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Abstract 

The impact of elevated [CO2] (e[CO2]) on crops often includes a decrease in their nutrient 

concentrations where reduced transpiration-driven mass flow of nutrients has been suggested to play a 

role. We used two independent approaches, a Free-Air CO2 Enrichment (FACE) experiment in the 

South Eastern wheat belt of Australia and a simulation study employing the Agricultural Production 

Systems Simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m-2) of nitrogen 

(N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), and manganese (Mn) in wheat are 

correlated under e[CO2], but that nutrient uptake per unit water transpired is higher under e[CO2] than 

under ambient [CO2] (a[CO2]). This result suggests that transpiration-driven mass flow of nutrients 

contributes to decreases in nutrient concentrations under e[CO2], but cannot solely explain the overall 

decline. 
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significant; PAR, photosynthetically active radiation; RUE, radiation use efficiency; gs, stomatal 

conductance; TE, transpiration efficiency; VPD, vapour pressure deficit 

 

Introduction 

Anthropogenic activities such as fossil fuel consumption and deforestation have caused atmospheric 

[CO2] to increase rapidly (Canadell et al., 2007) from 315 µmol mol-1 in 1960 to approximately 400 

µmol mol-1 in 2015. Future [CO2] is likely to reach 550 µmol mol-1 or above by 2050 (IPCC, 2013). 

Plants respond to elevated [CO2] (e[CO2]) with increased photosynthesis (Ainsworth and Long, 2005; 

Nowak et al., 2004) and reduced stomatal conductance (gs) (Bunce, 2004; Leakey et al., 2006), and 

these responses are fundamental for all other CO2-driven effects on plants and their accompanying 

ecosystems (Ainsworth and Rogers, 2007; Long et al., 2004).  

In C3 crops, these changes improve water use efficiency and grain yield (Ainsworth et al., 2008; Leakey 

et al., 2012) but are likely to reduce nutrient concentrations in vegetative tissues, which, in turn, can 

result in lower nutrient concentrations in the grain (Conroy and Hocking, 1993; Hogy et al., 2009; 

Pleijel and Hogy, 2015). Concentrations of nutrients such as nitrogen (N), potassium (K), sulfur (S), 

calcium (Ca), magnesium (Mg), and manganese (Mn) have all been reported to decrease by up to 22% 

under e[CO2] (Loladze, 2002; Loladze, 2014; McGrath and Lobell, 2013). 

Limited uptake of nutrients per unit root mass is one of the hypotheses suggested to explain the decline 

in nutrient concentration under e[CO2] (Taub and Wang, 2008). This reduced root uptake could result 

from changes in root systems, such as less efficient root system architecture or decreased uptake 

capacity per unit root length (BassiriRad et al., 2001; Pritchard and Rogers, 2000), or from reduced 

transpiration-driven mass flow of nutrients due to decreased gs under e[CO2] (BassiriRad et al., 2001; 

Del Pozo et al., 2007; McGrath and Lobell, 2013).  

The significance of transpirational mass flow for nutrient uptake is supported by a wealth of 

circumstantial data (Masle et al., 1992; Polley et al., 1999; Russell and Barber, 1960; Sellin et al., 2013). 

Transpiration rate may affect nutrient uptake both directly, through effects on the rate of radial transport 

of nutrients through the apoplasm (Marschner and Marschner, 2012), and indirectly, by influencing the 

supply of nutrients to the plasma membrane of root cells (Cramer and Hawkins, 2009; Tinker and Nye, 

2000). Decreased transpiration rates may reduce rhizosphere nutrient depletion resulting from plant 

uptake, especially for solute nutrients (Kupper et al., 2012; Scholz et al., 2007). 

This article is protected by copyright. All rights reserved.



Few attempts have been made to address the effect of e[CO2] on the relationship between transpirational 

mass flow and nutrient uptake. McDonald et al. (2002) used a short duration (7-day period) pot 

experiment with e[CO2] (approximately 1000 µmol mol-1) and high humidity under glasshouse 

conditions to report that transpiration rate and nitrate (NO3¯) uptake were positively related. A similar 

correlation was found by McGrath and Lobell (2013) in a meta-analysis that included experiments 

mostly conducted in open-top chambers, growth cabinets or glasshouse conditions. The authors pointed 

out that none of the experiments had measured transpirational mass flow and nutrient uptake 

simultaneously under e[CO2]. Glasshouse or chamber conditions may also distort responses and lead to 

conclusions that are not immediately transferable to field conditions (Long et al., 2006; Long et al., 

2004; Mcconnaughay et al., 1993; McLeod and Long, 1999). In addition, pot experiments can change 

the water dynamics necessary to evaluate the relationship between transpirational mass flow and 

nutrient uptake. Because of the small pot volume, nutrients are easily available to the roots, regardless 

of whether transpiration is reduced or not (McGrath and Lobell, 2013). Free-Air CO2 enrichment 

(FACE) studies with plants rooted in the ground would likely give better estimates because roots have 

unrestricted access to soil volume, and water dynamics represent typical field conditions.  

In this study, we used two independent approaches applied to the same wheat cultivars grown at the 

same site to investigate the potential relationship between transpiration and nutrient uptake. For the first 

approach, measurements in the Australian Grains Free-Air CO2 enrichment (AGFACE) facility were 

used to simultaneously evaluate the nutrient uptake (N, K, S, Ca, Mg and Mn) and transpiration rates 

in wheat (Triticum aestivum L.) grown under ambient [CO2] (a[CO2], approximately 390 µmol mol-1) 

and e[CO2] (approximately 550 µmol mol-1). During one growing season (2013) nutrient uptake was 

measured in detail and transpiration was estimated for the same period using the Jarvis-type (Jarvis, 

1976) empirical gs model. This model was parameterised from approximately 1500 leaf level gs 

measurements on the same wheat cultivars at the AGFACE site (Houshmandfar et al., 2015a). For the 

second approach, nutrient uptake (for N only) and transpiration was simulated by the Agricultural 

Production Systems Simulator (APSIM) modeling framework over ten consecutive growing seasons 

from 2007 to 2016. APSIM is a well-tested agricultural model internationally recognised as a highly 

advanced simulator of cropping systems (Holzworth et al., 2014). The model simulates plant water 

uptake (approximately equal to transpiration (Taub, 2010)) and N uptake in wheat (APSIM-Wheat) for 

an adjustable duration of time, along with a wide range of other capabilities. APSIM-Wheat has been 

broadly evaluated in a range of experimental (Holzworth and Huth, 2011; Zhang et al., 2012) and farm 

conditions (Hochman et al., 2009), also under e[CO2] scenarios (Asseng et al., 2004; Reyenga et al., 

1999), and in particular at the AGFACE site (O'Leary et al., 2015).  

If the relationship between transpiration and nutrient uptake is identical under a[CO2] and e[CO2] (and 

explains a significant proportion of the data variance), then changes in transpiration rate will be 

sufficient to explain changes in crop nutrition under e[CO2].  
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Understanding the relative role of transpiration in lower nutrient concentration in crops grown under 

e[CO2] would improve our currently limited ability to predict responses for different crops and regions, 

and help guide breeding and agronomic strategies to adapt crops to higher [CO2].  

 

Material and methods 

Experimental setup and plant material  

A field experiment using two cultivars of wheat (Triticum aestivum L. cv. Scout and cv. Yitpi) was 

conducted at the AGFACE site located in Horsham, Victoria, Australia (36°45′07′′S, 142°06′52′′E; 127 

m above mean sea level) in the 2013 growing season. The soil type is a Vertosol clay with non-

dispersive and pedal surface (Isbell, 2002), approximately 35% clay at the top increasing to 60% at 1.4 

m depth. The AGFACE is located in a semi-arid cropping area, which has a Mediterranean type climate 

but with cooler and drier winters (Hutchinson et al., 2005). Long-term average annual rainfall of the 

area is 435 mm, with 274 mm typically falling during the wheat growing season (June to November). 

Long-term mean growing season temperature is 16.5 °C (Australian Bureau of Meteorology). The soil 

had a pH of 8.2, EC (electrical conductivity) of 0.14 µS cm-1, Mehlich 3 extractable (Mehlich, 1984) 

Ca of 6.4 (±0.5) g kg-1, K of 501.8 (±42.5) mg kg-1, Mg of 1.1 (±0.0) g kg-1, Mn of 0.1 (±0.0) mg kg-1, 

Fe of 120 (±9.2) mg kg-1, zinc (Zn) of 2.3 (±0.5) mg kg-1, copper (Cu) of 1.6 (±0.1) mg kg-1, Bray 

extractable (Bray and Kurtz, 1945) phosphate (PO4
3¯) of 19.2 (±2.2) mg kg-1, as well as AQ2 measured 

(Automated Discrete Analyzer, Seal Analytical Ltd, UK) nitrate (NO3¯) and ammonium (NH4
+) of 6.1 

(±0.2) and 3.4 (±0.1) mg kg-1, respectively. These values are averages of 32 soil samples from 0 to 25 

cm depth.  

In 2013, the AGFACE was fully randomized in a complete block design with four replications, with 

eight octagonal plots (16 m diameter) of which four were a[CO2] (approximately 390 µmol mol-1) and 

four e[CO]2 (approximately 550 µmol mol-1). Each cultivar was sown into two randomly allocated 

replicate subplots (1.5 m × 4 m), one each in opposing halves of the ring. Measurements from the two 

subplots were averaged for each replicate plot. Each e[CO2] plot was encircled by horizontal CO2-

release-tubes in an octagonal shape. The tubes were progressively raised as the crop grew so that the 

CO2 was injected about 0.1 - 0.15 m above the canopy. A plot center [CO2] value of 550 µmol mol-1 

was targeted for the e[CO2] treatment from sunrise to sunset starting from germination. Average plot 

central [CO2] were recorded every minute with an infrared gas analyzers (IRGA, SBA-4, PP Systems, 

MA, USA) located at the central part of each plot. Detailed engineering specifications, performance of 

the FACE system, and treatment descriptions are found in Mollah et al. (2011) and Fitzgerald et al. 

(2016).  

 

Plant sampling and nutrient analysis  

Leaf area index (LAI, one-sided green leaf area per m-2 ground area) and nutrient uptake into 

aboveground biomass (g m-2 ground area) were simultaneously measured at four different growing 
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stages from stem elongation until the end of anthesis: DC31, DC34, DC65 and DC69 (DC decimal code, 

according to Zadoks et al. (1974) cereal growth scale). Labelled areas of 1.35 × 0.5 m2 were harvested 

at DC31 and DC65, and 30 to 50 random tillers sampled at DC34 and DC69 experimental unit. Plant 

densities were 414.4 (±15.3) and 462.5 (±13.2) tillers m-2 under ambient and elevated [CO2], 

respectively. For each sampling time, entire aboveground biomass including leaves, stems, and spikes 

(DC 65 and DC 69) were harvested, then, after measuring leaf area with a calibrated leaf area meter 

(Li-3100, Li-Cor, NE, USA), dried for 72 h in a 70 °C of oven temperature. N concentration was 

measured using LECO Nitrogen Macro Determinator (TruMac, LECO Corporation, MI, USA). K, S, 

Ca, Mg, and Mn concentrations were measured using inductively coupled plasma atomic emission 

spectrometry (ICP-AES) (Applied Research Laboratories, 3580B, Switzerland) after digestion in 

concentrated nitric acid (HNO3) following the procedure described by Zarcinas et al. (1987). We studied 

N, K, S, Ca, Mg and Mn because these nutrients are considered to be transported to a significant extent 

by transpirational flow (solute transport) (Marschner and Marschner, 2012; Oliveira et al., 2010). 

Nutrient uptake into aboveground was calculated as nutrient concentration multiplied with dry weights 

expressed per m2 ground area.  

 

Transpiration estimates 

Transpiration was estimated on a leaf area basis using the principles of Fick’s law, and gs computed 

with the Jarvis-type (Jarvis, 1976) empirical model previously parameterised for wheat using many 

measurements of the same cultivars at the AGFACE site (Houshmandfar et al., 2015a). The 

parameterised Jarvis-type model predicts gs by multiplying maximum gs (a[CO2]: 0.823 (±0.250), 

e[CO2]: 0.529 (±0.127) mol m−2 s−1) measured under optimum conditions with functions of the main 

microclimate and phenological variables including temperature, vapour pressure deficit (VPD), soil 

moisture content, time of day, leaf aging, and photosynthetically active radiation (PAR), parameterised 

separately for ambient and elevated [CO2] growing conditions (Houshmandfar et al., 2015a). 

Microclimatic variables were taken from a continuously logging (15-min intervals) meteorological 

station located in the AGFACE site, except for the 143rd day after germination when average daily 

weather observations were taken from the nearby (<20 km) meteorological station # 079028 (Australian 

Bureau of Meteorology). The soil water content was omitted because soil water was regarded as non-

limiting during the measurement period of this experiment (an exceptionally high rainfall growing 

season for the site, Table 1). VPD of air was calculated using temperature and relative humidity as 

described by Monteith and Unsworth (2013) and ranged from 0.005 to 3.993 kPa. Stomatal conductance 

was calculated on a 15-min average basis. The equation (transpiration = gs × VPD) described by Hunt 

et al. (1985) was used to calculate the estimates for transpiration rates (Wright et al., 2012). Leaf-level 

transpiration was estimated separately for each replicate subplot from germination until the time of 

nutrient data collection, i.e. from germination until DC31, DC34, DC65 or DC69. Transpiration was 

then (approximately) scaled up to stand-level by multiplying leaf-level transpiration with LAI (Wright 
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et al., 2012). The air-temperature-based VPD was used as an approximation rather than leaf-

temperature-based VPD (Wright et al., 2012). Transpiration was expressed as mm.  

 

Table 1 Average values for temperature and solar radiation, as well as rainfall amount from 2007 to 

2016. 

 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Annual average minimum air temperature (˚C) 8.0 6.7 7.6 7.3 7.4 6.8 7.5 7.3 7.3 8.0
Annual average maximum air temperature (˚C) 22.4 21.4 22.2 20.8 21.1 21.5 21.7 22.5 22.3 21.6
Annual rainfall (mm) 428.9 335.4 399.8 559.4 507.0 287.2 378.0 221.8 269.8 550.4
Rainfall during the growing season (mm) 164.0 166.2 266.6 268.6 215.4 174.8 320.8 115.0 125.2 326.4
Annual average solar radiation (MJ m-2) 16.3 15.6 16.3 18.2 15.3 16.0 15.8 16.2 16.1 15.8

 

APSIM model  

APSIM-Wheat (v 7.8) (Holzworth et al., 2014) was used to simulate monthly transpiration and N uptake 

values in cv. Yitpi and cv. Scout from germination until approximately DC69 under a[CO2] (as per the 

ambient [CO2] in the growing season) and e[CO2] (550 µmol mol-1) in ten consecutive wheat seasons 

(2007-2016). Ambient [CO2] was set to 360 µmol mol-1 for 2007 and 2008, 370 µmol mol-1 for 2009 

and 2010, 380 µmol mol-1 for 2011 and 2012, 390 µmol mol-1 for 2013 and 2014, and 400 µmol mol-1 

for 2015 and 2016, the approximate values corresponding to changes in the ambient [CO2] in the 

growing seasons. The model was run for ten years to broaden the range of the environmental conditions 

to test if the relationships remain unchanged by variations in the growing seasons. In APSIM-Wheat, 

e[CO2] impacts upon simulated growth and resource use via changes to radiation use efficiency (RUE), 

transpiration efficiency (TE) and the critical N concentration (CNC) (Reyenga et al., 1999). To capture 

CO2 effects on RUE, and interactions with temperature, the model scales RUE using the ratio of the 

light-limited photosynthetic response at the e[CO2] to that at 350 µmol mol-1. The responses of TE and 

leaf CNC to e[CO2] are assumed to be linear with changes of +37 and -7%, respectively, for a doubling 

of [CO2] to 700 µmol mol-1 (O'Leary et al., 2015). Actual transpiration is indirectly reduced under 

e[CO2] through the gain in TE. 

The experimental site was defined by its soil type (Table 2), and daily weather conditions (solar 

radiation, maximum and minimum temperature and rainfall, Table 1) which were mostly taken from 

the continuously logging meteorological station located in the AGFACE site. When on-site 

measurements were unavailable, daily weather observations were taken from the nearby meteorological 

station # 079028, extracted from the SILO climate data archive (Jeffrey et al., 2001). Additional 

experimental site related characteristics are found in O'Leary et al. (2015). Cultivar-specific parameters 

used to define wheat growth in the APSIM simulation are listed in Table 3. No change to the species 

parameters and the module source code was made.  
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Table 2  Soil profile data describing the bulk density (BD), air dry, crop lower limit (LL), drained 

upper limit (DUL), saturation (SAT), organic carbon (OC), and the water availability coefficients of 

KL and XF. 

Depth 

(cm) 

BD 

(g cc-1) 

Air dry 

(mm mm-1) 

LL

(mm mm-1) 

DUL

(mm mm-1) 

SAT

(mm mm-1) 

OC

(%) 

APSIM KL 

(day-1) 

APSIM XF

(0-1) 

0-10 1.14 0.15 0.20 0.39 0.46 1.248 0.06 1.00 

10-20 1.30 0.18 0.23 0.40 0.47 0.708 0.06 1.00 

20-40 1.37 0.25 0.27 0.42 0.48 0.354 0.04 1.00 

40-60 1.40 0.27 0.30 0.43 0.47 0.177 0.02 0.80 

60-80 1.40 0.28 0.33 0.45 0.47 0.089 0.02 0.80 

80-100 1.40 0.30 0.35 0.45 0.47 0.044 0.02 0.60 

100-120 1.40 0.32 0.36 0.45 0.47 0.022 0.02 0.60 

120-140 1.40 0.33 0.37 0.45 0.47 0.011 0.02 0.20 

140-160 1.40 0.34 0.37 0.45 0.47 0.011 0.02 0.20 

160-180 1.40 0.34 0.37 0.45 0.47 0.011 0.02 0.20 

 

Table 3 Key parameters used to define cultivar-specific settings in APSIM-Wheat. a The thermal time 

from emergence until end of juvenile is influenced by the number of cumulative vernalising days 

during the period. b The phase from end of juvenile until floral initiation is influenced by the 

photoperiod sensitivity. 

Cultivar parameters Yitpi Scout

Sensitivity to vernalisationa 1.5 1.8 

Sensitivity to photoperiodb 3.0 3.5 

Kernel number per stem weight at the beginning of grain filling (g) 25 25 

Potential daily grain filling rate (g grain-1 day-1) 0.002 0.002 

Grain growth rate from flowering to grain filling (g grain-1 day-1) 0.001 0.001

Maximum grain size (g) 0.041 0.041

Thermal time from start grain filling to maturity (˚C days) 545 550 

Thermal time from floral initiation to flowing (˚C days) 555 555 

Thermal time needed in anthesis phase (˚C days) 120 120 

Thermal time needed from sowing to end of juvenile (˚C days) 400 400 

Maximum root depth (cm) 180 180 

 

Statistical analyses 

Analysis of variance for the effects of CO2, cultivar, and their interaction on total transpiration and 

nutrient uptake into aboveground biomass were performed using split plot module (CO2 × cultivar 

treatment structure) separately for each growth stage with “agricolae” package (de Mendiburu and de 

Mendiburu, 2016) in R software (v 3.0.3) (R Core Team, 2000). No cultivar or cultivar by CO2 

interaction effect was found to be statistically significant, therefore, we only report the CO2-driven 

effects.  

Simple regression analyses with R software were used to assess the relationship between transpiration 

and nutrient uptake under ambient and elevated [CO2]. Significance of differences between the fitted 
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coefficients (slopes and intercepts) of the regression lines under ambient and elevated [CO2] were 

evaluated using 95% confidence intervals calculated from the standard error (Diem and Seldrup, 1982). 

Similar to the analysis of variance, we did not find a significant difference between the two cultivars 

and therefore (for the regression analysis only) data for both cultivars were pooled, increasing the 

degrees of freedom (from 14 to 30). Graphs were produced using “ggplot2” package (Wickham, 2009) 

of R software. 

 

Results 

FACE experiment - estimated gs and transpiration  

Lower mean gs was estimated for plants grown under e[CO2] than under a[CO2] conditions (Fig. 1), and 

the difference was smaller earlier than later in the growing season. Elevated [CO2] decreased gs by a 

mean of 27% across all estimated values over the study period. This translated into a 31% (15 mm) 

lower total transpiration under e[CO2] at DC34, 21% (45 mm) at DC65, and 24% (56 mm) at DC69 

(Fig. 1). Total transpiration estimates, from germination until DC69, were 233.1 (±11.1) and 177.4 

(±9.3) mm under ambient and elevated [CO2], respectively.  

 

 
Fig. 1 Monthly-averaged stomatal conductance (gs) (mol m-2 s-1) under a[CO2] (open circles) and e[CO2] 

(filled circles) estimated using a Jarvis-type model developed at this site (Houshmandfar et al., 2015a) 

(A). Cumulative transpiration estimates (±standard error) from germination until DC31, DC34, DC65 

and DC69 in wheat grown under FACE conditions (a[CO2]: open squares; e[CO2]: filled squares)  (B). 

Each data point represents a mean of 4 replicates × 2 cultivars (±standard error). Transpiration was 

estimated as gs multiplied with VPD and LAI.  
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FACE experiment - nutrient uptake 

Total nutrient uptake into aboveground biomass was higher in plants grown under e[CO2] than under 

a[CO2] when measured at later stages of development, i.e. DC65 and DC69 (albeit not always 

significant) (Fig. 2). At DC31 and DC34 (early growth stages), this difference was not apparent (Fig. 

2).  

 
Fig. 2 Nutrient uptake into aboveground biomass from germination until DC31, DC34, DC65 and DC69 

in wheat grown under FACE conditions (a[CO2]: open squares; e[CO2]: filled squares). Each data point 

represents a mean of 4 replicates plot × 2 cultivars (±standard error).  

 

FACE experiment - relationship between transpiration and nutrient uptake 

Transpiration (mm) was positively correlated with uptake m-2 of N, K, S, Ca, Mg, and Mn under both 

ambient and elevated CO2 conditions (Fig. 3). The coefficient of determinations (R2) were 0.96 and 

0.93 for N, 0.90 and 0.94 for K, 0.96 and 0.78 for S, 0.89 and 0.64 for Ca, 0.95 and 0.83 for Mg, and 

0.89 and 0.84 for Mn, under ambient and elevated CO2, respectively (Fig. 3). The slopes of the 
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relationships were consistently steeper under e[CO2] than under a[CO2] and this difference was 

significant for all nutrients (P≤0.05). Nutrient uptake per unit water transpired was on average 50% 

higher under e[CO2] than a[CO2].  

 

 
Fig. 3 Relationships between transpiration (mm) and uptake for nitrogen (N), potassium (K), sulfur (S), 

calcium (Ca), magnesium (Mg), and manganese (Mn) under a[CO2] (dashed lines and open circles) and 

e[CO2] (bold lines and filled circles). ±: standard error for the estimated parameters (slope and intercept 

of the linear relationship). ns: not significant. Each data point represents a replicate subplot (n=32).  

 

APSIM study – simulated transpiration and N uptake  

Differences between simulated values for transpiration under ambient and elevated [CO2] were small 

in any of the studied years from 2007 to 2016 (Table 4). Total N uptake into aboveground biomass from 

germination until approximately DC69 was 20% higher in 2007, 24% in 2008, 21% in 2009, 17% in 

2010, 18% in 2011, 21% in 2012, 20% in 2013, 16% in 2014, 13% in 2015, and 17% in 2016 in plants 

grown under e[CO2] than under a[CO2], respectively (Table 4). 
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Table 4 APSIM-simulated values of transpiration (mm) and N uptake (g m-2) from germination until 

approximately DC 69. ±: standard error for the difference between simulated values for the two studied 

cultivars (cv. Yitpi and cv. Scout). 
Simulated year Transpiration (mm) Nitrogen uptake (g m-2) 

 a[CO2] e[CO2] a[CO2] e[CO2]

2007 119.1±0.9 121.5±0.7 11.2±0.0 13.5±0.1 

2008 113.0±2.1 117.0±1.7 10.3±0.4 12.8±0.4 

2009 144.6±4.8 148.4±3.0 14.4±0.7 17.5±0.6

2010 115.2±2.0 118.2±0.9 10.7±0.6 12.6±1.2 

2011 126.5±1.9 128.7±1.4 13.2±0.1 15.6±0.2

2012 117.9±2.7 122.2±2.3 11.2±0.6 13.6±0.7

2013 139.6±9.0 145.0±6.9 13.0±0.9 15.7±0.8 

2014 91.3±0.4 92.5±0.3 9.1±0.1 10.6±0.2

2015 101.0±0.7 102.1±0.6 11.1±0.1 12.6±0.2

2016 139.8±7.4 142.1±5.5 13.5±1.1 15.8±1.0 

 

APSIM study - relationship between transpiration and N uptake 

The simulated transpiration and N uptake were positively correlated under ambient and elevated CO2 

conditions (Fig. 4). The slope of the relationship under e[CO2] was steeper than under a[CO2]: N uptake 

per unit water transpired was approximately 15% higher under e[CO2] than a[CO2] (P≤0.05) (Fig. 4).   

 

 
Fig. 4 Relationship between simulated transpiration (mm) and nitrogen (N) uptake (expressed as g m-2 

ground area) under a[CO2] (dashed line and open circles) and e[CO2] (bold line and filled circles), 

simulated monthly average values using APSIM modeling frame work (2007- 2016). ±: standard error 

for the estimated parameters (slope and intercept of the linear relationship). Difference between for the 
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slopes of the relationships under ambient and elevated CO2 was significant at P≤0.05. The difference 

was not significant for intercepts (n=100).  

 

Discussion  

The Jarvis-type empirical model has been widely used for estimating gs in transpiration studies (Jarvis, 

1976; Stewart, 1988; Wright et al., 2012). We employed the Jarvis model to allow estimation from 

repeated measurement days to the whole growing season. The Jarvis model was parameterised 

previously for wheat under ambient and elevated CO2 growing conditions at the AGFACE site, 

employing the same set of cultivars (cv. Yitpi and cv. Scout) (Houshmandfar et al., 2015a). Stomatal 

conductance was on average 27% lower under elevated than under ambient CO2. This is in agreement 

with CO2-driven decreases of between 18 to 30% reported by earlier FACE trials measuring in situ gs 

in wheat, depending on intraspecific variations and environmental conditions under which plants were 

grown or gs measurements were collected (Garcia et al., 1998; Houshmandfar et al., 2016; McGrath and 

Lobell, 2013; Wall et al., 2000). 

The difference between estimated gs under ambient and elevated CO2 was smaller earlier than later in 

the growing season. It has been shown in previous papers that wheat grown under e[CO2] can have 

increased stomatal sensitivity to environmental factors (Bunce, 2004; Houshmandfar et al., 2015a), in 

particular response functions to temperature and VPD in a Jarvis model changed (Houshmandfar et al. 

2015a). Temperature and VPD are likely to have higher values during the late than early growing 

season, which can explain the increasing difference in gs.   

The simple approach used to upscale from leaf-level gs to an estimate of canopy transpiration 

(multiplying gs with VPD and LAI; Wright et al 2012) ignores within-canopy differences in stomatal 

responses and micro-environment as well as potential boundary layer effects, and is therefore likely to 

overestimate transpiration. We have no independent transpiration to further evaluate our estimates 

directly, but a study on soybean in FACE showed that stand-level evapotranspiration scaled well with 

gs measured on upper canopy leaves, implying strong coupling between canopy and atmosphere and 

consequently high boundary layer conductance (Bernacchi et al., 2007). Since soybean canopies are 

denser than dryland wheat, and the AGFACE site sees average wind speeds, it is a reasonable 

assumption that the wheat canopy in our study was at least as well coupled to the atmosphere and strong 

bias by boundary layer effects (as e.g. in dense forest canopies; Kauwe et al. (2013)), is unlikely. 

Calculating TE for biomass production with our transpiration estimates resulted in about 4 g dry 

aboveground biomass L-1 transpiration (using anthesis biomass data for ambient CO2 reported in 

Houshmandfar et al. (2016)). Given that 2013 was a very high rainfall season at the site, this compares 

well to corresponding values between 4-6 g L-1 determined at anthesis for a number of Australian wheat 

cultivars under non-limiting water conditions (Fig. 4 in Fletcher and Chenu (2015)).  

Uncertainties in upscaling aside, our focus was on the comparison between ambient and elevated CO2 

grown wheat, and the estimated 23% decrease for stand-level transpiration under e[CO2] compared to 
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a[CO2] is in good agreement with reports in the literature that suggest up to 22% lower stand-level 

transpiration in wheat grown under FACE, depending on growing conditions (Hunsaker et al., 1996; 

Hunsaker et al., 2000; Leakey et al., 2009; Tausz�Posch et al., 2013). The soybean FACE study cited 

above also showed that differences in transpiration between ambient and elevated CO2 were governed 

by differences in gs, but not by changes in LAI or canopy structure (Bernacchi et al., 2007). Increasing 

[CO2] has been shown to cause partial stomatal closure, which reduces transpiration per unit of leaf 

(e.g. Wall et al. (2000)), and in the above mentioned reports, per unit ground area. Conversely, CO2 

stimulation of growth can result in larger plants with higher LAI, which would tend to increase stand-

level transpiration (Kimball et al., 1995; Rosenberg et al., 1990), so that the actual change depends 

mainly on the relative magnitude of effects on leaf level transpiration and LAI. Some studies found that 

the leaf area effect may dominate, especially in dry soils where e[CO2] grown wheat could produce 

greater LAI (Samarakoon et al., 1995).  

APSIM simulated whole-season water use and wheat yield of three previous seasons at AGFACE well, 

but results for intermediate growth stages, as in this study, were less accurate (O'Leary et al., 2015). 

Discrepancies of transpiration assessments by different methods warrant further investigation, but for 

the purpose of this study the differences between ambient and elevated CO2 were more important. In 

contrast to the transpiration estimates extrapolated from leaf level measurements, our APSIM 

simulations suggested no considerable differences between the transpiration rates in plants grown under 

ambient and elevated [CO2]. This result is in line with O'Leary et al. (2015) who tested various modeling 

frameworks including APSIM-Wheat with AGFACE data under various environmental conditions (e.g. 

differential time of sowing and watering regimes) in 2007, 2008, and 2009 growing seasons. Their 

results suggested that APSIM overestimated stimulation of LAI by e[CO2], especially during early 

growing stages, with the result that although measured water use during the growing season was reduced 

by e[CO2], the simulation by APSIM-Wheat showed no such reduction (O'Leary et al., 2015). For the 

purpose of this paper the important question was whether the simulation by APSIM indicates a change 

for the transpiration-nutrient uptake relationship. An overestimation of transpiration under e[CO2] 

would only give false negative, but not false positive results, that is, the disparity between the 

relationships under ambient and elevated [CO2] may be underestimated. 

Total nutrient uptake into aboveground biomass was higher in plants grown under e[CO2] than under 

a[CO2] (albeit not always significant) in the AGFACE experiment. This result was consistent with 

APSIM output where higher N uptake into aboveground biomass was simulated under elevated than 

under ambient [CO2] in all the simulated years with an acceptable absolute error for 2013. Tissue 

concentration of nutrients was mostly, albeit not always significantly, lower in plants grown under 

e[CO2] (e.g. meta-analyses by Loladze (2002), Loladze (2014), and McGrath and Lobell (2013)) but 

plants take up more nutrients on an area basis because of increased biomass production (Adam et al., 

2000; Brooks et al., 2000; O'Leary et al., 2015; Wechsung et al., 1995). In this particular growing season 

(2013) nutrient concentrations, for the most part, were not significantly lower (data not shown), but 
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over multiple years the same tendency towards lower concentrations was observed at this site (e.g. 

Walker et al. (2016), Buchner et al. (2015), Fernando et al. (2014), and Panozzo et al. (2014)). 

The nutrient uptake per unit water transpired was higher under e[CO2] than under a[CO2]. Although we 

have not measured xylem nutrient concentrations in this study directly, our results indicate that on 

average nutrient concentrations in the transpiration stream would be greater under e[CO2], assuming 

nutrients are transported in the transpiration stream. This is in apparent contrast with our earlier work 

reporting e[CO2] decreases both transpiration flow and concentrations of nutrients in the xylem sap of 

wheat (Houshmandfar et al., 2015b). In that study, Ca and Mg concentrations in the xylem were 

evaluated at anthesis stage (DC 60 and DC 69). That result was also supported by Li et al. (2016), whose 

measurements taken ten days after DC 65 also demonstrated that xylem sap concentrations of Ca, Mg, 

and K were lower in plants grown under e[CO2] than under a[CO2]. It is important to note that those 

results may be specific to the phenological stage when the measurements were done - around or just 

after anthesis, which corresponds to end of the phenological period investigated in this present paper. 

Our results here imply that such lower nutrient concentrations in the xylem stream at the later stage 

have been offset during earlier growth, possibly up to anthesis, to arrive at an overall greater uptake per 

unit transpiration.  

There are a number of possible mechanisms to modify the effect of e[CO2] on nutrient uptake during 

phenological development. It is of vital importance for plant adaptation to respond flexibly to changes 

in environmental conditions (Forde and Lorenzo, 2001; Robinson, 1994). Although reports about root 

growth under e[CO2] are highly variable in details (e.g. Burkart et al. (2004) and Pacholski et al. (2015)), 

root biomass is generally stimulated by e[CO2] in line with shoot biomass. Earlier in the season, this 

may allow good access to soil nutrients and high uptake rates. Nutrient concentrations in soil and plant 

tissues act as signals continuously modifying lateral and seminal root formation (Lopez-Bucio et al., 

2003; Morgan and Connolly, 2013). There are some suggestions that e[CO2] stimulates lateral root 

growth preferentially over the elongation of primary roots, leading to highly branched, shallower root 

system architecture (Burkart et al. (2004) and Pacholski et al. (2015)). Such changes can make the root 

systems less efficient in soil exploration and thus nutrient uptake (Berntson, 1994; Pritchard and Rogers, 

2000; Taub and Wang, 2008), and this may only become manifest towards the end of the season when 

exploration of deeper soil layers becomes more important.  

Transpiration and nutrient uptake were strongly correlated. This supports the literature, e.g. as reviewed 

in Taub and Wang (2008), suggesting that limitations to the transpiration-driven mass flow rate of 

nutrients due to decreased gs is a contributing factor to the a decrease in nutrient concentration under 

e[CO2]. If this reduction resulting from decreased transpirational flow was the only mechanism, the 

nutrient uptake per unit water transpired should not have been different under ambient and elevated 

CO2 conditions, and in the graphs (Fig. 3 and 4) measurements from e[CO2] and a[CO2] grown plants 

should be part of the same relationship. Because in our data the nutrient uptake per unit water transpired 

was consistently higher under e[CO2] than a[CO2], we conclude that mechanisms other than mass flow 
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of nutrients are involved. On average, these mechanisms increase nutrient uptake into the transpiration 

stream, and may therefore to some extent mitigate the decrease in transpiration. Such mechanisms could 

be associated with changes in root system architecture or function (Berntson, 1994; Pritchard and 

Rogers, 2000; Taub and Wang, 2008).  

 

Conclusions 

We used a FACE experiment and the APSIM modelling framework with wheat to investigate potential 

changes of the relationship between nutrient uptake and transpiration rates under e[CO2] to test whether 

limited transpiration-driven mass flow of nutrients can explain nutrient decline under e[CO2]. Our 

results suggest that transpiration and nutrient uptake of N, K, S, Ca, Mg and Mn are correlated under 

e[CO2], but that on average across the active growing season nutrient uptake per unit water transpired 

is higher in plants grown under e[CO2] than a[CO2]. We therefore concluded that limited transpiration-

driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO2], but 

cannot solely account for the overall, more complex relationship between plant nutrition and e[CO2].  
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