. One of the most important of these relates to the timing of these mutations in cancer development. If POLE mutations are late events, their consequences may be restricted to a subclone of tumour cells, the targeting of which may fail to alter meaningfully tumour behaviour. In contrast, if POLE mutations occur early, they could rapidly cause a large number of clonal alterations that may alter prognosis or response to therapy. This is particularly pertinent in the light of recent data suggesting that long-term benefit from immune checkpoint inhibition is limited to patients whose cancers harbour neoantigens in the dominant tumour clone [18]. In contrast to germline mutations in DNA repair pathways in rare inherited syndromes (such as the mismatch repair gene variants that cause Lynch syndrome), the acquisition of genomic instability in sporadic cancers has largely been believed to be a mid- to late-stage event during carcinogenesis [19]. For example, in sporadic colorectal cancer – a tumour type in which the molecular progression of pre-cancers (adenomas) to invasive carcinomas has been well characterised – mismatch repair deficiency (MMR-D) or chromosomal instability (CIN) occur after initiating (epi)mutations in APC,
BRAF or KRAS, or other events such as whole genome doubling or loss of chromosome 18q [19-24]. Thus, in addition to its clinical relevance, the demonstration that the POLE mutator phenotype operates from the first stages of tumour initiation would also reveal a novel pathway of sporadic tumorigenesis. A recent case report of a pathogenic POLE mutation in an endometrial cancer and its precursor [25] suggests that these mutations may occur early in tumour development, but the single case precludes generalization of this result.

In this study, we comprehensively examined the timing of pathogenic somatic POLE exonuclease domain mutations in sporadic endometrial and colorectal cancers using tumour whole genome sequencing (WGS), public sequencing data from The Cancer Genome Atlas (TCGA) [8,10], and targeted sequencing of additional cohorts of cancers and pre-cancers.
Materials and methods

Ethical approval

Patient consent for research on tumour tissue was obtained at the recruiting centres under local ethical approval. Molecular analysis of anonymised tissue was performed under Oxford Research Ethics Committee A approval (05/Q1605/66).

Patients and tumour samples

Details of the cohorts and cases analysed in this study are shown in supplementary material, Tables S1 and S2. Fifty one formalin-fixed paraffin-embedded (FFPE) endometrial cancers carrying known pathogenic somatic \textit{POLE} exonuclease domain mutations identified in our previous studies [12,14,26] were reviewed for the presence of a concomitant and spatially discrete area of endometrial intraepithelial neoplasia (EIN) by examination of haematoxylin and eosin (H&E) stained slides by two expert gynaecological pathologists (VS & TB). An additional 389 FFPE colorectal polyps (tubular adenomas, tubulovillous adenomas and serrated adenomas – hereafter referred to as adenomas), for which \textit{POLE} screening had not previously been performed, were identified from 261 participants in the CORGI study, which recruited patients with a family history of colorectal cancer and a personal history of a colorectal polyp or colorectal malignancy in the absence of a known tumour predisposition syndrome. Six fresh frozen tumours with pathogenic somatic \textit{POLE} mutations (five endometrial, one colorectal) were identified from a Leuven endometrial cancer cohort used in our previous study [12], a prospective clinical sequencing programme (HICF2) at the University of Oxford, or the University of Birmingham tissue bank. TCGA colorectal (COADREAD) [10] and endometrial (uterine corpus endometrial carcinoma – UCEC) [8]
cancer data were downloaded from the Genomic Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov; June 2017). An additional series of 78 FFPE endometrial cancers including 32 cases with pathogenic somatic POLE mutations were identified from the LUMC archives (2001-2015) [14]. Further details of the cohorts used in this study are provided in supplementary material, Table S1. Molecular analyses were performed on a single tumour or precursor lesion region in each case.

DNA extraction

After review to confirm adequate tumour cellularity, DNA was extracted from fresh frozen or microdissected FFPE tumours and precursors using standard methods (Roche FFPE-T DNA kit (F. Hoffman La Roche AG, Basel, Switzerland), Machery Nagel Nucleospin DNA FFPE XS (Machery Nagel, Duren, Germany)/ FFPE DNA kit or Qiagen Blood and Tissue kit (Qiagen, Hilden, Germany) and resuspended in buffer or water.

DNA sequencing

Full details of the sample preparation and the sequencing methods utilized in this study are provided in supplementary material, Supplementary materials and methods. In brief, endometrial epithelial neoplasias (EIN) and paired carcinomas were sequenced for mutations in 30 cancer genes using molecular inversion probe capture, and a custom version of the 72 gene Ion AmpliSeq Cancer Hotspot panel v2 (including 80 genes; ThermoFisher, MA, USA) (supplementary material, Tables S3,4). Whole genome sequencing (WGS) of fresh frozen...
tumours was performed by Illumina HiSeq (Illumina, San Diego, CA, USA), and aligned to the reference genome by BWA mem or Isaac [27]. FFPE endometrial cancers from the LUMC series were analysed using the Lifetech/ThermoFisher Ion AmpliSeq Comprehensive Cancer Panel comprising 409 cancer genes (http://www.lifetechnologies.com/order/catalog/product/4477685). Mutation calling was performed by LoFreq [28] (EINs), Mutect, Mutect2 [29] or Strelka [30] (WGS, TCGA cases), or Ion Torrent variantCaller (EINs, LUMC FFPE tumours). Copy number profiles were derived using Sequenza [31]. Variant annotation was done using Annovar [32] or Variant Effect Predictor [33].

Definition of driver genes

Driver genes were defined using the IntOGen driver gene repository (https://www.intogen.org/search) and included both PanCancer (Pooled_driver) and tumour type-specific (perProject_driver) variants (supplementary material, Tables S5, S6) [34]. High confidence driver mutations (defined as either truncating mutations in genes likely to be tumour suppressors or recurrent missense mutations in any endometrial or colorectal cancer-specific or pan-cancer gene from the IntOGen set) were determined for a subset of driver genes by manual curation, blinded to tumour molecular characteristics.

Clonality of POLE mutations

Most (36 of 38) endometrial and colorectal cancers with pathogenic POLE mutations were disomic at the POLE locus (chr12q24) and were informative for clonality analysis. Of these, 20 of 22 endometrial cancers, and 12 or 14 colorectal cancers had available copy number
annotation. As all 32 of these showed near-diploid genomes (>80% of the genome), we assumed diploid genomes for the four remaining cases.

Mutations were filtered to include only autosomal variants in diploid regions of the genome, called with depth of at least 20x. Mutation allele frequency distributions were generated using the R ‘histogram’ function, and tumour cellularity inferred as twice the mid-point of the allele frequency bin with highest mutation density, excluding bins with a lower bound below allele frequency 0.1. These values were then subjected to manual curation. The hypothesis that the mutation was present in every tumour cell was tested by a one-sided binomial test, based on the numbers of reference and variant reads at the POLE mutation site and the inferred tumour cellularity. Specifically, for a mutation with coverage R, in a tumour with tumour cell fraction C, the number of variant reads was modelled as a random variable X, with distribution:

\[X \sim \text{Binom}(R, C / 2). \]

In each case we calculated the probability, p, of finding the observed number of variant reads, v, or fewer, \(P(X \leq v) \). Mutations were considered subclonal for \(p \leq 0.05 \).

Mutational signatures

Previously reported mutational signatures were obtained from http://cancer.sanger.ac.uk/cosmic/signatures/ on 1 June 2017. The complement of mutational processes active in the life-history of each tumour sample was inferred by classification of mutations into 96 categories following Alexandrov [6], and the use of non-negative least
squares regression, implemented in the R package ‘nnls’. For this analysis, only mutational signatures previously reported as active in that cancer type (endometrial signatures 1, 2, 5, 6, 10, 13, 14 and 26; colorectal signatures 1, 5, 6, and 10) were used for the regression. For cases analysed by whole exome sequencing, mutational signatures were re-scaled to exomic trinucleotide frequencies. A mutational process was deemed to have been active in the life-history of a tumour if the associated mutational signature had a coefficient of at least 2 per cent of the total coefficients in the best-fitting model. Mutations likely to be due to POLE exonuclease domain mutation (POLE) were identified by considering mutational signatures as multinomial probability distributions caused by specific mutational processes. The probability of each mutation under all mutational processes active in that tumour was calculated, and mutations were assigned to the “POLE” mutational process in cases where the probability under that process was at least twice the probability under any other process.

POLE consensus mutational signature scores in driver genes

Tumour mutations were obtained from calling based on tumour/normal .bam files (POLE mutant cases) or TCGA MAF files (MMR-P, MMR-D cases), and classified into 96 categories following Alexandrov [6]. For each tumour, the distribution of mutations across the 96 types was calculated, and re-scaled to equal trinucleotide frequencies based on sequencing type, thus obtaining an individual tumour mutational signature. Tumours were then categorised into three groups according to POLE mutation and mismatch repair status (i.e. POLE-mutant, MMR-P and MMR-D), and a consensus mutational signature was calculated for each group as the average of the individual-tumour signatures among samples in the group, weighted by the number of mutations in each sample. The probability of all non-
silent mutations (‘nonsynonymous SNV’, or ‘stopgain’) in driver genes (as defined above) under each of the three consensus mutational signatures was then calculated, and the ratio of the probability of each mutation under the POLE consensus mutational signature compared to that under each of the other two consensus mutational signatures was obtained. For each individual gene, a ‘POLE score’ was then calculated as the base two logarithm of the minimum value of these ratios across all the non-silent mutations within that gene.

Immunohistochemistry

Immunohistochemistry (IHC) for CD8 was performed as reported previously [14]. The number of CD8+ cells was quantified for the epithelial and stromal regions of the EIN. For the final CD8 count per case, the mean of these regions in ten high-power fields (HPF; 625 μm x 425 μm) was calculated. A similar method was used to quantify CD8 density in colorectal adenomas, although the small lesion size meant that estimates were obtained from the mean of two or three HPFs.

Clonal neoantigen prediction

We estimated the number of clonal neoantigens using a modification of our previously-reported algorithm [11], modified to predict peptide binding against patient-specific HLA molecules (determined from WGS or WES data using OptiType [35]). Neoantigens were defined as mutations predicted to specify peptides that bound patient HLA molecules with affinity <500 nM. Copy number information was obtained from the GDC data portal, as
described above. Clonality was determined as described above. Neoantigens were considered clonal if the binomial test P-value was over 0.05.

Statistical analysis

Analyses were performed using R (CRAN network) or Prism (GraphPad Software, La Jolla, CA, USA). Statistical comparison between groups was made using the non-parametric Mann-Whitney U test. All P values were two sided, unless otherwise specified. Statistical significance was accepted at $P<0.05$.

This article is protected by copyright. All rights reserved.
RESULTS

Somatic POLE exonuclease domain mutations are detectable in sporadic endometrial and colorectal pre-cancers

As somatic POLE exonuclease domain mutations have been best characterised in endometrial and colorectal cancers, we first examined whether these mutations were present in precursors of these malignancies. Expert histopathological review of 51 POLE-mutant endometrial cancers revealed four with a concomitant and spatially discrete area of endometrial intraepithelial neoplasia (EIN), the precursor of endometrioid carcinoma (supplementary material, Table S2). Microdissection and targeted sequencing of these lesions by a 30-gene molecular inversion probe capture NGS panel (supplementary material, Table S3), a custom 80 gene Ion Ampliseq Cancer Hotspot panel (supplementary material, Table S4) and Sanger sequencing revealed that in all cases, the POLE mutation present in the carcinoma was also detectable in the paired precursor (Figure 1A,B, supplementary material, Table S7). While some other driver mutations were also shared between the precursors and paired cancers (median 4 shared mutations per pair, relative to a median of 7 mutations per EIN and median of 10 mutations per carcinoma), the progression from EIN to malignancy was associated with both the loss (median 3 mutations lost in carcinomas compared to paired EINs) and, more frequently, gain (median 6 mutations gained in carcinomas compared to paired EINs) of driver mutations (Figure 1A,B, supplementary material, Table S7). Notably, many of the driver mutations gained were replacements of a glutamic acid or arginine codon with a nonsense codon (E→* or R→*), consistent with the characteristic mutational bias associated with POLE mutation (C:G→A:T transversions where the mutated cytosine is in the context
TCT, and C:G→T:A transitions where the mutated cytosine is in the context TCG) [4-6] (Figure 1B, supplementary material, Table S7).

We were unable to perform a corresponding analysis of colorectal tumours, because residual precursor is uncommon in colorectal carcinomas. However, screening of 389 colorectal adenomas from 261 patients revealed three (0.8% adenomas, 1.1% patients) with somatic POLE mutations (Figure 1C), a frequency concordant with that found in colorectal cancers [11]. Unfortunately, the limited amount of DNA available from these lesions precluded analysis of other driver mutations.

Mutational landscape and driver gene alterations suggest that somatic POLE mutation is an early event in sporadic endometrial and colorectal cancers

To further investigate the timing and consequences of POLE mutations in tumour development, we performed WGS on six cancers (five endometrial, one colorectal), all of which harboured the most common pathogenic POLE exonuclease domain variant – a proline to arginine substitution at codon 286 (POLEP286R) (Figure 2A). Each displayed a substantially elevated mutation burden (122–731 mutations/Mb), and characteristic preponderance of C:G→A:T substitutions in the context TCT (Figure 2A,B, supplementary material, Table S8, Figure S1) [6]. In keeping with their early occurrence, both the POLE mutations themselves, and other mutations consistent with the known POLE mutational signature (see Materials and methods, Mutational signatures) appeared clonal in all six cases (Figure 2C). This was also the case in 17 of 17 endometrial cancers and 12 of 13 colorectal cancers with pathogenic POLE exonuclease domain mutations from the TCGA series (supplementary material,
This analysis showed that *POLE* mutations were unlikely to occur as late events after the most recent common ancestor in cancer evolution.

We next examined the timing of *POLE* mutations in carcinogenesis in more detail by analysis of driver genes, including some known usually to be mutated early in the pathogenesis of endometrial or colorectal cancer. To assess the likelihood that mutations in these genes were secondary to an earlier *POLE* mutation, we developed a metric to score them according to the probability that they were caused by the mutational process dominant in *POLE*-mutant cancers (presumably caused by the *POLE* mutation itself), rather than the mutational processes operative in other tumours (see Materials and methods, *POLE* consensus mutational signature score for details). For this analysis, we combined our cohort of *POLE*-mutant tumours with *POLE*-mutant cases from TCGA, using MMR-P and MMR-D TCGA cases as comparators. Strikingly, in *POLE*-mutant tumours, almost all known cancer driver genes displayed evidence of the *POLE* consensus mutational signature, with the notable exception of *POLE* itself (Figures 3, 4, supplementary material, Tables S8–S10, Figures S4, S5), consistent with the postulate that the *POLE* signature is a direct effect of the polymerase proofreading mutation. In contrast, MMR-P and MMR-D tumours rarely showed evidence of the *POLE* consensus mutational signature (Figures 3, 4, supplementary material, Tables S8–S10). In total, among 206 endometrial and/or colorectal cancer driver genes examined in the cases from the combined endometrial and colorectal cancer cohorts, 50% (1,065/2,118) of those in *POLE* mutant samples had a *POLE* signature score >0, compared to 14% (628/4,427) in MMR-D and MMR-P cancers ($P<1\times10^{-26}$).

To minimise the possibility of confounding by non-pathogenic mutations in the complete set of driver genes, we repeated these analyses considering only manually curated, high-
confidence pathogenic mutations, and obtained similar results ($P<1\times10^{-26}$, supplementary material, Figures S6, S7). As mutation of the tumour suppressors $PTEN$ and APC are well recognised as early, if not initiating, events in the pathogenesis of endometrial and colorectal cancers respectively, we specifically examined whether somatic variants in these genes varied according to tumour $POLE$ mutation status. Among high-confidence pathogenic $PTEN$ mutations in endometrial cancers, the proportion with $POLE$ consensus mutational signature scores >0 was substantially and significantly greater among $POLE$-mutant cases than among MMR-P and MMR-D tumours (10 of 14 [71.4%] versus 14 of 82 [17.1%] mutations respectively; $P=7.8\times10^{-3}$, Fisher’s Exact Test). Analysis of high-confidence pathogenic APC mutations in colorectal cancers revealed similar results (corresponding proportions 9 of 14 [64.3%] versus 10 of 69 [14.5%] mutations; $P=0.012$, Fisher’s Exact Test).

Further analysis of these cohorts and of targeted sequencing data from an additional series of endometrial cancers from the Leiden University Medical Centre (LUMC), including 32 $POLE$-mutant tumours, confirmed the over-representation of E→*, R→* and arginine to glutamine substitutions (R→Q) among $POLE$-mutant cases, concordant with the results from the paired endometrial lesions and consistent with the known trinucleotide bias of the $POLE$ mutational signature (supplementary material, Figure S8, S9, S10, Tables S7-S11). Interestingly, this was evident not only in well characterised drivers such as $PTEN$ in endometrial cancer and APC in colorectal cancer as noted above, but also in recurrent, clonal driver mutations found rarely in that tumour type. For example, in the combined TCGA/LUMC endometrial cancer cohorts, truncating mutations in the tumour suppressors APC, $NF1$ and $RB1$ were very rare in $POLE$-wild-type tumours (1.1%, 1.5% and 1.5% respectively), but common among $POLE$-mutant cases (38.8%, 34.7% and 34.7% respectively; $P<0.001$ for each comparison, Fisher’s exact test), where they almost invariably
occurred at glutamic acid or arginine codons (supplementary material, Figure S8, S9, S10, Tables S9, S11).

Collectively, these data suggested that somatic POLE mutation occurs early in endometrial and colorectal cancers, and that its attendant mutator phenotype defines a distinct pathway of carcinogenesis from the initial stages of this process.

Somatic POLE mutations are associated with a prominent T cell infiltrate in both precancerous and cancerous lesions

Somatic POLE exonuclease domain mutations in endometrial and colorectal cancers are associated with enhanced tumour immunogenicity and favourable prognosis [11,14,15]. We speculated that the early acquisition of somatic POLE mutations would cause a rapid acquisition of mutations, some of which would produce neoantigens capable of eliciting an anti-tumour immune response. Consistent with this prediction, all POLE-mutant EINs displayed a prominent CD8+ infiltrate (Figure 5A), which was significantly greater than that in POLE-wild-type EINs (median 59.4 versus 14.8 CD8+ cells per high power field [HPF]; \(P=0.029 \) Mann Whitney U test), and exceeded that observed in the POLE-wild-type endometrial carcinomas, although this difference was not statistically significant (median 59.4 versus 24.7 CD8+ cells per HPF, \(P=0.11 \)) (Figure 5B). The increased CD8+ cell density in POLE-mutant EINs could not obviously be explained by other factors such as patient age, or the stage or grade of the paired carcinoma (supplementary material, Table S2). In contrast, the differences in CD8+ density between EINs and paired carcinomas among both POLE-wild-type and POLE-mutant cases were less marked (median 14.8 versus 24.7; \(P=0.34 \), and
59.4 versus 116.9; \(P=0.11 \) respectively). The single \(POLE \)-mutant colorectal adenoma for which IHC was possible also demonstrated a dense CD8\(^+\) infiltrate (154.9 versus median 34.0 CD8\(^+\) cells per HPF) (Figure 5A,B).

\textit{Somatic POLE mutations in colorectal cancer are associated with enhanced predicted clonal neoantigen burden}

Recent data have shown that the presence of predicted neoantigens within the major tumour clone correlates with benefit from immune checkpoint inhibitor therapy [18]. As the limited amount of FFPE-derived DNA from precursor lesions was inadequate for clonality analysis and neoantigen prediction, we examined predicted neoantigen clonality in a subset of TCGA colorectal cancers including MMR-P, MMR-D and \(POLE \)-mutant subtypes, broadly matched for patient age and tumour stage. We used an approach similar to our previous reports [11,14], modified to incorporate patient-specific HLA haplotypes obtained using OptiType [35] and estimates of tumour clonality derived from analysis of variant allele frequencies (See Materials and methods, Clonal neoantigen prediction). Analysis of our combined cohort by this pipeline confirmed that \(POLE \)-mutant colorectal cancers harboured a substantially greater number and density of predicted clonal neoantigens (0.12 per Mb) than tumours lacking \(POLE \) mutations, including both MMR-P (0.0029 per Mb; \(P=0.0002 \), Mann Whitney U test) and hypermutated MMR-D cases (0.044 per Mb; \(P=0.03 \)) (Figure 6, supplementary material, Figure S11).

\underline{DISCUSSION}
In this study, we have presented multiple lines of evidence to show that pathogenic, somatic \(POLE\) exonuclease domain mutations are usually early and as far as we can detect initiating events in endometrial and colorectal tumorigenesis. We show that the acquisition of \(POLE\) mutation causes a distinct pattern of mutations in cancer driver genes, substantially increased mutation burden and an enhanced immune response, detectable even in precancerous lesions. Furthermore, we show that early somatic \(POLE\) exonuclease domain mutations are likely to cause an enrichment of clonal neoantigens that may explain their good prognosis and excellent response to immune checkpoint inhibitors.

\(APC\) mutation has traditionally been regarded as the initiating event in sporadic colorectal cancers that develop along the canonical pathway [19], while mutation of \(PTEN\) is thought to play a similar role in sporadic endometrioid endometrial cancers [36]. Our evidence suggests that in sporadic colorectal and endometrial cancers with pathogenic somatic \(POLE\) mutations, the \(POLE\) mutation is antecedent to either of these events. The consequent mutator phenotype it causes influences the type of mutations in these genes and that of the other earliest driver mutations in these cancers, as well as determining their overall mutational landscape [6]. Whether any of these \(POLE\)-induced driver mutations represent targetable alterations will be an important topic for future research. Similarly, while the increased burden of predicted clonal neoantigens in \(POLE\)-mutant tumours may explain their enhanced immunogenicity, further work is required to understand the molecular factors that determine this and its therapeutic implications. A further intriguing possibility is that the mutator phenotype and mutational bias drives cancers into an evolutionary cul-de-sac of sub-optimal fitness. The presence of \(APC\) mutations as an alternative to \(CTNNB1\) mutations in some \(POLE\)-mutant endometrial cancers is an exemplar, and there are likely to be others, such as \(NF1\) and \(RB1\).
mutations in endometrial cancer and atypical (Q61P, K117N and A146T) KRAS mutations in colorectal cancer. Examination of this hypothesis by comparing the oncogenic effects of these uncommon mutations with those caused by more typical variants in model systems would be of considerable interest.

Our data add to the expanding body of evidence suggesting that the effects of genomic instability in cancer depend upon both its severity and timing. For example, upregulation of APOBEC cytosine deaminase enzymes is common in many types of cancers, resulting in an increased mutation rate and characteristic mutation spectrum [6]. However, APOBEC overexpression often occurs as a late event in advanced tumours and causes a more modest mutator phenotype than POLE mutations [2,6]. Speculatively, these features may explain why the impact of APOBEC on prognosis appears more variable than that of POLE mutation [37,38]. The early acquisition of somatic POLE mutations in sporadic cancers may also help to explain their association with young age at diagnosis, given the prediction that the early gain of a mutator phenotype will accelerate the process of malignant transformation [39].

Our study has limitations. The number of precursor lesions informative for detailed analysis was limited, in keeping with the relative rarity of POLE mutations in endometrial cancer, and the frequency with which precancerous and cancerous lesions occur in the same tumour section. Moreover, although the spatial separation of the precancerous and cancerous compartments, and the discordance in molecular alterations between the two components in each case suggests otherwise, we cannot exclude the possibility that the apparent precursor lesion is in fact adenocarcinoma colonizing endometrial glands. It will therefore be important to validate our results in additional cohorts, although we note that a very recent study has documented a pathogenic POLE mutation in an endometrial cancer precursor [25].
Furthermore, all our results are based on the analysis of a single sample of each cancer, meaning that the effects of intratumour heterogeneity on the pattern of driver mutations and clonal neoantigens in \textit{POLE}-mutant tumours requires further definition. However, the absence of multi-region sequencing is unlikely to have confounded the principal conclusions of our study regarding the timing of these pathogenic mutations in cancers.

In summary, we show that pathogenic, somatic \textit{POLE} exonuclease domain mutations are early, quite possibly initiating, events in sporadic cancers, and strongly shape subsequent tumour evolution. Our observation provides further insights into the distinct biology of these tumours, and may help explain their increased immunogenicity and excellent prognosis.
Acknowledgments

We thank Michelle Osse, Natalja ter Haar, Nienke Solleveld-Westerink and Dina Ruano for help with performing and interpretation of the Ion AmpliSeq Cancer Hotspot Panel. We would also like to thank the patients who consented for the molecular analysis their tumours reported in this study. The results published here include data generated by The Cancer Genome Atlas project funded by the NCI and NIH (cancergenome.nih.gov); we would like to thank the many patients and researchers who contributed to this study.

Funding

Funding for this study was provided by: Cancer Research UK (C6199/A10417 and C399/A2291), the European Union Seventh Framework Programme (FP7/207- 2013) grant 258236 collaborative project SYSCOL, European Research Council project EVOCAN, the Dutch Cancer Society, Research Fund Flanders (F.W.O.) grant no. G.0827.13, the Medical Research Council, the Wellcome Trust and Department of Health as part of a Health Innovation Challenge Fund grant (R6-388), the Oxford NIHR Comprehensive Biomedical Research Centre, Ovarian Cancer Action and core funding to the Wellcome Trust Centre for Human Genetics from the Wellcome Trust (090532/Z/09/Z). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health or the Wellcome Trust.

DT is funded by an EPSRC doctoral training grant via CoMPLEX. MG is funded by a Studentship from the Wellcome Trust. TB is funded by the Dutch Cancer Society Young
Investigator Grant 10418. FA is a senior researcher for the F.W.O. TG is a Cancer Research UK Career Development Fellow (A19771) and a Wellcome Trust Investigator (202778/Z/16/Z). DNC is funded by a Health Foundation/Academy of Medical Sciences Clinician Scientist Fellowship.

The cost of open access publication were provided by core funding to the Wellcome Trust Centre for Human Genetics from the Wellcome Trust (090532/Z/09/Z).

Author contributions statement

Study design: DT, TG, DNC, IT

Data collection: DT, IVG, ER, SM, MB, LC, CP, JD, AB, CS, JM, VC, MR, AA, FA, DL, VS, TB

Data analysis: DT, IVG, ER, MG, LC, CP, AMB, MW, MR, JT, AS, VS, TB, TG, DNC, IT

Data interpretation: DT, TG, DNC, IT

Manuscript writing: DNC, IT
REFERENCES

Cited only in supplementary material.
Figure legends

Figure 1. Pathogenic, somatic POLE exonuclease domain mutations in precursors of endometrial and colorectal cancers

Expert histopathological review of 51 endometrial cancers with pathogenic POLE exonuclease domain mutations revealed four with concomitant and spatially discrete area of endometrial intraepithelial neoplasia (EIN). (A) H&E stained section from one case with results of Sanger sequencing of the malignant and precursor components. (B) Targeted sequencing of paired endometrial lesions by two orthogonal next generation sequencing panels revealed that POLE mutations (bold, underlined) were present in both EIN and carcinomas in all cases (validated by Sanger sequencing in all cases). In each case, progression of EIN to endometrial carcinoma was associated with the gain of driver mutations, several of which were glutamic acid or arginine to stop codon mutations (E→* or R→ *) consistent with the POLE exonuclease domain-mutant mutational signature (semibold). † The amount of DNA available from the EIN in case Q1-4 was insufficient for molecular inversion probe sequencing. Details of identified driver mutations are provided in supplementary material, Table S7. (C) H&E stained section from colorectal adenoma with the results of Sanger sequencing and allelic discrimination PCR for the wild-type G allele and mutant T allele.
Figure 2. Whole genome sequencing of cancers with POLE exonuclease domain mutations

(A) Mutation burden and single nucleotide variant (SNV) type determined by whole genome sequencing (WGS) of five endometrial cancers (EC– Oxf001, POLE_040, POLE_049, POLE 072, POLE_147) and one colorectal cancer (CRC – Bir001) with somatic POLE P286R exonuclease domain mutations. (B) Relative proportion of SNV mutations according to trinucleotide context averaged across the six POLE-mutant cases. The upper panel shows the unscaled proportions across the whole genome, while the lower panel shows the inferred mutational signature in a hypothetical genome where all trinucleotide frequencies are represented in equal proportions. High resolution versions are provided in supplementary material, Figure S1 (C) Frequency histograms and kernel density plots showing variant allele fraction (VAF) of all SNV mutations, and SNVs likely due to POLE exonuclease domain mutation (POLE). POLE mutations and other driver gene mutations are highlighted by arrows (details provided in supplementary material, Table S8). Only mutations in diploid regions of autosomes, and with coverage >20x are shown. The relatively low proportion of SNVs categorised as being due to POLE mutation reflects the stringency of the classification used (see Materials and methods, Mutational signatures). Vertical red line indicates clonal peak used to calculate cellularity.
Figure 3. POLE signature mutations in endometrial cancer driver genes

Heatmap showing modelled probability that mutations in endometrial cancer driver genes (defined based on IntOGen – see Materials and methods, Definition of driver genes; supplementary material, Table S5) were due to a prior POLE exonuclease domain mutation. Results are shown for samples with a pathogenic POLE mutation and MMR-D and MMR-P comparators. Each non-synonymous mutation in a driver gene was assigned a probability that it was caused by the mutational process that generates the distinct POLE mutational signature, rather than by the mutational processes responsible for the consensus mutational signatures of POLE-wild-type DNA mismatch repair proficient (MMR-P) and mismatch repair deficient (MMR-D) tumours (see Materials and methods, POLE consensus mutational signature scores in driver genes, for details. For each gene/sample combination, a ‘POLE-score’ was then calculated as the minimum value of these ratios, and plotted as a heatmap. Scores are shown for both individual POLE-mutant tumours and the combined POLE-mutant subgroup; results for tumours within the POLE-wild-type, mismatch repair proficient (MMR-P) and POLE-wild-type, mismatch repair deficient (MMR-D) subgroups are combined for clarity. Scores for POLE itself are shown for reference. Details of mutations are provided in supplementary material, Tables S8, S9. A high resolution version of this figure is provided as supplementary material, Figure S4.
Figure 4. *POLE* signature mutations in colorectal cancer driver genes

Corresponding heatmap to Figure 3 showing results for known colorectal cancer driver genes, (defined base on IntOGen – see Materials and methods, Definition of driver genes; supplementary material, Table S4). Details of mutations are provided in supplementary material, Tables S8, S10. A high resolution version of this figure is provided as supplementary material, Figure S5.
Figure 5. T cell infiltrate in POLE-mutant precursor lesions

(A) Representative images of immunohistochemistry (IHC) for the cytotoxic T cell marker CD8 in endometrial intraepithelial neoplasias (EIN) and paired concomitant endometrioid adenocarcinomas and in colorectal adenomas according to POLE mutation status. (B) Quantification of CD8⁺ infiltrate density (number of CD8⁺ cells per high power field [HPF] calculated as the mean of 10 high power fields) in POLE-wild-type and POLE-mutant paired endometrial intraepithelial neoplasia (EIN) and endometrial carcinoma (EC) (n=4 EIN–carcinoma pairs for each genotype) and in POLE-wild-type and POLE-mutant colorectal adenomas (Ad) (n=5 POLE-wild-type lesions, and the single POLE-mutant adenoma informative for analysis). Symbols (square, circle, triangle and diamond) correspond to paired EIN and endometrial carcinomas for POLE-wild-type (open symbols) and POLE-mutant (closed symbols) cases. For colorectal adenomas open and closed triangles correspond to unpaired POLE-wild-type and POLE-mutant adenomas respectively. Statistical comparisons in (B) were performed by unadjusted Mann-Whitney U-test. HPF – high power field.
Figure 6. Clonality of predicted neoantigens in POLE-mutant colorectal cancers

Neoantigens were predicted based on the binding affinity of mutant peptides for patient class I HLA molecules, and assigned clonal or subclonal status (see Materials and methods, Clonality of POLE mutations). The number of clonal and subclonal neoantigens for POLE-wild-type, mismatch repair proficient (MMR-P), POLE-wild-type, mismatch repair deficient (MMR-D) and POLE mutant colorectal cancers from the TCGA series is shown. Cases in each molecular subgroup were selected to provide broadly similar proportions of disease stages and patient ages: molecular subgroups did not differ significantly in either parameter. Comparison of the number of clonal neoantigen burden between groups was performed by unadjusted Mann-Whitney U-test.
Figure S1. Relative proportion of SNV mutations according to trinucleotide context in six POLE-mutant tumour genomes (high resolution image)

Figure S2. Clonality of POLE mutations and mutational processes in TCGA endometrial cancers

Figure S3. Clonality of POLE mutations and mutational processes in TCGA colorectal cancers

Figure S4. POLE signature mutations in endometrial cancer driver genes (high resolution image).

Figure S5 POLE signature mutations in colorectal cancer driver genes (high resolution image).

Figure S6. POLE signature in high-confidence endometrial cancer driver mutations

Figure S7. POLE signature in high-confidence colorectal cancer driver mutations

Figure S8. Driver mutations in TCGA endometrial cancers

Figure S9. Driver mutations in TCGA colorectal cancers

Figure S10. Driver mutations in LUMC endometrial cancers

Figure S11. Clonality of neoantigens in TCGA colorectal cancers

Table S1. Cohorts analysed and molecular analyses performed

Table S2. Details of cases used for molecular analyses

Table S3. Genes included in custom molecular inversion probe panel

Table S4. Genes included in custom Ion AmpliSeq Cancer Hotspot Panel

Table S5. List of IntOGen endometrial cancer driver genes used in this study
Table S6. List of IntOGen colorectal cancer driver genes used in this study

Table S7. Driver mutations detected in paired endometrial intraepithelial neoplasias (EIN) and endometrial carcinomas

Table S8. Driver mutations in POLE-mutant cancers analysed by whole genome sequencing

Table S9. Driver mutations in TCGA endometrial cancers by tumour molecular subgroup

Table S10. Driver mutations in TCGA colorectal cancers by tumour molecular subgroup

Table S11. Driver mutations in endometrial cancers analysed by Ion Ampliseq Comprehensive Cancer Panel